什么是干扰,干扰来源,变频器抗干扰措施施

君,已阅读到文档的结尾了呢~~
抗干扰措施 精心收集的各类精品文档,欢迎下载!
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
抗干扰措施
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口| 工艺 | |
当前位置: && &&
变电所二次干扰原因和抗干扰措施
添加:不详
[摘要]文章探讨了变电所现场中各种干扰对二次设备系统的影响和破坏,分析了干扰产生的原因和干扰的危害,从系统的软硬件设计上提出解决系统抗干扰有效措施,从而达到抑制干扰的目的。对微机保护安全稳定进行起到极其重要的作用。 [关键词]变电所 抗干扰 措施 屏蔽 随着科学技术的进步和电力体制改革的不断深化,变电自动化技术得到越来越快的发展,从电磁型保护到晶体管型保护再到微机型保护,以及变电综合自动化装置大多数实现了微机自动控制,它们以通信网络技术为基础,把各种继电保护装置及自动装置与RTU和调度端连接起来,使变电站实现高质量、高速度、高灵活性和低成本的生产管理。但由于变电站的特殊环境,如强电磁场等众多因素的影响,使变电站的二次设备受到各种各样的干扰,为提高其运行的安全和工作的可靠性,在变电所设计时应考虑周全,根据不同的干扰源,采取相应的抗干扰措施,总结抗干扰的经验,逐渐达到变电所电磁兼容的要求。 一、干扰的主要来源 所谓干扰,就是指除有用信号外还有可能对监视和操作装置的正常工作造成不利影响的无用且不规则变化的信号。 变电所主要的干扰源有以下几种: 1、交变磁场干扰 在变电所里变压器、有大电流通过的电体缆(电线)、电抗器和电容等的周围都有极强的交变磁场。在交变磁场里的二次设备,包括导线、网络通迅回路都会受到它感应,这些感应形成干扰电压。干扰电压的大小由一次设备与二次回路的相互空间位置来决定。这些干扰电压会导致二次设备CPU运行出错,内存数据改变、当地监控的显示器图像变形扭曲和闪烁,网络通信中数据改变或通迅中断,造成设备异常运行,对控制系统的破坏性最强。交变磁场干扰是变电站内最普遍的干扰。 2、电容耦合干扰 由于一次设备载流体对二次回路间存在有电容,如电压互感器和电流互感器高低压线圈之间的电容,电容式电压互感器的中间变压器两线圈之间的电容以及高压母线与二次回路之间的寄生电容等,因此一次设备对二次电缆产生电容干扰。另外,在变电所内的大量导线,包括二次电缆、装置内部的布线等。导线之间的相互耦合,一般可分为:同一电路板内电路间的耦合,板间I/O信号线间的耦合,电源线与系统的耦合。从性质上看,这样耦合是电场耦合或磁场耦合。是干扰二次设备工作的原因之一。 3、地电位差干扰 在电力系统中,输电导线对大地的容性电流或者如果某一设备对地绝缘不良,都会生产不稳定的漏电流,利用大地作为电气接地线,也会产生较大的地电流。地电流在大地中流动会产生电压差,在变电所内地面形成的电位差,使站内两端接地电缆芯和屏蔽层产生电流形成干扰。如果二次设备接地地点选择不当,漏电流会使各点之间存在电压差,使二次设备常常产生不确定的故障。 4、自然干扰 自然干扰是指大自然现象所引起的干扰以及来自宇宙的电磁波辐射干扰,如雷电、大气低层电场的变化,电离层变化、太阳黑子的电磁波辐射等,是不可消除的干扰。其中雷电干扰最为严重。雷电不仅会造成二次电源模块的损坏,还会烧毁通讯口和输入模块。 5、电源系统引入的干扰 许多二次设备采用高效率,小尺寸的开关直流稳压电源,这种电源如果滤波电容上积累的能量使端电压的某一值不能保证设计要求的电压时,会被装置判断为断电或故障,引起装置闭锁,而误动或拒动。变电所的二次设备受到的干扰不仅仅是以上几种,干扰源也是各种各样的,而且不断变化,如各种通讯器材、产生高频信号的仪器等。但以上这些是最常见的干扰,按照同样的方法可以分析其他的干扰源,采取相应的软硬件措施,可以消除或削弱。 二、干扰的危害 微机保护和监控装置既有数字部件,又有模拟部件,而干扰对数字部件和模拟部件所造成的后果是不同的。模拟电路在干扰作用下往往使开关电路误翻转,在没有完善闭锁措施时将会导致动作;数字电路受干扰作用往往造成数据或地址传送错误,从而导致装置运行故障或功能故障。由此可见,干扰轻则造成数据传送错误,重则造成保护拒动或误动,都会严重影响电力系统供电的可靠性。 三、干扰的防范措施 ⒈软件抗干扰措施 软件抗干扰是指在软件设计中采取针对性措施,防止窜入微机保护和控制装置内部的干扰信号。 二次设备的软件抗干扰就是把采集到二次设备的干扰信号用各种数字进行滤波消除或削弱。数字滤波是通过程序实现的,所以在设备选型时就应该考虑,它无需增加硬件设备,只需修改一下软件,增加一些对输入信号处理的程序即可。其功能在一定程度上可以代替模拟滤波器,甚至可以完成其不能完成的功能。而且使用方便灵活。滤波程序有几种,不同的滤波方法可以达到改变滤波参数的目的,但对设备的判断和处理速度会生产不同的影响,现对以下几种常用的软件滤波技术作简单介绍: 1)算术平均值滤波 算术平均值滤波就是将本次实际采样值和前几个周期的采集值进行算术平均得到的值作为要次采样值。其特点是:对采样信号进行算术平均,得到平滑的数据。可以抵制周期性的干扰信号,所取的采样值越多,数据的平滑程度越高。但这种算法对那些灵敏度很高的设备是不适合的,它使灵敏度降低,而且所取的采样值越多,灵敏度越低。 2)加权平均值滤波算法。 为提高灵敏度,可以采用加权平均值滤波算法,也就是将最近的采样值XN的比重在算术中加大,来提高设备对干扰的灵敏度。 算术平均值公式:YN=(X1+X2+X3+……+XN)/N 加权平均值公式:YN=(A1X1+A2X2+A3X3+……+ANXN) 其中0<A1<A2……<AN A1+A2+……+AN=1 3)一阶低通滤波算法 在模拟数字技术中可以用一阶低通滤波RC电路来削弱干扰信号,但是RC滤波器的时检常数受到电容器大小的影响,而使用一阶数字低通滤波就可不受硬件的影响,真效果是一样的。算法的公式表示为: Y(n)=ETs/TY(N-1)+(1-ETs/T)X(n)其中Ts是采样周期,T是一阶滤波器的时间常数,Y(n-1)是滤波器的上次输出,Y/(n)是滤波器本次输出,X(n)是滤波器本次输入。 4)中值滤波算法 中值滤波算法就是把3个采样数据,按数值从小到大排列,取中间一个作为本次采样数据。这种算法能够有效地消除由于偶然因素引起的波动或由于采样元件不稳定造成的误码等脉冲干扰。对于缓慢变化的过程比较有效。 5)复合滤波算法 复合滤波算法就是把中值滤波和算术平均值滤波两种方法结合而成。即把采样数据按数值从小到大排列,去掉最大值和最小值将余下的采样数据求平均值,这种方法集中两种算法的优点,提高了滤波的效果。 6)程序判断滤波算法 程序判断滤波算法就是将最近的几个数据比较,求出差值,再与设定的允许值比较,判断是否为干扰信号。可分为限幅滤波算法和限速滤波算法两种。 ⒉ 硬件抗干扰措施 硬件抗干扰是指提高灵敏器件的抗干扰性能。 1)在硬件上将干扰源尽可能屏蔽掉 二次设备的外壳应屏蔽接地,装置的活动部分也要可靠连接,比如柜门、机箱盖板等应与接地点可靠导通,保证有良好的电气连接。对变电站的墙壁,有需要时可安装金属网,地板町装防静电地板。 2)装置的接地点应正确、可靠 这关系到系统的运行稳定和可靠性。在实践中由于接地不良或方法错误造成设备异常运行甚至损坏的事例很多,因此接地必须慎重处理。变电站一般需要设四套独立的接地系统: ⑴电气接地系统,用于UPS和隔离变压器屏蔽层接地,以防止电网杂波窜入系统; ⑵变电站室内屏蔽和防静电接地系统,用于站内屏蔽接地、防静电系统接地和设备机箱外壳接地; ⑶变电站防雷接地系统,用于防止雷击等危害; ⑷控制系统专用地系统,为二次设备专用的措施,不允许与其它任何设备相连,以免造成干扰。 上述四套接地系统绝对不允相互混用,在接地位置上要保证有一定安全距离。 3)对电源系统采取的抗干扰措施 为了保证二次设备的可靠运行,对设备的电源系统可采取以下抗干扰方法: ⑴要保证供电电压波形稳定,可使用UPS来稳定工作电源,并尽可使用变电站的直流电源; ⑵应采用隔离变压器,隔离共模干扰,防止电网噪声干扰窜入控制系统,或强雷电压对装置的损坏; ⑶使输出回路尽可能短,以降低感应噪声,使用的电缆芯不能过小,减小压降,或提高其工作电源。 4)二次回路的抗干扰措施 ⑴正确安装电缆的屏蔽层,采用带屏蔽层的控制电缆,可将屏蔽层一端接地或将屏蔽层在开关场和控制室内两端同时接地。通讯电缆的屏蔽层也应可靠正确相连接地; ⑵弱信号导线不得与强电导线共用一根电缆,尽可能将它们分开排放; ⑶交直流回路禁止共用同一根电缆,防止造成相互干扰,或电缆芯绝缘下降造成短路,使交流电压传入直流回路,烧坏设备的电源模块或输入部件等; ⑷规范控制电缆的敷设,变电站设计时应考虑好电缆沟的走向,避免与电力电缆距离过近,尽可能远离变压器中性点及避雷针、避雷器等地点,并尽量不要平行于高压线,总之,尽可能远离干扰源; ⑸为二次设备和二次电缆敷设专用接地铜排构造等电位面,消除地电位差干扰; ⑹电流互感器、电压互感器的二次回路应保证一点接地。电流互感器、电压互感器二次回路多点接地可能会引起保护拒动或误动,这在电网事故中常有发生; ⑺电压互感器二次回路和三次回路应相互独立。对于电压互感器,过去传统的接线是TV二次回路和三次回路的中性线公用一根电缆芯接到N600小母线上,对于常规保护而言也未发现不足之处,且一直在系统内应用。随着微机保护的广泛使用,其应用自产3Uo来实现接地方向保护的特点使TV公用中性线可能造成零序方向保护误动的危害也暴露出来。由于二次和三次回路中性线共用一根电缆,使得微机保护自产3Uo受到了三次回路3Uo的影响,其影响主要由三次回路的负载电阻及共用电缆芯的电阻所决定。公用中性线,则可能使微机保护自产3Uo和三次回路的3Uo反向,从而造成接地零序方向保护正方向拒动,反方向误动的后果。 ⑻可在信号输入端加装无源滤波器,削弱窜入的干扰信号。无源滤波器可分为“г”型和双“т型”。其中“г”型滤波范围较宽,“т”型滤波器的特性近似于工频谐振特性。它们对工频干扰都有较强抑制作用。 ⑼变电站的所有开关量的输入和输出触点(跳闸出口和监视信号)和数字量输出(如串口)都应采用光电隔离。 ⒊ 其他抗干扰措施 ⑴输入采样值纠错 ⑵软件运行过程的核对,比较多次核对的结果,相同才判断为正确 ⑶程序出轨自恢复、增加看门狗WATCH DOG技术 ⑷采用密码保护方式 ⑸采用系统容错设计技术,如动态冗余法,混合冗余法 ⑹提高装置故障自动检测功能,及时发现、处理异常情况 四、结束语 以上分析了干扰的来源和防范措施,以外还应注意,保护屏各行下应敷敷设不小于100mm2的铜排作出屏蔽电缆的接地连接点,用不小于50mm2软铜线将保护屏内接地铜排与100mm2的接地铜排用螺栓或铜焊连接,接地铜排的首末端必须用铜焊连接好,形成闭环回路,还应与控制室地网相连接。同时,专用接地铜排应敷设到户外端口处,与端子箱接地铜排可靠连接。 参考文献: 1、《电力系统继电保护规定汇编》 国家电力高度通信中心,中国电力出版社 2、《无人值班变电站监控技术》 中国电力制版社 3、《变电所继电保护及自动措施》 中国电力制版社 4、《接地技术与接地装置》 中国电力出版社 5、《电磁兼容原理、规范和测试》 北京国防工业出版社
作者:未知 点击:861次
本文标签:变电所二次干扰原因和抗干扰措施
* 由于无法获得联系方式等原因,本网使用的文字及图片的作品报酬未能及时支付,在此深表歉意,请《变电所二次干扰原因和抗干扰措施》相关权利人与机电之家网取得联系。
关于“变电所二次干扰原因和抗干扰措施”的更多资讯
:石家庄圣艮启科技有限公司
&【求购】 &中药材粉碎...&&
&【求购】 &磨盘式磨粉...&&
&【求购】 &行走式打捆...&&
&【求购】 &甘蔗削皮机&&
&【求购】 &四片电热多...&&
&【求购】 &羊肉切片机&&
&【求购】 &大锅灶&&
&【求购】 &立式电脑板...&&
VIP公司推荐查看: 232|回复: 0
变频器干扰来源和传播方式及抗干扰对策
在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。
一、变频器干扰的来源
首先是来自外部电网的干扰。
电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变频器主要有a过压、欠压、瞬时掉电b浪涌、跌落c尖峰电压脉冲d射频干扰。
(1) 晶闸管换流设备对变频器的干扰
当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。
(2)电力补偿电容对变频器的干扰
电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。
其次是变频器自身对外部的干扰。
变频器的整流桥对电网来说是非线性负载,它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。
变频器的输入和输出电流中,都含有很多高次谐波成分。除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。
(1) 输入电流的波形 变频器的输入侧是二极管整流和电容滤波电路。显然只有电源的线电压UL大于电容器两端的直流电压UD时,整流桥中才有充电电流。因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式。它具有很强的高次谐波成分。有关资料表明,输入电流中的5次谐波和7次谐波的谐波分量是最大的,分别是50HZ基波的80%和70%。
(2) 输出电压与电流的波形 绝大多数变频器的逆变桥都采用SPWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形式形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波。但其中与载波频率相等的谐波分量仍是较大的。
二、干扰信号的传播方式
变频器能产生功率较大的谐波,由于功率较大,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。
(1) 电路耦合方式即通过电源网络传播。由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备工工作,同时输出端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。显然,这是变频输入电流干扰信号的主要传播方式。
(2) 感应耦合方式 当变频器的输入电路或输出电路与其他设备的电路挨得很近时,变频器的高次谐波信号将通过感应的方式耦合到其他设备中去。感应的方式又有两种:
a 电磁感应方式,这是电流干扰信号的主要方式;
b 静电感应方式,这是电压干扰信号的主要方式。
(3) 空中幅射方式 即以电磁波方式向空中幅射,这是频率很高的谐波分量的主要传播方式。
三、变频调速系统的抗干扰对策
据电磁性的基本原理,形成电磁干扰(EMI)须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。为防止干扰,可采用硬件抗干扰和软件抗干扰。其中,硬件抗干扰是应用措施系统最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的藕合通道、降低系统干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。
1、所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是电源和放大器电路之间电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。
2、在系统线路中设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源从电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器;为减少对电源干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器以免传导干扰。在变频器的输入和输出电路中,除了上述较低的谐波成分外,还有许多频率很高的谐波电流,它们将以各种方式把自己的能量传播出去,形成对其他设备的干扰信号。滤波器就是用于削弱频率较高的谐波分量的主要手段。根据使用位置的不同,可分为:
(1) 输入滤波器 通常又有两种:
a 线路滤波器:主要由电感线流图构成。它通过增大线路在高频下的阻抗来削弱频率较高的谐波电流。
b 辐射滤波器:主要由高频电容器构成。它将吸收掉频率很高的、具有辐射能量的谐波成分。
(2) 输出滤波器 也由电感线圈构成。它可以有效地削弱输出电流中的高次谐波成分。非但起到抗干扰的作用,且能  削弱电动机中由高次谐波谐波电流引起的附加转矩。对于变频器输出端的抗干扰措施,必须注意以下方面:
a 变频器的输出端不允许接入电容器,以免在逆变管导通(关断)瞬间,产生峰值很大的充电(或放电)电流,损害逆变管;
b 当输出滤波器由LC电路构成时,滤波器内接入电容器的一侧,必须与电动机侧相接。
3、屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏;输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路线(AC380V)及控制线(AC220V)完全分离,决不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。
4、正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的干扰。在实际应用系统中,由于系统电源零线(中线)、地线(保护接地、系统接地)不分、控制系统屏蔽地(控制信号屏蔽地和主电路导线屏蔽地)的混乱连接,大大降低了系统的稳定性和可靠性。
对于变频器,主回路端子PE(E、G)的正确接地是提高变频器抑制噪声能力和减小变频器干扰的重要手段,因此在实际应用中一定要非常重视。变频器接地导线的截面积一般应不小于2.5mm2,长度控制在20m以内。建议变频器的接地与其它动力设备接地点分开,不能共地。
5、采用电抗器
在变频器的输入电流中频率较低的谐波分量(5次谐波、7次谐波、11次谐波、13次谐波等所)所占的比重是很高的,它们除了可能干扰其他设备的正常运行之外,还因为它们消耗了大量的无功功率,使线路的功率因数大为下降。在输入电路内串入电抗器是抑制较低谐波电流的有效方法。根据接线位置的不同,主要有以下两种:
(1) 交流电抗器 串联在电源与变频器的输入侧之间。其主要功能有:
通过抑制谐波电流,将功率因数提高至(0.75-0.85);
削弱输入电路中的浪涌电流对变频器的冲击;
削弱电源电压不平衡的影响。
(2) 直流电抗器 串联在整流桥和滤波电容器之间。它的功能比较单一,就是削弱输入电流中的高次谐波成分。但在提高功率因数方面比交流电抗器有效,可达0.95,并具有结构简单、体积小等优点。
6、合理布线
对于通过感应方式传播的干扰信号,可以通过合理布线的方式来削弱。具体方法有:
(1) 设备的电源线和信号线应量远离变频器的输入、输出线;
(2) 其他设备的电源线和信号线应避免和变频器的输入、输出线平行;
通过对变频器应用过程中干扰的来源和传播途径的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,重视变频器的EMC要求,已成为变频调速传动系统设计、应用必须面对的问题,也是变频器应用和推广的关键之一。变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。我们相信变频器的EMC问题一定会得到有效解决。
Powered by解决仪表干扰问题,我有一套!
我的图书馆
解决仪表干扰问题,我有一套!
导读我们知道,如果现场测量的数据不准,将会直接影响接下来的施工措施,而针对测量,环境需求又比较高。然而现场使用的显示仪表由于环境条件复杂,加之被测参数大多被转换成微弱的低电平电压信号,并经长期距离传送到显示仪表,因此除有用的信号外,还会有一些与被测信号无关的干扰信号夹杂其中,它将影响测量结果的正确性,严重时会使仪表无法工作。本文重点讲解引起仪表干扰的因素,以及解决干扰的办法,帮助仪表人稳定有序的开展工作。传感器及仪器仪表在现场运行所受到的干扰多种多样,具体情况具体分析,对不同的干扰采取不同的措施是抗干扰的原则。这种灵活机动的策略与普适性无疑是矛盾的,解决的办法是采用模块化的方法,除了基本同的运行场合,针对不同的运行场合,仪器可装配不同的选件以有效地抗干扰、提高可靠性。仪表被干扰的主要因素干扰源在仪表内、外部都有可能存在。在仪表外部,大功率用电设备、大功率变压器、电力网都可能成为干扰源。而在仪表内部,电源变压器、线圈、继电器、开关以及电源线等都可能成为干扰源。1、主要干扰源(1)静电感应静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。(2)电磁感应当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。例如变压器及线圈的漏磁、通电平行导线等。(3)漏电流感应由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。尤其当漏电流流入测量电路的输入级时,其影响就特别严重。(4)射频干扰主要是大型动力设备的启动、操作停止的干扰和高次谐波干扰。如可控硅整流系统的干扰等。(5)其他干扰现场安全生产监控系统除了易受以上干扰外,由于系统工作环境差,还容易受到机械干扰、热干扰及化学干扰等。2、干扰的种类(1)常模干扰常模干扰是指干扰信号的侵入在往返2 条线上是一致的。常模干扰来源一般是周围较强的交变磁场,使仪器受周围交变磁场影响而产生交流电动势形成干扰,这种干扰较难除掉。(2)共模干扰共模干扰是指干扰信号在2条线上各流过一部分,以地为公共回路,而信号电流只在往返2个线路中流过。共模干扰的来源一般是设备对地漏电、地电位差、线路本身具有对地干扰等。由于线路的不平衡状态,共模干扰会转换成常模干扰,就较难除掉了。(3)长时干扰长时干扰是指长期存在的干扰,此类干扰的特点是干扰电压长期存在且变化不大,用检测仪表很容易测出,如电源线或邻近动力线的电磁干扰都是连续的交流50Hz的工频干扰。(4)意外的瞬时干扰意外瞬时干扰主要在电气设备操作时发生,如合闸或分闸等,有时也在伴随雷电发生或无线电设备工作瞬间产生。干扰可粗略地分为3个方面:(a)局部产生(即不需要的热电偶);(b)子系统内部的耦合(即地线的路径问题)(c)外部产生(电源频率的干扰)。3、干扰现象在应用中,常会遇到以下几种主要干扰现象:(1)发指令时,电机无规则地转动;(2)信号等于零时,数字显示表数值乱跳;(3)传感器工作时,其输出值与实际参数所对应的信号值不吻合,且误差值是随机的、无规律的;(4)当被参数稳定的情况下,传感器输出的数值与被测参数所对应的信号数值的差值为一稳定或呈周期性变化的值;(5)与交流伺服系统共用同一电源的设备示器等不正常。(6)其他干扰现象在一些测温场合,当将热电偶电机直接焊接与通电加热的金属件上,由于金属件在平行于电流方向的各点存在电位差,这时引入的干扰电压也是很大的。在高温状态下,耐火材料的绝缘电阻急剧下降,热电偶和磁保护管、磁珠的绝颜性能也会下降,则电炉电源电压通过耐火砖、热电偶套管、磁珠等泄漏到热电偶丝上,在热电偶电极之间产生干扰电压。大地中各个不同点之间往往存在电位差,尤其在大功率用电设备附近,当这些设备的绝缘性能下降时,电位差更大。而现场仪表在使用中,有时不注意会使回路存在两个以上的接地点,就会把不同接地点的电位差引入到显示仪表中而形成共模干扰。当仪表的桥路电源接地时,除桥路输出不平衡电压以外,信号线对地还有一公共电压,该公共电压不是所要测量的信号电压,而是共模干扰的一种表现。信号源于显示仪表之间的连接导线、仪表内部的配线通过磁耦合在电路中形成干扰。在大功率变压器、交流电机、电力线的周围空间都存在很强的交流磁场,而闭合回路处在这种变化的磁场中将感应出电势。这种感应电势与有用信号相串联,当传感器与显示仪表距离较远时,这种串模干扰尤为突出。干扰源通过电容的耦合在回路总形成干扰,它是两电场相互作用的结果。通过静电耦合的方式,能在两输入端感应出对地的共同电压,以共模干扰的形式出现,由于共模干扰不和信号叠加,它不直接对仪表产生影响。但它能通过测量系统形成到地的泄漏电流,该泄漏电流通过电阻的耦合就能直接作用于仪表而产生干扰。电磁感应、静电感应所形成的干扰大多是工频干扰电压,但变频器、带整流子的电机等会产生谐波干扰。由于雷电的作用在电力线上也会感应出干扰电压。4、仪表输出外界干扰因素我们在调试仪器仪表的时候,有时会碰到这种情况:仪器仪表出厂的时候明明好好的,一到现场就没有信号输出,或者产生无序的信号。通过以上概述,我们了解仪器仪表的干扰来源主要有两种途径:一是由电路感应产生干扰;二是由外围设备以及通信线路的感应引入干扰。我们得仔细分析外界干扰的来源,信号传输线路以及敏感程度,做好接地处理和仪器仪表信号线屏蔽措施,有可能的话远离干扰源。我们检查发现安装和接线都是没有问题的,到底这又是什么情况呢?出现这种情况,你可能需要查看下仪器仪表附近有没有感应干扰了。影响仪器仪表输出的外界感应干扰主要有以下几种:(1)电磁感应干扰当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。这种情况在仪器仪表使用的时候经常遇到,尤为注意。(2)射频干扰干扰主要是大型动力设备的启动、操作停止时产生的干扰以及高次谐波干扰。(3)静电感应干扰静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,有时候也被称为电容性耦合。(4)漏电流感应干扰由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度增大,导致绝缘体的绝缘电阻下降,这时漏电电流会增加,由此引发干扰。尤其当漏电流流入到测量电路的输入级时,其影响就特别严重。(5)其他干扰主要指的是系统工作环境差,还容易受到机械干扰、热干扰和化学干扰等等。干扰进入定位控制系统的渠道主要有两类:信号传输通道干扰,干扰通过与系统相联的信号输入通道、输出通道进入;供电系统干扰。信号传输通道是控制系统或驱动器接收反馈信号和发出控制信号的途径,因为脉冲波在传输线上会出现延时、畸变、衰减与通道干扰,所以在传输过程中,长线的干扰是主要因素。任何电源及输电线路都存在内阻,正是这些内阻才引起了电源的噪声干扰,如果没有内阻,无论何种噪声都会被电源短路吸收,线路中也不会建立起任何干扰电压;此外,交流伺服系统驱动器本身也是较强的干扰源,它可以通过电源对其他设备进行干扰。5、系统产生干扰的原因在工业生产过程中实现监视和控制需要用到各种自动化仪表、控制系统和执行机构,它们之间的信号传输既有微弱到毫伏级、微安级的小信号,又有几十伏,甚至数千伏、数百安培的大信号;既有低频直流信号,也有高频脉冲信号等等,构成系统后往往发现在仪表和设备之间信号传输互相干扰,造成系统不稳定甚至误操作。出现这种情况除了每个仪表、设备本身的性能原因如抗电磁干扰影响外,还有一个十分重要的因素就是由于仪表和设备之间的信号参考点之间存在电势差,因而形成“接地环路”造成信号传输过程中失真。因此,要保证系统稳定和可靠的运行,“接地环路”问题是在系统信号处理过程中必须解决的问题。影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。&干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。仪表抗干扰措施1、从供电设计本身解决干扰问题对传感器、仪器仪表正常工作危害最严重的是电网尖峰脉冲干扰,产生尖峰干扰的用电设备有:电焊机、大电机、可控机、继电接触器、带镇流器的充气照明灯,甚至电烙铁等。尖峰干扰可用硬件、软件结合的办法来抑制。(1)用硬件线路抑制尖峰干扰的影响常用办法主要有三种:①在仪器交流电源输入端串入按频谱均衡的原理设计的干扰控制器,将尖峰电压集中的能量分配到不同的频段上,从而减弱其破坏性;②在仪器交流电源输入端加超级隔离变压器,利用铁磁共振原理抑制尖峰脉冲;③在仪器交流电源的输入端并联压敏电阻,利用尖峰脉冲到来时电阻值减小以降低仪器从电源分得的电压,从而削弱干扰的影响。(2)利用软件方法抑制尖峰干扰对于周期性干扰,可以采用编程进行时间滤波,也就是用程序控制可控硅导通瞬间不采样,从而有效地消除干扰。(3)采用硬、软件结合的看门狗(Watchdog)技术抑制尖峰脉冲的影响软件:在定时器定时到之前,CPU访问一次定时器,让定时器重新开始计时,正常程序运行,该定时器不会产生溢出脉冲,Watchdog也就不会起作用。一旦尖峰干扰出现了“飞程序”,则CPU就不会在定时到之前访问定时器。因而定时信号就会出现,从而引起系统复位中断,保证智能仪器回到正常程序上来。(4)实行电源分组供电,例如:将执行电机的驱动电源与控制电源分开,以防止设备间的干扰。(5)采用噪声滤波器也可以有效地抑制交流伺服驱动器对其它设备的干扰。该措施对以上几种干扰现象都可以有效地抑制。(6)采用离变压器考虑到高频噪声通过变压器主要不是靠初、次级线圈的互感耦合,而是靠初、次级寄生电容耦合的,因此隔离变压器的初、次级之间均用屏蔽层隔离,减少其分布电容,以提高抵抗共模干扰能力。(7)采用高抗干扰性能的电源,如利用频谱均衡法设计的高抗干扰电源。这种电源抵抗随机干扰非常有效,它能把高尖峰的扰动电压脉冲转换成低电压峰值(电压峰值小于TTL 电平)的电压,但干扰脉冲的能量不变,从而可以提高传感器、仪器仪表的抗干扰能力。2、显示仪表抗干扰的措施串模干扰可能产生在信号源上,也可能是信号线上感应或接受的,由于它与测量信号是叠加的,所以较难消除,因此应该防止它的产生。可采取以下措施。信号传输导线使用绞线,能使信号回路所包围的面积大为减少,能两根信号线到干扰源的距离大致相等,分布电容也大致相同,所以能使进入显示仪表的串模干扰大大减小。为了防止电场的干扰,可把信号线穿入铁管中,或者使用屏蔽线,并对屏蔽层采取一点接地。对于直流信号,可在显示仪表输入端加滤波电路,把杂散信号干扰衰减至最小。信号线要远离动力线,不能把信号线与动力线平行敷设在一起,信号线与电源线不要由同一孔进入仪表内,信号线应尽量短的绞线接至信号端子的相邻位置上。显示仪表和变送器的外壳都应接地,以保持零电位;为提高仪表的抗干扰能力,可把仪表的放大器“浮地”,即将放大器与仪表外壳绝缘,以切断共模干扰电压的泄漏途径。要求高时,还可采取双屏蔽、浮地技术,进一步提高仪表的抗共模干扰能力。3、热电偶抗干扰措施随着工业的自动化的发展,现在的传感器在工业中的应用是非常的多了。而我们经常使用到的热电偶就是属于传感器的一种,热电偶是根据热电效应测量温度的传感器,是常用的测温元件之一。但是我们在使用热电偶进行测量的时候有时会遇到一些干扰的情况。(1)隔离法隔离法就是将热电偶悬空安装,使热电偶不与炉壁的耐火砖接触,热电偶与支架之间也采用绝缘物进行隔离。这种方法可以很好地预防高温漏电干扰。  (2)屏蔽法屏蔽法就是将热电偶的补偿导线,穿在铁管或其他金属屏蔽物内进行屏蔽。这样可以防止电磁干扰和高压电场的干扰。使用此种方法时应该将铁管和屏蔽物进行良好接地,并且将补偿导线绞起来。  (3)接地法这种方法是将测量回路进行接地处理,把干扰引入大地从而保证仪表的测量准确性。这种方法有两种地形式:第一是热电偶参考端接地,第二种是热电偶测量端接地。  采用参考端接地法时,是将热电偶(或补偿导线)输出端的一端,通过一个足够大的电容接地(条件许可时电容越大越好)。测量端接地法是将热电偶测量端接地,就是从热电偶的测量端引出一根金属丝接地。这种方法对高温漏电干扰有很好的预防效果。选用金属丝时应该选用耐高温且对热电偶电极无害的金属丝。  我们在使用热电偶的时候,应该做好预防干扰的准备。这样才能使我们的热电偶的测量更为精确,从而让我们的工作更加的便捷有效。4、信号抗干扰措施来自信号线引入的干扰:&与控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽略;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。 控制系统因信号引入干扰造成I/O损坏数相当严重,由此引起系统故障的情况也很多。&& &&此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流可能在地线上产生不等电位分布,影响内逻辑电路和模拟电路的正常工作。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。&理想状态下是选用隔离性能较好的设备、选用优良的电源、动力线和信号线走线要更加合理等等,但是需要不同设备厂商共同协商完成,很难做到,而且成本较高。&利用模拟信号隔离器,其主要起抗干扰作用。因为它有特强的抗干扰能力所以在自动化控制系统中应用非常广泛。尤其对于复杂的工业现场,控制程序越来越复杂,所以对工业标准远传模拟量信号通过信号隔离器使输出模拟信号与系统完全隔离,的确是当今自动化控制系统中抗干扰的有效措施之一。&
TA的最新馆藏
喜欢该文的人也喜欢}

我要回帖

更多关于 单片机抗干扰措施 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信