常用的淬火过程内应力有哪些介质有哪些

淬火介质_百度百科
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
常用的淬火介质有水、、、、熔碱等。在对金属进行处理时,需要将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却。
淬火介质常用的淬火介质
1)清水、2)无机盐或碱的水溶液、3)有机物水溶液
1)植物油、2)全损耗系统用油(机械油)、3)专用淬火油(矿物油中加入添加剂)如锦辉淬火油
3、溶融热浴
1)熔盐、2)溶融金属
1)静止空气、2)压缩空气
2、还原性气体(氢、氨分解气)
3、中性气体(氮)
4、惰性气体(氩、氦等)
1)气固态、2)气液态、3)气液固态
2、金属板[1]
水是冷却能力较强的淬火介质。来源广、价格低、成分稳定不易变质。缺点是在C曲线的“鼻子”区(500~600℃左右),水处于蒸汽膜阶段,冷却不够快,会形成“软点”;而在转变温度区(300~100℃),水处于沸腾阶段,冷却太快,易使马氏体转变速度过快而产生很大的内应力,致使工件变形甚至开裂。当水温升高,水中含有较多气体或水中混入不溶杂质(如油、肥皂、泥浆等),均会显著降低其冷却能力。因此水适用于截面尺寸不大、形状简单的工件的淬火冷却。
盐水和碱水
在水中加入适量的食盐和碱,使高温工件浸入该冷却介质后,在蒸汽膜阶段析出盐和碱的晶体并立即爆裂,将蒸汽膜破坏,工件表面的氧化皮也被炸碎,这样可以提高介质在高温区的冷却能力。其缺点是介质的腐蚀性大。一般情况下,盐水的浓度为10%,苛性钠水溶液的浓度为10%~15%。可用作碳钢及低合金结构钢工件的淬火介质,使用温度不应超过60℃,淬火后应及时清洗并进行防锈处理。
冷却介质一般采用矿物质油(矿物油)。如机油、变压器油和柴油等。机油一般采用10号、20号、30号机油,油的号越大,黏度越大,闪点越高,冷却能力越低,使用温度相应提高。
新型主要有高速淬火油、和三种。
高速淬火油是在高温区冷却速度得到提高的淬火油。获得高速淬火油的基本途径有两种,一种是选取不同类型和不同黏度的矿物油,以适当的配比相互混合,通过提高特性温度来提高高温区冷却能力;另一种是在普通淬火油中加入添加剂,在油中形成粉灰状浮游物。添加剂游磺酸的钡盐、钠盐、钙盐以及磷酸盐、硬脂酸盐等。生产实践表明,高速淬火油在过冷奥氏体不稳定区冷却速度明显高于普通淬火油,而在低温马氏体转变区冷速与普通淬火油相接近。这样既可得到较高的淬透性和淬硬性,又大大减少了变形,适用于形状复杂的合金钢工件的淬火。
光亮淬火油能使工件在淬火后保持光亮表面。在矿物油中加入不同性质的高分子添加物,可获得不同冷却速度的光亮淬火油。这些添加物的主要成分是光亮剂,其作用是将不溶解于油的老化产物悬浮起来,防止在工件上积聚和沉淀。另外,光亮淬火油添加剂中还含有抗氧化剂、表面活性剂和催冷剂等。
真空淬火油是用于真空热处理淬火的冷却介质。真空淬火油必须具备低的饱和蒸汽压,较高而稳定的冷却能力以及良好的光亮性和热稳定性,否则会影响真空热处理的效果。
盐浴和碱浴淬火介质一般用在分级淬火和等温淬火中。
新型淬火剂
有聚乙烯醇水溶液和三硝水溶液等。聚乙烯醇常用质量分数为0.1%~0.3%之间的水溶液,共冷却能力介于水和油之间。当工件淬入该溶液时,工件表面形成一层蒸汽膜和一层凝胶薄膜,两层膜使加热工件冷却。进入沸腾阶段后,薄膜破裂,工件冷却加快,当达到低温时,聚乙烯醇凝胶膜复又形成,工件冷却速度又下降,所以这种溶液在高、低温区冷却能力低,在中温区冷却能力高,有良好的冷却特性。
三硝水溶液由25%硝酸钠+20%亚硝酸钠+20%硝酸钾+35%水组成。在高温(650~500℃)时由于盐晶体析出,破还蒸汽膜形成,冷却能力接近于水。在低温(300~200℃)时由于浓度极高,流动性差,冷却能力接近于油,故其可代替水-油双介质淬火。
1、淬火剂产品描述
是由一种液态的有机聚合物和腐蚀抑制剂组成的水溶性溶液。有机聚合物完全溶于水,形成清亮、均质的溶液。但当温度超过 74℃(165℉)时,聚合物便会从水中析出分离,形成一层不溶解的相。该产品克服了水冷却速度快,易使工件开裂;油品冷却速度慢,淬火效果差且易燃等缺点。
当用淬火剂的稀释溶液冷却热的金属时,液体有机聚合物会在金属表面沉积,形成一层薄膜。可以通过调节薄膜的厚度部分地控制金属的冷却程度。薄膜的厚度则是通过调节淬火浴中淬火剂的浓度来完成。也可通过调节淬火液的温度或搅拌程度来控制冷却。 淬火剂跟其他的水溶性聚合物淬火液(剂)的主要区别在于:控制热转换的多聚物成分不同。如美国有UCON A,烟台海益等,其多聚物成分为聚醚(PAG)。
2.特性和优点
◆ 淬火剂水溶液在常温下均匀透明溶液,当温度升高时,淬火剂溶解度反而会下降,溶液就从透明变为混浊,到达74°C时聚合物的线型大分子就会从水中析出,并与水完全分离。(这叫做逆溶性,74°C就是逆熔点)。
◆ 通过调整其水溶液的浓度,可在很大范围内调整其冷却能力,可以得到介于水油之间,以及相当于油或者更慢的冷却速度,也可以和Quench PA配比使用来调节冷却曲线。
◆ 淬火剂需要最少量的添加处理,因为它们和普通的聚乙烯醇和溶解油相比,不易变质和被氧化。主要的添加工作就是补充蒸发损失掉的水。
◆淬火剂和普通的油性淬火油(剂)相比,能除去烟尘、煤灰和残杂物。使设备维护和工厂清洁工作变得轻松简单。
◆淬火剂在0℃(32℉)以下会冻住,使用前需要在室温下解冻并混合,产品功能不会受到影响。
◆对黑色金属及有色金属均无腐蚀,淬火工件光亮且有短期防锈作用。
◆推荐最佳溶液温度 20~50℃,应不高于60℃。
3. 典型性质数据
20℃时每加仑的重量 (磅) 8.94
比重(20℃) 1.074
倾点 -11℃(-12℉)
粘度37.8℃(100℉),SUS
防锈作用 ATMS D665A 通过
4.应用――在世界上聚合物是应用最广的一种有机淬火液,可用于各种汽车工件以及航空工业的铝合金和钛合金,合金钢锻模的淬火,大转矩柴油机曲轴感应加热淬火等。淬火剂主要应用于以下淬火范围:
◆适用于典型的用油淬火的高碳钢和高合金钢;用20-30%的浓度,可适用于钢件的整体和表面淬火。
◆适用于感应淬火和火焰淬火,适合喷射淬火和浸淬,可应用于几何外型复杂的高合金部件(包括:球墨铸铁、韧性铸铁等)。
◆用于在倾炉、车底式炉和坑式炉中加工的大型合金部件,感应加热成形的部件或合金。
◆用于在使用燃气、天然气和碳氮共渗气的熔炉中需要油淬火的加工部件(间歇式和连续式操作)。
◆适用于旋转或持续型混合器的氧化熔炉、天然气熔炉和保护气熔炉。它们能应用在部件铸造后的直接淬火;铸件的连续淬火以及铸钢、锻钢、铸铁的一般淬火。
◆大批量的汽车、拖拉机齿轮等零件的淬火(连续式渗碳生产线或箱式多用炉)
◆淬火剂是一种高分子聚合物水溶性淬火剂,选用国外优质原料精制而成,具有独特的逆溶性,(一般称之为浊点效应)安全,环保,使用寿命长,使用成本低,国际油价越来越高,国家对环境保护愈来愈严的大气候下,逐渐成为热处理行业的首选淬火介质。
◆安全完全不燃烧,无火灾危险,无毒,无油烟,使工作环境大大改善,满足环保部门对企业的环保要求。
5.淬火剂冷却曲线特性曲线,30度
淬火过程曲线图表1和图表2显示了Wonder Quench PE在实验室测试时的冷却率,实验使用一个不锈钢的测试圆柱体(长是直径的4倍),在它的几何中心安置有电热偶。
图表1用Wonder Quench PEE和传统的淬火油做了比较。图表2显示了流体流动(循环)对浓度和浴温都确定的Wonder Quench PE的影响。这些曲线仅对一般的比较有效。
6.使用范围和局限
淬火剂主要用于各类碳素钢,低合金结构钢、弹簧钢、渗碳钢、轴承钢制工件做增体浸淬和感应加热淬火.
淬火剂不使用与有二次硬化特性的钢件(如冷热和高速钢).
淬火剂一般不适于淬经过盐浴炉加热后的工件.
淬火介质淬火介质的使用维护
从事热处理生产的人应当维护好所用的淬火介质。一般的管理工作包括:防止介质受污染、保证冷却系统能正常工作、按要求控制好液温、水性介质要经常检测和控制其浓度,以及定期检测淬火介质的冷却特性等,应当注意以下几件事:
1、在新倒入淬火介质前,特别是在旧的淬火槽中做整槽更换时,一定要把淬火槽和冷却系统认真清洗干净。一些单位图省事,在淬火油做整槽更换时,只把原来的旧油大致放干,便将新油倒入槽中。原来沉在槽底的油污、槽壁上的碳黑油泥,以及残留在冷却系统中的油污,都一齐混进新油中。其结果,一槽新油就给污染了。淬火出来的工件污迹斑斑,清洗十分困难。
2、如果发现淬火油变得容易着火,要赶快找出原因并加以解决。原因之一是油中进了水,尤其是用热油的场合。原因之二是在油温测量或显示上出了故障,实际油温远高于显示的油温。此外,油中混入了低闪点、易挥发的油液,也容易着火。
3、防止加热炉内的炭黑污染淬火油。渗碳与碳氮共渗炉内难免产生碳黑。这些碳黑进入淬火油中,会对油造成污染。少量碳黑逐渐积累,首先损害的是淬火工件的光亮性,随后影响油的冷却特性。碳黑粒子非常小,又多悬浮在油中,一般不可能用过滤和沉降的办法加以分离。定期烧掉加热炉内结存的碳黑,是现行的最好解决办法。
4、对使用中介质变质和整槽更换问题的看法。水性和油性介质都有一定的寿命。到时候都应当做整槽更换。
影响油性介质寿命长短的主要因素是油的使用温度高低、淬火工件的总表面积大小、油的品质好坏和外来污染等情况。油的使用温度(应当包括油的平均温度和工件淬入后的温升程度)越低,油的使用寿命越长;淬火工件的总表面积越大,油的寿命越短。用于小型工件的淬火油,寿命很短,因为所处理工件单位重量的总表面积非常之大;而处理大型工件用的淬火油,由于所处理工件单位重量的总表面积相当小,加上淬火次数少,使用寿命就非常长。油品的质量,包括所用基础油和添加剂的品质。同样的使用条件,品质差的油只能用几个月,而品质好的常常可以用好几年。此外,外来污染,尤其是水的进入和碳黑的积累,对油的使用寿命也有很大的影响。
水性淬火介质的寿命长短,最主要的影响是介质的种类。比如,聚乙烯醇类的淬火介质,一般寿命不超过几个月;而PAG类的介质,一般多可以使用几年。外来污染对水性介质的寿命长短影响也很大。因此,水性介质的维护管理比油性介质更应受到重视,也更费事。可以通过去污处理而延长其整槽更换时间。
不管是水性还是油性介质,使用中都会逐渐变质,同时也都会受到污染。变质产物和外来污染物逐渐积累,都会影响到介质的使用性能。使用到一定时间后,都应当做整槽更换。据知,除只用于大型工件淬火的油外,大量处理一般中小型基础件的场合,国内外淬火油的使用寿命一般不超过三、五年。如果不做去污处理,就是PAG淬火介质的整槽更换时间一般都比三、五年要短。到了应当整槽更换的时候就做整槽更换,往往能保证热处理质量、提高生产效率、简化管理并减少介质消耗量,从而能降低生产成本。
淬火介质淬火介质相关标准
标准编号  标准名称
热处理常用淬火介质技术要求
GB/T12579-90  润滑油泡沫特性测定法
GB/T  石油产品粘度指数计算法
GB/T260-77  石油产品水分测定法
GB/T264-77  石油产品酸值测定法
GB/T265-88  石油产品运动粘度测定法和动力粘度计算法
GB/T267-77  石油产品闪点和燃点测定法
GB/T268-87  石油产品残碳测定法(康氏法)
GB/T3536-83  石油产品闪点和燃点测定法(克利夫兰开口杯法)
GB/T3555-83    石油产品赛波特颜色测定法(赛波特比色计法)
GB5096-85  石油产品铜片腐蚀试验法
ISO   Industrial quenching oils-Determination of cooling characteristics-Nickel-alloy probe test method
JB/T 有机物水溶性淬火介质性能测定方法
JB/T 聚乙烯醇合成淬火剂
JB/T 淬火介质冷却性能试验方法
SH/T0219-92  热处理油热氧化安定性测定法
SH/T0220-92  热处理油冷却性能测定法
SH/T0293-92  真空油脂饱和蒸气压测定法
潘健生.热处理工艺学:高等教育出版社,2009 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
热处理常用淬火介质技术要求
下载积分:1500
内容提示:热处理常用淬火介质技术要求
文档格式:PDF|
浏览次数:19|
上传日期: 04:22:59|
文档星级:
全文阅读已结束,如果下载本文需要使用
 1500 积分
下载此文档
该用户还上传了这些文档
热处理常用淬火介质技术要求
关注微信公众号淬火介质的知识总结的也这么全,拿走不谢!
我的图书馆
淬火介质的知识总结的也这么全,拿走不谢!
  工件进行淬火冷却所使用的介质称为淬火冷却介质(或淬火介质)。理想的淬火介质应具备的条件是使工件既能淬成马氏体,又不致引起太大的淬火应力。这就要求在C曲线的“鼻子”以上温度缓冷,以减小急冷所产生的热应力;在“鼻子”处冷却速度要大于临界冷却速度,以保证过冷奥氏体不发生非马氏体转变;在“鼻子”下方,特别使Ms点一下温度时,冷却速度应尽量小,以减小组织转变的应力。  常用的淬火介质有水、水溶液、矿物油、熔盐、熔碱等。  ● 水  水是冷却能力较强的淬火介质。来源广、价格低、成分稳定不易变质。缺点是在C曲线的“鼻子”区(500~600℃左右),水处于蒸汽膜阶段,冷却不够快,会形成“软点”;而在马氏体转变温度区(300~100℃),水处于沸腾阶段,冷却太快,易使马氏体转变速度过快而产生很大的内应力,致使工件变形甚至开裂。当水温升高,水中含有较多气体或水中混入不溶杂质(如油、肥皂、泥浆等),均会显著降低其冷却能力。因此水适用于截面尺寸不大、形状简单的碳素钢工件的淬火冷却。  ● 盐水和碱水  在水中加入适量的食盐和碱,使高温工件浸入该冷却介质后,在蒸汽膜阶段析出盐和碱的晶体并立即爆裂,将蒸汽膜破坏,工件表面的氧化皮也被炸碎,这样可以提高介质在高温区的冷却能力。其缺点是介质的腐蚀性大。  一般情况下,盐水的浓度为10%,苛性钠水溶液的浓度为10%~15%。可用作碳钢及低合金结构钢工件的淬火介质,使用温度不应超过60℃,淬火后应及时清洗并进行防锈处理。  ● 油  冷却介质一般采用矿物质油(矿物油)。如机油、变压器油和柴油等。机油一般采用10号、20号、30号机油,油的号越大,黏度越大,闪点越高,冷却能力越低,使用温度相应提高。  目前使用的新型淬火油主要有高速淬火油、光亮淬火油和真空淬火油三种。    高速淬火油是在高温区冷却速度得到提高的淬火油。获得高速淬火油的基本途径有两种,一种是选取不同类型和不同黏度的矿物油,以适当的配比相互混合,通过提高特性温度来提高高温区冷却能力;另一种是在普通淬火油中加入添加剂,在油中形成粉灰状浮游物。添加剂游磺酸的钡盐、钠盐、钙盐以及磷酸盐、硬脂酸盐等。生产实践表明,高速淬火油在过冷奥氏体不稳定区冷却速度明显高于普通淬火油,而在低温马氏体转变区冷速与普通淬火油相接近。这样既可得到较高的淬透性和淬硬性,又大大减少了变形,适用于形状复杂的合金钢工件的淬火。  光亮淬火油能使工件在淬火后保持光亮表面。在矿物油中加入不同性质的高分子添加物,可获得不同冷却速度的光亮淬火油。这些添加物的主要成分是光亮剂,其作用是将不溶解于油的老化产物悬浮起来,防止在工件上积聚和沉淀。另外,光亮淬火油添加剂中还含有抗氧化剂、表面活性剂和催冷剂等。  真空淬火油是用于真空热处理淬火的冷却介质。真空淬火油必须具备低的饱和蒸汽压,较高而稳定的冷却能力以及良好的光亮性和热稳定性,否则会影响真空热处理的效果。  盐浴和碱浴淬火介质一般用在分级淬火和等温淬火中。  ● 新型淬火剂  有聚乙烯醇水溶液和三硝水溶液等。  聚乙烯醇常用质量分数为0.1%~0.3%之间的水溶液,共冷却能力介于水和油之间。当工件淬入该溶液时,工件表面形成一层蒸汽膜和一层凝胶薄膜,两层膜使加热工件冷却。进入沸腾阶段后,薄膜破裂,工件冷却加快,当达到低温时,聚乙烯醇凝胶膜复又形成,工件冷却速度又下降,所以这种溶液在高、低温区冷却能力低,在中温区冷却能力高,有良好的冷却特性。  三硝水溶液由25%硝酸钠 20%亚硝酸钠 20%硝酸钾 35%水组成。在高温(650~500℃)时由于盐晶体析出,破还蒸汽膜形成,冷却能力接近于水。在低温(300~200℃)时由于浓度极高,流动性差,冷却能力接近于油,故其可代替水-油双介质淬火。冷却方法  生产实践中应用最广泛的淬火分类是以冷却方式的不同划分的。主要有单液淬火、双液淬火、分级淬火和等温淬火等。  ● 单液淬火  是将奥氏体化工件浸入某一种淬火介质种,一直冷却到室温的淬火操作方法。单液淬火介质有水、盐水、碱水、油及专门配制的淬火剂等。一般情况下碳素钢淬火,合金钢淬油。  单液淬火操作简单,有利于实现机械化和自动化。其缺点是冷速受介质冷却特性的限制而影响淬火质量。单液淬火对碳素钢而言只适用于形状较简单的工件。  ● 双液淬火  是将奥氏体化工件先浸入一种冷却能力强的介质,在钢件还未达到该淬火介质温度之间即取出,马上浸入另一种冷却能力弱的介质中冷却,如先水后油、先水后空气等。双液淬火减少变形和开裂倾向,操作不好掌握,在应用方面有一定的局限性。  ● 马氏体分级淬火  是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。  分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。  ● 贝氏体等温淬火  是将钢件奥氏体化,使之快冷到贝氏体转变温度区间(260~400℃)等温保持,使奥氏体转变为贝氏体的淬火工艺,有时也叫等温淬火。一般保温时间为30~60min。  ● 复合淬火  将工件急冷至Ms以下获得10%~20%马氏体,然后在下贝氏体温度区等温。这种冷却方法可使较大截面地工件获得组织M B组织。预淬时形成的马氏体可促进贝氏体转变,在等温时又使马氏体回火。复合淬火用于合金工具钢工件,可避免第一类回火脆性,减少残余奥氏体量即变形开裂倾向。  特殊工件也采用压缩空气淬火、喷雾淬火、喷流淬火。
TA的最新馆藏
喜欢该文的人也喜欢常用淬火冷却介质的主要类型和主要缺点
自来水、盐水、碱水以及普通机油通常被称为传统的淬火介质;而把专门为热处理淬火冷却的需要才开发的各种专用淬火油,加上新型水性淬火剂合称为新型淬火介质。1、自来水作为淬火介质的主要缺点:①、冷却能力对水温的变化极其敏感,水温升高,使最大冷速对应的温度移向低温;②、在碳素钢过冷奥氏体的最不稳定区(500~600℃左右),水处在蒸汽膜阶段,冷速较低,奥氏体易发生高温转变。而在马氏体转变区的冷速太大,易使工件严重变形甚至开裂;③、水处在蒸汽膜阶段不易破泡,使工件表面淬火硬度不均匀或产生软点;④、参入不容物或微溶杂质时,会影响其冷却能力,也会使工件产生软点。2、盐水作为淬火介质的主要缺点:水中加入适量的盐,在500~600℃区间的冷却能力明显高于水,但在100~300℃区间冷速仍然很大,且对工件、设备有一定的腐蚀作用。3、碱水作为淬火介质的主要缺点:碱水在高温区的冷却速比盐水高,而在低温区的冷速比盐水低。但碱水的缺点依然是在100~300℃区间冷速仍然很大,并极易使工件、设备产生锈蚀。4、普通机械油作为淬火介质的主要缺点:①、中温度区间的冷却能力太小,仅为水的1/5~1/6,只能用于合金钢或尺寸教小的碳钢工件的淬火;②、油经过长期使用后会老化,需要定期更换,成本高;③、油在淬火时产生的油烟污染空气,不利于环保和操作工人的健康;④、易着火是油在淬火时最大的安全隐患。5、新型有机水溶性淬火剂的主要缺点:虽然新型有机水溶性淬火剂综合了传统淬火剂的优点,克服了其缺点,但仍然存在一些不足。①、有机淬火剂容易受到微生物的侵害,使其腐败变质。尤其是长期不用,会发臭,变黑,需要加强平时的维护;②、有机淬火剂使用周期在不受到微生物的侵害时,一般为1~3年,需要定期更换,使用成本相对教高;③、有机淬火剂在使用时,其中的某些单种物质容易分解(如防腐剂和消泡剂)或被工件带走(如聚氧化乙烯和聚氧化丙烯的共聚物或其它聚醚类物质),从而影响淬火剂的稳定性;④、使用一段时间后,在补充淬火剂时,其真实浓度测量的有效方法复杂,不易掌握,易造成补充量的不准确。6、新型无机水溶性淬火剂的主要缺点:新型无机水溶性淬火剂克服了有机水溶性淬火剂的所有缺点,但在低温区的冷却特性不如有机水溶性淬火剂理想,需要进一步改进。目前,克服这个缺点的有效方法就是掌握好工件淬火时的“出水温度”。你的浏览器禁用了JavaScript, 请开启后刷新浏览器获得更好的体验!
模具钢热处理中,淬火是常见工序。然而,因种种原因,有时难免会产生淬火裂纹,致使前功尽弃。分析裂纹产生原因,进而采取相应预防措施,具有显著的技术经济效益。常见淬火裂纹有以下10类型。
1、纵向裂纹
裂纹呈轴向,形状细而长。当模具完全淬透即无心淬火时,心部转变为比容最大的淬火马氏体,产生切向拉应力,模具钢的含碳量愈高,产生的切向拉应力愈大,当拉应力大于该钢强度极限时导致纵向裂纹形成。以下因素又加剧了纵向裂纹的产生: (1)钢中含有较多S、P、Sb、Bi、Pb、Sn、As等低熔点有害杂质,钢锭轧制时沿轧制方向呈纵向严重偏析分布,易产生应力集中形成纵向淬火裂纹,或原材料轧制后快冷形成的纵向裂纹未加工掉保留在产品中导致最终淬火裂纹扩大形成纵向裂纹; (2)模具尺寸在钢的淬裂敏感尺寸范围内(碳工具钢淬裂危险尺寸为8-15mm,中低合金钢危险尺寸为25-40mm)或选择的淬火冷却介质大大超过该钢的临界淬火冷却速度时均易形成纵向裂纹。
预防措施: (1)严格原材料入库检查,对有害杂质含量超标钢材不投产; (2)尽量选用真空冶炼,炉外精炼或电渣重熔模具钢材; (3)改进热处理工艺,采用真空加热、保护气氛加热和充分脱氧盐浴炉加热及分级淬火、等温淬火; (4)变无心淬火为有心淬火即不完全淬透,获得强韧性高的下贝氏体组织等措施,大幅度降低拉应力,能有效避免模具纵向开裂和淬火畸变。
裂纹特征是垂直于轴向。未淬透模具,在淬硬区与未淬硬区过渡部分存在大的拉应力峰值,大型模具快速冷却时易形成大的拉应力峰值,因形成的轴向应力大于切向应力,导致产生横向裂纹。锻造模块中S、P.Sb,Bi,Pb,Sn,As等低熔点有害杂质的横向偏析或模块存在横向显微裂纹,淬火后经扩展形成横向裂纹。
预防措施: (1)模块应合理锻造,原材料长度与直径之比即锻造比最好选在2—3之间,锻造采用双十字形变向锻造,经五镦五拔多火锻造,使钢中碳化物和杂质呈细、小,匀分布于钢基体,锻造纤维组织围绕型腔无定向分布,大幅度提高模块横向力学性能,减少和消除应力源; (2)选择理想的冷却速度和冷却介质:在钢的Ms点以上快冷,大于该钢临界淬火冷却速度,钢中过冷奥氏体产生的应力为热应力,表层为压应力,内层为张应力,相互抵消,有效防止热应力裂纹形成,在钢的Ms—Mf之间缓冷,大幅度降低形成淬火马氏体时的组织应力。当钢中热应力与相应应力总和为正(张应力)时,则易淬裂,为负时,则不易淬裂。充分利用热应力,降低相变应力,控制应力总和为负,能有效避免横向淬火裂纹发生。CL-1有机淬火介质是较理想淬火剂,同时可减少和避免淬火模具畸变,还可控制硬化层合理分布。调正CL-1 淬火剂不同浓度配比,可得到不同冷却速度,获得所需硬化层分布,满足不同模具钢需求。
常发生在模具棱角角、缺口、孔穴、 凹模接线飞边等形状突变处。这是因为,淬火时棱角处产生的应力是平滑表面平均应力的10倍。另外, (1)钢中含碳(C)量和合金元素含量愈高,钢Ms点愈低,Ms点降低2℃,则淬裂倾向增加1.2倍,Ms点降低8℃,淬裂倾向则增加8倍; (2)钢中不同组织转变和相同组织转变不同时性,由于不同组织比容差,造成巨大组织应力,导致组织交界处形成弧状裂纹; (3)淬火后未及时回火,或回火不充分,钢中残余奥氏体未充分转变,保留在使用状态中,促进应力重新分布,或模具服役时残余奥氏体发生马氏体相变产生新的内应力,当综合应力大于该钢强度极限时便形成弧状裂纹; (4)具有第二类回火脆性钢,淬火后高温回火缓冷,导致钢中P,s等有害杂质化合物沿晶界析出,大大降低晶界结合力和强韧性,增加脆性,服役时在外力作用下形成弧状裂纹。
预防措施: (1)改进设计,尽量使形状对称,减少形状突变,增加工艺孔与加强筋, 或采用组合装配; (2)圆角代直角及尖角锐边,贯穿孔代盲孔,提高加工精度和表面光洁度,减少应力集中源,对于无法避免直角、尖角锐边、盲孔等处一般硬度要求不高,可用铁丝、石棉绳、耐火泥等进行包扎或填塞,人为造成冷却屏障,使之缓慢冷却淬火,避免应力集中,防止淬火时弧状裂纹形成;(3)淬火钢应及时回火,消除部分淬火内应力,防止淬火应力扩展; (4)较长时间回火,提高模具抗断裂韧性值; (5)充分回火,得到稳定组织性能;(6)多次回火使残余奥氏体转变充分和消除新的应力; (7)合理回火,提高钢件疲劳抗力和综合机械力学性能; (8)对于有第二类回火脆性模具钢高温回火后应快冷(水冷或油冷),可消除二类回火脆性,防止和避免淬火时弧状裂纹形成。
模具服役时在应力作用下,淬火硬化层一块块从钢基体中剥离。因模具表层组织和心部组织比容不同,淬火时表层形成轴向、切向淬火应力,径向产生拉应力,并向内部突变,在应力急剧变化范围较窄处产生剥离裂纹,常发生于经表层化学热处理模具冷却过程中,因表层化学改性与钢基体相变不同时性引起内外层淬火马氏体膨胀不同时进行,产生大的相变应力,导致化学处理渗层从基体组织中剥离。如火焰表面淬硬层、高频表面淬硬层、渗碳层、碳氮共渗层、渗氮层、渗硼层、渗金属层等。化学渗层淬火后不宜快速回火,尤其是300~C以下低温回火快速加热,会促使表层形成拉应力,而钢基体心部及过渡层形成压缩应力,当拉应力大于压缩应力时,导致化学渗层被拉裂剥离。
预防措施: (1)应使模具钢化学渗层浓度与硬度由表至内平缓降低,增强渗层与基体结合力,渗后进行扩散处理能使化学渗层与基体过渡均匀;(2)模具钢化学处理之前进行扩散退火、球化退火、调质处理,充分细化原始组织,能有效防止和避免剥离裂纹产生,确保产品质量。
裂纹深度较浅,一般深约0.01-1.5mm,呈辐射状,别名龟裂。原因主要有: (1)原材料有较深脱碳层,冷切削加工未去除,或成品模具在氧化气氛炉中加热造成氧化脱碳; (2)模具脱碳表层金属组织与钢基体马氏体含碳量不同,比容不同,钢脱碳表层淬火时产生大的拉应力,因此,表层金属往往沿晶界被拉裂成网状; (3)原材料是粗晶粒钢,原始组织粗大,存在大块状铁素体,常规淬火无法消除,保留在淬火组织中,或控温不准,仪表失灵,发生组织过热,甚至过烧,晶粒粗化,失去晶界结合力,模具淬火冷却时钢的碳化物沿奥氏体晶界析出,晶界强度大大降低,韧性差,脆性大,在拉应力作用下沿晶界呈网状裂开。
预防措施: (1)严格原材料化学成分.金相组织和探伤检查,不合格原材料和粗晶粒钢不宜作模具材料; (2)选用细晶粒钢、真空电炉钢,投产前复查原材料脱碳层深度,冷切削加工余量必须大于脱碳层深度; (3)制订先进合理热处理工艺,选用微机控温仪表,控制精度达到±1.5℃,定时现场校验仪表; (4)模具产品最终处理选用真空电炉、保护气氛炉和经充分脱氧盐浴炉加热模具产品等措施,有效防止和避免网状裂纹形成。
6冷处理裂纹
模具钢多为中,高碳合金钢,淬火后还有部分过冷奥氏体未转变成马氏体,保留在使用状态中成为残余奥氏体,影响使用性能。若置于零度以下继续冷却,能促使残余奥氏体发生马氏体转变,因此,冷处理的实质是淬火继续。室温下淬火应力和零度下淬火应力叠加,当叠回应力超过该材料强度极限时便形成冷处理裂纹。
预防措施: (1)淬火后冷处理之前将模具置于沸水中煮30—60min,可消除15%-25%淬火内应力并使残余奥氏体稳定化,再进行-60℃常规冷处理,或进行-120℃深冷处理,温度愈低,残余奥氏体转变成马氏体量愈多,但不可能全部转变完,实验表明,约有2%-5%残余奥氏体保留下来,按需要保留少量残余奥氏体可松驰应力,起缓冲作用,因残余奥氏体又软又韧,能部分吸收马氏体化急剧膨胀能量,缓和相变应力; (2)冷处理完毕后取出模具投入热水中升温,可消除40%-60%冷处理应力,升温至室温后应及时回火,冷处理应力进一步消除,避免冷处理裂纹形成,获得稳定组织性能,确保模具产品存放和使用中不发生畸变。
常发生在模具成品淬火、回火后磨削冷加工过程中,多数形成的微细裂纹与磨削方向垂直,深约0.05—1.0mm。 (1)原材料预处理不当,未能充分消除原材料块状、网状、带状碳化物和发生严重脱碳; (2)最终淬火加热温度过高,发生过热,晶粒粗大,生成较多残余奥氏体; (3)在磨削时发生应力诱发相变,使残余奥氏体转变为马氏体,组织应力大,加上因回火不充分,留有较多残余拉应力,与磨削组织应力叠加,或因磨削速度、进刀量大及冷却不当,导致金属表层磨削热急剧升温至淬火加热温度,随之磨削液冷却,造成磨削表层二次淬火,多种应力综合,超过该材料强度极限,便引起表层金属磨削裂纹。
预防措施: (1)对原材料进行改锻,多次双十字形变向镦拔锻造,经四镦四拔,使锻造纤维组织围绕型腔或轴线呈波浪形对称分布,并利用最后一火高温余热进行淬火,接着高温回火,能充分消除块状、网状、带状和链状碳化物,使碳化物细化至2-3级; (2)制订先进的热处理工艺,控制最终淬火残余奥氏体含量不超标; (3)淬火后及时进行回火、消除淬火应力; (4)适当降低磨削速度、磨削量,磨削冷却速度,能有效防止和避免磨削裂纹形成。
8线切割裂纹
该裂纹出现在经过淬火、回火的模块在线切割加工过程中,此过程改变了金属表层、中间层和心部应力场分布状态,淬火残余内应力失去平衡变形,某一区域出现大的拉应力,此拉应力大干该模具材料强度极限时导致炸裂,裂纹是弧尾状刚劲变质层裂纹。实验表明,线切割过程是局部高温放电和迅速冷却过程,使金属表层形成树枝状铸态组织凝固层,产生600-900MPa拉应力和厚约0.03mm的高应力二次淬火白亮层。裂纹产生原因: (1)原材料存在严重的碳化物偏析; (2)仪表失灵,淬火加热温度过高,晶粒粗大,降低材料强韧性,增加脆性; (3)淬火工件未及时回火和回火不充分,存在过大的残余内应力和线切割过程中形成的新内应力叠加导致线切割裂纹。
预防措施: (1)严格原材料入库前检查,确保原材料组织成分合格,对不合格原材料必须进行改锻,击碎碳化物,使化学成分、金相组织等达到技术条件后方可投产。模块热处理前加工成品需留足一定磨量后淬火.回火、线切割; (2)入炉前校验仪表,选用微机控温,控温精度±1.5℃,真空炉、保护气氛炉加热,严防过热和氧化脱碳;(3)采用分级淬火、等温淬火和淬火后及时回火,多次回火,充分消除内应力,为线切割创造条件; (4)制订科学合理线切割工艺。
模具服役时在交变应力反复作用下形成的显微疲劳裂纹缓慢扩展,导致突然疲劳断裂。 (1)原材料存在发纹、自点、孔隙、疏松、非金属夹杂、碳化物严重偏析、带状组织、块状游离铁素体冶金组织缺陷,破坏了基体组织连续性,形成不均匀应力集中。钢锭中112未排除,导致轧制时形成白点。钢中存在Sb、Bi、 Pb、Sn、As和S、P等有害杂质,钢中的P易引起冷脆,而s易引起热脆,S,P有害杂质超标均易形成疲劳源; (2)化学渗层过厚、浓度过大、渗层过度、硬化层过浅、过渡区硬度低等都可导致材料疲劳强度急剧降低; (3)当模面加工粗糙、精度低、光洁度差,以及刀纹,刻字、划痕、碰伤、腐蚀麻面等也易引起应力集中导致疲劳断裂。
预防措施: (1)严格选材,确保材质,控制Pb、As、Sn等低熔点杂质与S、P非金属杂质含量不超标; (2)投产前进行材质检查,不合格原材料不投产; (3)选用具有纯洁度高、杂质少、化学成分均匀、晶粒细.碳化物小、等向性能好,疲劳强度高等特点的电渣重熔精炼钢,对模具型面表面喷丸强化和表面化学渗层改性强化处理,使金属表层为预压应力,抵消模具服役时产生的拉应力,提高模具型面疲劳强度; (4)提高模具型面加工精度和光洁度; (5)改善化学渗层和硬化层组织性能; (6)采用微机控制化学渗层厚度、浓度和硬化层厚度。
10应力腐蚀裂纹
该裂纹常发生在使用过程中。金属模具因化学反应或电化学反应过程,引起从表至内组织结构损坏腐蚀作用而产生开裂,这就是应力腐蚀裂纹。模具钢因热处理后组织不同,抗蚀性能也不同。最耐蚀组织为奥氏体(A),最易腐蚀组织为屈氏体(T),依次为铁素体(F)一马氏体(M)一珠光体(P)一索氏体(S)。因此,模具钢热处理不宜得到T组织。淬火钢虽经回火,但因回火不充分,淬火内应力或多或少依然存在,模具服役时在外力作用下也会产生新的应力,凡有应力存在于金属模具中就会有应力腐蚀裂纹发生。
预防措施: (1)模具钢淬火后应及时回火,充分回火,多次回火,以消除淬火内应力; (2)模具钢淬火后一般不宜在350-400~C回火,因T组织常在此温度出现,发生有T组织模具应重新处理,模具应进行防锈处理,提高抗蚀性能; (3)热作模具服役前进行低温预热,冷作模具服役一个阶段后进行一次低温回火消除应力,不仅能防止和避免应力腐蚀裂纹发生,还可大幅度提高模具使用寿命,一举两得,有显著技术经济效益。
2 个回复,游客无法查看回复,更多功能请或
扫一扫微信订阅
浏览: 5571
关注: 0 人
6SQ质量日刊
服务号: Lsqdnet
6SQ质量周刊}

我要回帖

更多关于 淬火介质 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信