加热未超过溶剂高沸点环保溶剂,可以不用回流管吗

加热未超过溶剂沸点,可以不用回流管吗?
以DMSO为溶剂,加热至140度,未超过DMSO的沸点(189度),可以不用回流管直接塞上玻璃塞就加热吗?密闭空间会存在危险么?
本贴金币手工发放
carthery +2
有易挥发的物质吗 ?
如果反应过程中不产生气体,也没有其他易挥发的物质,是没有问题的
谢谢,就你一个人回复了,其他都是混金币的
没有挥发物质
正常不允许密闭加热,无论有无挥发溶剂,加热不到沸点也不行,很简单烧瓶内空气受热膨胀就会将塞子冲开,最好加上冷凝管,因为产品在受热后挥发都会加强,会有味道,对身体不好
一般要求超过30度都必须加回流关
[ 发自科米化工android客户端 ]
我觉得不可以,一般不要采用封闭体系。
[ 发自科米化工android客户端 ]
只要加热,都需要使用冷凝管。加热了,必然反应过程中就会放热。
[ 发自科米化工android客户端 ]
科米网全国统一客户服务热线: 客户服务邮箱:气质联用(GCMS)
主题:【已应助】请问有什么溶剂的沸点较高,但不粘稠,是稀薄的,流动性好,和油脂有良好的溶解性?
浏览 |回复22
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
ID:jimzhu
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:100%
关注: |粉丝:
新手级:&新兵
发表于: 09:00:09
请问有什么溶剂的沸点较高,但不粘稠,是稀薄的,流动性好,和油脂有良好的溶解性?
21:41:56 Last edit by jimzhu
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:100%
关注: |粉丝:
新手级:&新兵
不粘稠,是稀薄的,流动性好,和油脂有良好的溶解性...想到正己烷,,但沸点低
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
ID:v2905367
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:<div class="loading jietielv_2905367 jietielvname_v0%
关注: |粉丝:
新手级:&新兵
ODO算溶剂吗?
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
ID:jimzhu
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:100%
关注: |粉丝:
新手级:&新兵
原文由 千层峰(jxyan) 发表:不粘稠,是稀薄的,流动性好,和油脂有良好的溶解性...想到正己烷,,但沸点低 谢谢,正己烷的溶解性非常好,就是沸点低。
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
ID:cai008
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:100%
关注: |粉丝:
新手级:&新兵
原文由 luos86(v2905367) 发表:ODO算溶剂吗? 算,很多咸味香精用这个做溶剂的。就是价格相对高点。
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
ID:jimzhu
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:100%
关注: |粉丝:
新手级:&新兵
原文由 luos86(v2905367) 发表:ODO算溶剂吗? 谢谢,ODO也是溶剂,但稍微还是有点稠。请问还有没有更稀一点的高沸点溶剂呢?
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
ID:jimzhu
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:100%
关注: |粉丝:
新手级:&新兵
原文由 花开见我(cai008) 发表: 算,很多咸味香精用这个做溶剂的。就是价格相对高点。 ODO价格要比植物油高。我是想在实验中使用,能良好溶剂油脂并沸点高,流动性好。
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
ID:xiaowei_zhuang
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:100%
关注: |粉丝:
新手级:&新兵
DMSO& IPM....
10:02:20 Last edit by xiaowei_zhuang
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
ID:cai008
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:100%
关注: |粉丝:
新手级:&新兵
原文由 ZXW(xiaowei_zhuang) 发表:DMSO& IPM.... DMSO,二甲基亚砜,沸点不高吧。
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
ID:cai008
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:100%
关注: |粉丝:
新手级:&新兵
塑化剂类的,比如DEP,怎么样?
<p class="orgred oe jinghua_
<p class="orgred oe tiezi_
<p class="orgred oe huitie_
ID:jimzhu
行业:石油行业―校长油行业―校长油行..
积分:<span class="gray0 userintegral_升级还需100积分
声望:<span class="gray0 userrenown_升级还需100声望
注册时间:
最后登录时间:<span class="gray0 userlastl_00-00-00
结帖率:100%
关注: |粉丝:
新手级:&新兵
原文由 ZXW(xiaowei_zhuang) 发表:DMSO& IPM.... 谢谢,这两个沸点还不够,请问有和ODO沸点一样高或更高的溶剂吗?即是馏出液的沸点而不是瓶中蒸馏液的沸点
时间: 11:50:38
&&&& &&&& &&&& &&&&&&&&最常见的就是蒸馏,精馏,离心,萃取等等,当然还有一些技术含量较高的,膜分离,吸附分离等等蒸馏是一种热力学的分离工艺,它利用混合液体或液-固体系中各组分沸点不同,使低沸点组分蒸发,再冷凝以分离整个组分的单元操作过程,是蒸发和冷凝两种单元操作的联合。与其它的分离手段,如萃取、Absorption等相比,它的优点在于不需使用系统组分以外的其它溶剂,从而保证不会引入新的杂质。蒸馏定义指利用液体混合物中各组分挥发性的差异而将组分分离的传质过程。将液体沸腾产生的蒸气导入冷凝管,使之冷却凝结成液体的一种蒸发、冷凝的过程。蒸馏是分离混合物的一种重要的操作技术,尤其是对于液体混合物的分离有重要的实用意义。特点1、通过蒸馏操作,可以直接获得所需要的产品,而吸收和萃取还需要如其它组分。2、蒸馏分离应用较广泛,历史悠久。3、能耗大,在生产过程中产生大量的气相或液相。蒸馏分类&&&&1、按方式分:简单蒸馏、平衡蒸馏、精馏、特殊精馏2、按操作压强分:常压、加压、减压3、按混合物中组分:双组分蒸馏、多组分蒸馏4、按操作方式分:间歇蒸馏、连续蒸馏主要仪器蒸馏烧瓶,温度计,冷凝管,牛角管,酒精灯,石棉网,铁架台,锥形瓶,橡胶塞编辑本段历史在古希腊时代,Aristotle曾经写到:“通过蒸馏,先使水变成蒸汽继而使之变成液体状,可使海水变成可饮用水”。这说明当时人们发现了蒸馏的原理。古埃及人曾用蒸馏术制造香料。在中世纪早期,阿拉伯人发明了酒的蒸馏。在十世纪,一位名叫Avicenna的哲学家曾对蒸馏器进行过详细的描述。编辑本段原理利用液体混合物中各组分挥发度的差别,使液体混合物部分汽化并随之使蒸气部分冷凝,从而实现其所含组分的分离。是一种属于传质分离的单元操作。广泛应用于炼油、化工、轻工等领域。其原理以分离双组分混合液为例。将料液加热使它部分汽化,易挥发组分在蒸气中得到增浓,难挥发组分在剩余液中也得到增浓,这在一定程度上实现了两组分的分离。两组分的挥发能力相差越大,则上述的增浓程度也越大。在工业精馏设备中,使部分汽化的液相与部分冷凝的气相直接接触,以进行汽液相际传质,结果是气相中的难挥发组分部分转入液相,液相中的易挥发组分部分转入气相,也即同时实现了液相的部分汽化和汽相的部分冷凝。液体的分子由于分子运动有从表面溢出的倾向。这种倾向随着温度的升高而增大。如果把液体置于密闭的真空体系中,液体分子继续不断地溢出而在液面上部形成蒸气,最后使得分子由液体逸出的速度与分子由蒸气中回到液体的速度相等,蒸气保持一定的压力。此时液面上的蒸气达到饱和,称为饱和蒸气,它对液面所施的压力称为饱和蒸气压。实验证明,液体的饱和蒸气压只与温度有关,即液体在一定温度下具有一定的蒸气压。这是指液体与它的蒸气平衡时的压力,与体系中液体和蒸气的绝对量无关。将液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程的联合操作称为蒸馏。很明显,蒸馏可将易挥发和不易挥发的物质分离开来,也可将沸点不同的液体混合物分离开来。但液体混合物各组分的沸点必须相差很大(至少30℃以上)才能得到较好的分离效果。在常压下进行蒸馏时,由于大气压往往不是恰&&&&好为0.1MPa,因而严格说来,应对观察到的沸点加上校正值,但由于偏差一般都很小,即使大气压相差2.7KPa,这项校正值也不过±1℃左右,因此可以忽略不计。将盛有液体的烧瓶放在石棉网上,下面用煤气灯加热,在液体底部和玻璃受热的接触面上就有蒸气的气泡形成。溶解在液体内的空气或以薄膜形式吸附在瓶壁上的空气有助于这种气泡的形成,玻璃的粗糙面也起促进作用。这样的小气泡(称为气化中心)即可作为大的蒸气气泡的核心。在沸点时,液体释放大量蒸气至小气泡中,待气泡的总压力增加到超过大气压,并足够克服由蒸馏于液柱所产生的压力时,蒸气的气泡就上升逸出液面。因此,假如在液体中有许多小空气或其它的气化中心时,液体就可平稳地沸腾,如果液体中几乎不存在空气,瓶壁又非常洁净光滑,形成气泡就非常困难。这样加热时,液体的温度可能上升到超过沸点很多而不沸腾,这种现象称为“过热”。一旦有一个气泡形成,由于液体在此温度时的蒸气压远远超过大气压和液柱压力之和,因此上升的气泡增大得非常快,甚至将液体冲溢出瓶外,这种不正常沸腾的现象称为“暴沸”。因此在加热前应加入助沸物以期引入气化中心,保证沸腾平稳。助沸物一般是表面疏松多孔、吸附有空气的物体,如碎瓷片、沸石等。另外也可用几根一端封闭的毛细管以引入气化中心(注意毛细管有足够的长度,使其上端可搁在蒸馏瓶的颈部,开口的一端朝下)。在任何情况下,切忌将助沸物加至已受热接近沸腾的液体中,否则常因突然放出大量蒸气而将大量液体从蒸馏瓶口喷出造成危险。如果加热前忘了加入助沸物,补加时必须先移去热源,待加热液体冷至沸点以下后方可加入。如果沸腾中途停止过,则在重新加热前应加入新的助沸物。因为起初加入的助沸物在加热时逐出了部分空气,再冷却时吸附了液体,因而可能已经失效。另外,如果采用浴液间接加热,保持浴温不要超过蒸馏液沸点20C,这种加热方式不但可以大大减少瓶内蒸馏液中各部分之间的温差,而且可使蒸气的气泡不单从烧瓶的底部上升,也可沿着液体的边沿上升,因而可大大减少过热的可能。纯粹的液体有机化合物在一定的压力下具有一定的沸点,但是具有固定沸点的液体不一定都是纯粹的化合物,因为某些有机化合物常和其它组分形成二元或三元共沸混和物,它们也有一定的沸点。不纯物质的沸点则要取决于杂质的物理性质以及它和纯物质间的相互作用。假如杂质是不挥发的,则溶液的沸点比纯物质的沸点略有提高(但在蒸馏时,实际上测量的并不是不纯溶液的沸点,而是逸出蒸气与其冷凝平衡时。若杂质是挥发性的,则蒸馏的温度,即是馏出液的沸点而不是瓶中蒸馏液的沸点)&&&&时液体的沸点会逐渐升高或者由于两种或多种物质组成了共沸点混合物,在蒸馏过程中温度可保持不变,停留在某一范围内。因此,沸点的恒定,并不意味着它是纯粹的化合物。蒸馏沸点差别较大的混合液体时,沸点较低者先蒸出,沸点较高的随后蒸出,不挥发的留在蒸馏器内,这样,可达到分离和提纯的目的。故蒸馏是分离和提纯液态化合物常用的方法之一,是重要的基本操作,必须熟练掌握。但在蒸馏沸点比较接近的混合物时,各种物质的蒸气将同时蒸出,只不过低沸点的多一些,故难于达到分离和提纯的目的,只好借助于分馏。纯液态化合物在蒸馏过程中沸程范围很小(0.5~1℃)。所以,蒸馏可以利用来测定沸点。用蒸馏法测定沸点的方法为常量法,此法样品用量较大,要10mL以上,若样品不多时,应采用微量法。分馏实验原理定义:分馏是利用分馏柱将多次气化—冷凝过程在一次操作中完成的方法。因此,分馏实际上是多次蒸馏。它更适合于分离提纯沸点相差不大的液体有机混合物。进行分馏的必要性:(1)蒸馏分离不彻底。(2)多次蒸馏操作繁琐,费时,浪费极大。混合液沸腾后蒸气进入分馏柱中被部分冷凝,冷凝液在下降途中与继续上升的蒸气接触,二者进行热交换,蒸汽中高沸点组分被冷凝,低沸点组分仍呈蒸气上升,而冷凝液中低沸点组分受热气化,高沸点组分仍呈液态下降。结果是上升的蒸汽中低沸点组分增多,下降的冷凝液中高沸点组分增多。如此经过多次热交换,就相当于连续多次的普通蒸馏。以致低沸点组分的蒸气不断上升,而被蒸馏出来;高沸点组分则不断流回蒸馏瓶中,从而将它们分离。编辑本段溶液蒸馏含有非挥发性组分的溶液蒸馏时,溶剂蒸气由冷凝管导出,不挥发性的组分留在瓶内残液中,一次简单蒸馏即可将大部分溶剂蒸出,从而达到分离目的。由拉乌尔定律,在一定压力下,稀溶液中溶剂的蒸气压等于纯溶剂的蒸气压乘以该溶剂在溶液中的摩尔分数:p溶剂=po溶剂x溶剂式中p溶剂、po溶剂分别是溶液中溶剂的蒸气压和纯溶剂的蒸气压;由于溶液中x溶剂1,溶液中溶剂的蒸气压总比纯溶剂的蒸气压低一些。蔗糖水溶液的蒸馏曲线。曲线1和曲线2分别表示水和蔗糖水溶液的温度-蒸气压曲线。溶液中蔗糖分子的存在会降低溶液表面上水分子的密集度,从而降低溶液的蒸气压。因此在相同的温度下溶液的蒸气&&&&蒸馏压(B点)低于水的蒸气压(A点)。在100oC时水会沸腾(在1个大气压下),而溶液还不会沸腾。只有在更高的温度下(B′点)溶液才会沸腾。对于这一类溶液,蒸馏操作或者是用来回收纯溶剂,或者是用来得到固体溶质。编辑本段方法分类①闪急蒸馏。将液体混合物加热后经受一次部分汽化的分离操作。②简单蒸馏。使混合液逐渐汽化并使蒸气及时冷凝以分段收集的分离操作。③精馏。借助回流来实现高纯度和高回收率的分离操作,应用最广泛。对于各组分挥发度相等或相近的混合液,为了增加各组分间的相对挥发度,可以在精馏分离时添加溶剂或盐类,这类分离操作称为特殊蒸馏,其中包括恒沸精馏、萃取精馏和加盐精馏;还有在精馏时混合液各组分之间发生化学反应的,称为反应精馏。编辑本段实验室蒸馏操作蒸馏操作是化学实验中常用的实验技术,一般应用于下列几方面:(1)分离液体混合物,仅对混合物中各成分的沸点有较大的差别时才能达到较有效的分离;(2)测定纯化合物的沸点;(3)提纯,通过蒸馏含有少量杂质的物质,提高其纯度;(4)回收溶剂,或蒸出部分溶剂以浓缩溶液。加料:要注意不使液体从支管流出。加料将待蒸馏液通过玻璃漏斗小心倒入蒸馏瓶中,加入几粒助沸物,安好温度计,温度计应安装在通向冷凝管的侧口部位温度计应安装在通向冷凝管的侧口部位。再一次检查温度计应安装在通向冷凝管的侧口部位仪器的各部分连接是否紧密和妥善。加热:用水冷凝管时,先由冷凝管下口缓缓通入冷水先由冷凝管下口缓缓通入冷水,自上口流出引至水槽中,加热先由冷凝管下口缓缓通入冷水然后开始加热。加热时可以看见蒸馏瓶中的液体逐渐沸腾,蒸气逐渐上升。温度计的读数也略有上升。当蒸气的顶端到达温度计水银球部位时,温度计读数就急剧上升。&&&&这时应适当调小煤气灯的火焰或降低加热电炉或电热套的电压,使加热速度略为减慢,蒸气顶端停留在原处,使瓶颈上部和温度计受热,让水银球上液滴和蒸气温度达到平衡。然后再稍稍加大火焰,进行蒸馏。控制加热温度,调节蒸馏速度,通常以每秒1~2滴为宜。在整个蒸馏过程中,应使温度计水银球上常有被冷凝的液滴。此时蒸馏的温度即为液体与蒸气平衡时的温度,温度计的读数就是液体(馏出物)的沸点。蒸馏时加热的火焰不能太大,否则会在蒸馏瓶的颈部造成过热现象,使一部分液体的蒸气直接受到火焰的热量,这样由温度计读得的沸点就会偏高;另一方面,蒸馏也不能进行得太慢,否则由于温度计的水银球不能被馏出液蒸气充分浸润使温度计上所读得的沸点偏低或不规范。观察沸点及收集馏液:进行蒸馏前,至少要准备两个接受瓶。因为在达到预期物观察沸点及收集馏液质的沸点之前,带有沸点较低的液体先蒸出。这部分馏液称为“前馏分”或“馏头”。前馏分蒸完,温度趋于稳定后,蒸出的就是较纯的物质,这时应更换一个洁净干燥的接受瓶接受,记下这部分液体开始馏出时和最后一滴时温度计的读数,即是该馏分的沸程(沸点范围)。一般液体中或多或少地含有一些高沸点杂质,在所需要的馏分蒸出后,若再继续升高加热温度,温度计的读数会显著升高,若维持原来的加热温度,就不会再有馏液蒸出,温度会突然下降。这时就应停止蒸馏。即使杂质含量极少,也不要蒸干,以免蒸馏瓶破裂及发生其他意外事故。蒸馏完毕,应先停止加热,然后停止通水,拆下仪器。拆除仪器的顺序和装配的蒸馏完毕,应先停止加热,然后停止通水顺序相反,先取下接受器,然后拆下尾接管、冷凝管、蒸馏头和蒸馏瓶等。作时要注意:(2)温度计水操作时要注意(1)在蒸馏烧瓶中放少量碎瓷片,防止液体暴沸。银球的位置应与支管口下缘位于同一水平线上。(3)蒸馏烧瓶中所盛放液体不能超过其容积的2/3,也不能少于1/3。(4)冷凝管中冷却水从下口进,上口出。(5)加热温度不能超过混合物中沸点最高物质的沸点。编辑本段最早的蒸馏器&&&&考古人员在西安市张家堡广场东侧发掘出四百四十余座汉代墓葬,其中一处规格较高的西汉王莽时期墓葬中,发现一盅工艺奇特的铜蒸馏器,可能是历史上最早的蒸馏器。这盅铜蒸馏器通高三十六厘米,由筒形器、铜鍑和豆形盖组成。其中筒形器底部有一米格形箅,为古代炊具中用作隔层的器具。底边有一小管状流,铜鍑三蹄形足,豆形器盖上部呈盘形,相合处为榫铆结构,可在一定范围内自由活动。出土时放置有序,铜鍑置于筒形器内,豆形盖置于铜鍑之上。这样组合的蒸馏器此前从未发现,尽管其工作原理尚不明确,但从构造看来,应是用作蒸馏药、酒。据了解,此前中国曾出土东汉时期的青铜蒸馏器,而西安张家堡汉墓发现的铜蒸馏器则较其更早。西安文物保护考古所副所长程林泉表示,其出土为汉代饮食和医药技术的研究提供了十分珍贵的实物资料。另外,在蒸馏器出土所在的编号M115墓葬中,考古人员还发掘出二百多件器物,其中包括五件大型铜鼎和四件大型釉陶鼎。据《周礼》记载,西周时天子用九鼎随葬。M115的墓主追慕周代礼制,使用九鼎随葬,可见其特殊身份地位。九鼎和另一件随葬品仿铜釉陶鼎是王莽托古改制的真实物证,具有极为重要的学术价值和历史意义。是次发掘的四百四十余座汉墓群位于汉长安城东侧,距长安城仅二千五百米,共出土陶、铜、铁、铅、玉石、骨等各类文物近三千件。这批墓葬以小型汉墓为主,其中三座西汉晚期至新莽时期的中型墓葬最为重要,不仅出土了西汉时期墓葬常见的器物,如红彩陶器、蒸馏釉陶器、鼎、盒、壶、仓、奁、灶等,在M110号墓葬中,还出土了玉衣残片。而M114号墓葬中出土的大型精美釉陶器,在西安地区两汉墓葬中亦十分罕见。专家表示,是次发掘对于研究汉代社会生活、汉长安城布局等方面提供了重要的材料,并有助进一步解读汉文化的形成与发展。一.理想物系双组分物系的气液相平衡,相图蒸馏过程中伴随着液体的汽化和气体的冷凝过程,也就是说气液两相是共存的,因此气液相平衡是蒸馏过程的热力学基础,它能判断过程进行的可能性。根据相律,用于描述相平衡物系的自由度数Nf应该满足以下关系式:Nf=C-Φ+2其中,C表示组分数;Φ表示相数。对于二元物系的气液相平衡,所涉及到的参数有温度t,压力p以及气液两相的组成y,x(易挥发组分A的摩尔分率),共四个参数。由于该体系中C=2,&&&&Φ=2,所以Nf=2,即上述四个参数中只有两个是独立的。蒸馏过程通常在一定的压力下进行,此时二元物系达气液平衡时温度t,液相组成x和气相组成y这三个参数之间只有一个自由度。因此p一定时,t-x,t-y,x-y之间存在一定的关系。下面举苯与甲苯作为理想物系的例子加以说明:用纵坐标表示温度t,横坐标表示组成x或y,可以标绘出温度-组成图。根据温度-组成图可以判断物系所处的状态。在右图上,t-x线表示液相组成与饱和温度之间的关系,处于该线上的液体称为饱和液体,该线以下的为过冷液体;t-y线表示气相组成与饱和温度之间的关系,处于该线上的气体称为饱和蒸气,该线以上的为过热蒸气:若介与两线之间则为气液共存区;两条线的端点A,则分别表示纯液体A,的[wiki]沸点[/wiki]。BB设有x=0.4的苯-甲苯混合物,初始状态为过冷液体,处于右图中的F点,现在保持压力不变,对它进行加热,则它的状态点从F点垂直往上走。当到达t-x线上的G点时,液体达到饱和,并将开始沸腾产生第一个气泡,故常称t-x线为[wiki]泡点[/wiki]线;继续生温气体量增多,在到达t-y线之前都处于气液共存区,其中的气液相平衡。当到达t-y线上的I点,所有的液体恰好完全汽化,蒸气达到饱和,再继续升温就变成过热蒸气了,如在J点,若考虑采用从J点开始的冷却过程,当到达I点时,蒸气将开始冷凝并产生第一个液滴,故常称t-y线为[wiki]露点[/wiki]线。若以x,y为横,纵坐标,可得y-x图,如右图所示,其中y-x线称为相平衡曲线,通常还在相图中添加对角线作为参考线,以表示相平衡线偏离对角线的程度。显然偏离程度越远,表示达气液相平衡时气,液相组成的差异越大,也就越利于蒸馏分离。二.精馏原理,[wiki]回流比[/wiki]及回流的作用1.精馏原理右图是一个典型的板式连续精馏塔,塔内有若干层塔板,每一层就是一个接触级,它为气业两相提供传质场所。为向接触级提供两相接触所需的气流和液流,塔顶设有冷凝器将顶部的蒸气冷凝成液体并部分往下流,塔底设有再沸器将底部的液体部分汽化向上流。操作时原料液自塔的中部某适当的位置连续的加入,塔顶冷凝液的一部分作为塔顶产品-称为馏出液连续产出,其余汇流进入塔顶;塔釜出来的液体经再沸器部分汽化后,液体作为塔底产品-称为釜液连续排出,气体则返回进入塔底。在加料位置之上部分,上升蒸气与顶部下来的液体逐级逆流接触,进行多次接触级蒸馏,因此自下而上气相易挥发组分浓度逐级增加;在加料位置之下部分,下降液体与底部上升的蒸气逐级逆流接触,也进行多次接触级蒸馏,因此自上而下液相难挥发组分浓度逐级增加。总体来看,全塔自塔底向上气相中易挥发组分浓度逐级增加;自塔顶向下液相中难挥发组分浓度逐级增加。因此只要有足够多的塔板数,就能在塔顶得到高纯度的易挥发组分,塔底得到高纯度的难挥发组分。2.回流比及回流的作用回流比:精馏操作中,塔顶馏出物一部分D作为产品采出,另一部分L从塔顶返回精馏塔中,返回&&&&塔中的物料L与采出物料D的比值叫做回流比R,定义为:R=L/D。回流的作用:a.设计方面:回流比对精馏塔有着重要的作用。设计时,若回流比增加,精馏段操作线在y轴上的截距减小,点c和点d同时向下移动,既操作线都向偏离平衡线的方向移动,使得全塔所需的理论塔板数减少,这是有利的一面;回流比也并不是越大越好,回流比越大,冷凝器,再沸器负荷也随之增大,并使塔负荷上升导致塔径增大。b.精馏塔实际操作方面:1.提高产品纯度。2.补充易挥发组分,保证精馏操作连续稳定的进行。三.精馏操作精馏段,提馏段操作线方程假定精馏塔内任意一塔板n上的易挥发组分液相与气相的组成分别为xn与yn,其相对挥发度为α,则该塔板上相平衡方程可以写成:精馏段操作线方程:其中:R为回流比,xD为原料液中易挥发组分的摩尔分率。提馏段操作线方程:其中:W为釜液流量,L’为提馏段液相流量,XW为釜液中易挥发组分的摩尔分率。四.精馏塔的主要参数a.温度精馏塔中比较重要的温度参数是塔釜温度与塔顶温度。塔釜再沸器是整个精馏过程的能量来源,因而塔釜温度是精馏操作中的重要参数。b.压力塔顶压力减压精馏过程中塔顶压力是关乎整个精馏操作平衡的重要参数,塔顶压力过高,整个减压精馏操作的真空度无法得到保证,精馏操作不能正常进行,可以说塔顶压力是减压精馏操作中最重要的参数。塔釜压力相对塔顶压力,因为精馏塔内部存在阻力,因而塔釜压力要高于塔顶压力,对于丙烯酸的精馏操作来说,塔顶压力与塔底压力之差应保持在一定范围之内。c.回流比回流比对整个塔的稳定与产品的品质密切相关。五.精馏塔的物料,热量,组分平衡物料平衡&&&&精馏塔的物料平衡,即进塔的物料量与出塔的物料量相等,做物料衡算,可以表示如下:F=D+W其中:F为进塔原料液流量,D为塔顶采出液流量,W为釜液采出流量。组分平衡通过上面的讨论,可以看出,精馏操作要稳定进行,除了进出物料量相等外,各种组分进出塔量也应相等,才能保证塔内物料组成维持在一个相对稳定的范围之内,从而保证精馏的稳定进行,组分平衡可以表示如下:FxF=DxD+WxW其中:xF,xD,xW分别为原料液,馏出液及塔釜液中易挥发组分的含量。热量平衡忽略精馏塔本身的能量损耗,进塔的能量应该与出塔的能量相等,才能保证精馏的稳定进行,精馏塔的热量衡算可以表示为:进塔物料所含有的内能加上再沸器中输入的能量因该与塔顶冷凝器的换热量,塔顶采出液与塔釜采出液的内能之和相同,否则精馏塔将无法正常运行。热量输入大于输出,塔低难挥发组分也会大量挥发进入产品,造成产品质量欠佳;热量输入不足,易挥发组分不能得到足够的能量,会大量从塔釜采出导致原料的浪费。离心分离(centrifugalseparation):借助于离心力,使比重不同的物质进行分离的方法。由于离心机等设备可产生相当高的角速度,使离心力远大于重力,于是溶液中的悬浮物便易于沉淀析出:又由于比重不同的物质所受到的离心力不同,从而沉降速度不同,能使比重不同的物质达到分离。基本介绍离心力:离心力是一种惯性力惯性力。惯性力当物体在做非直线运动时(非牛顿环境,例如:圆周运动或转弯运动),因物体一定有本身的质量存在,质量造成的惯性会强迫物体继续朝着运动轨迹的切线方向(原来那一瞬间前进的直线方向)前进,而非顺着接下来转弯过去的方向走。若这个在做非直线运动的物体(例如:车)上有乘客的话,乘客由于同样随着车子做转弯运动,会受到车子向乘客提供的向心力,但是若以乘客为参照系,由于该参照系为非惯性系,他会受到与他相对静止的车子给他的一个指向圆心的向心力作用,但同时他也会给车子一个反向等大,由圆心指向外的力,就好像没有车子他就要被甩&&&&出去一样,这个力就是所谓的离心力。由于处于非惯性系中,此状况下物体所感受的力并非真实,所以有些说法会称这种现象为“离心力离心力”。)离心力编辑本段分类固一固分离使固体之间相互分离的离心分离法称离心分级,设备为离心分离机。用控制离心时间的办法,使得溶液中只沉淀大颗粒,而不是所有颗粒,这样就可逐次将颗粒按大小分开。液一液分离不互溶的液体在离心机中因密度不同而很快分离。这种方法比重力分离时间要短得多。常用一种称为离心萃取机的装置来分离液体溶液组分。该装置由放置在圆筒转鼓中的一系列多孔同心环组成,转鼓环绕着一个筒形轴以每分钟转的速度旋转,液体通过筒形轴进出,以径向顺流方式在转筒中流动而达到液体溶液组分的分离。气一气分离同位素研究中常用的手段。在高速旋转下,气体状态的同位素混合物得以相互分离。用离心分离浓缩235U是有前景的方法之一。固一液分离常量分析中常用过滤法,半微量分析中则用离心分离法[1]。常用的旋转装置有手摇离心机和电动离心机(通常转速为1}4千周/分),分离速度远比过滤为快。编辑本段应用胶体化学1924年瑞典的丁.斯韦德贝里设计了超速离心机,这是一种以极高的角速度运转的离心机,1940年获得的离心加速度30万倍于重力加速度,它和30年代多层吸附理论的建立,以及40年代疏液胶体稳定理论的建立,可说是近半世纪中胶体化学(见胶体和表面化学)领域内的三大成就。超速离心机的分离原理是,当一个含有聚合物或巨分子的溶液,在离心力是重力的25万倍时,分子相互分离,纯溶剂留在界面以上,这个界面以一定速度向容器低部移动。若溶质的分子量不均匀,这个界面上的浓度梯度也不均匀,则那些分子量低的会落在大分子之后。用光学仪器可观察出这个界面,从而精确测定沉降速率,而每种成分的沉降速率又与其分子量有关,因而可以计&&&&算出各成分的分子量。超速离心机不仅能分离胶粒,更重要的是它能测定胶粒的沉降速率、平均分子量及混合体系的重量分布,因而在胶体化学研究(尤其是亲液胶体)中起了重大的作用。高分子化学超速离心机的出现为对高分子溶液的深入了解提供了一种有力的研究手段。1940年斯韦德贝里使用超速离心法测定了分子量及其分布,可直接测定几万至几百万的分子量。高分子化合物分子量测定方法的出现,极大地推动了高分子化学的发展,许多天然高分子属于单一分散体系(所有分子都持同一分子量),对这种系统,超速离心法是最好的分子量测定法,比渗透压、光散射和粘度等测定法更好。生物化学超速离心法同样为生物化学提供了一种强有力的研究手段。斯韦德贝里应用超速离心法测量了蛋白质分子在水中的沉降速率,从而能计算蛋白质的分子量。他的一些测定结果如下:牛胰岛素:46000:人血红球:63000:人血清球:153000:章血血清:2800000:烟草花叶病毒:。超速离心法还经常用于蛋白质的降解、分离、精制以及分子量分布测定。细胞研究中常用一种分带或区域离心机,用一个大容量旋转室,根据密度梯度离心分离原理来分离细胞。环境保护离心分离法常用于:①离心过滤,借助离心作用从浆料中排除液体,浆料被引入一快速旋转的网篮中,固体留在多孔的网上,液体则受离心作用从滤饼中挤出:或利用旋转器中的离心力使轻重物质分开,重物质以稠泥浆的形式通过喷嘴流走。常用设备为离心过滤机。②离心沉降,悬浮固体在离心力作用下移向或离开旋转中心,这样就可聚集在一个区域内而被移出,可以使颗粒的沉淀时间从几小时减至几分钟。常用设备为离心沉降器。③离心捕集,用于从煤烟、空气流中分离出0.1}1000微米的小颗粒物质,是治理空气污染的有效手段之一。常用设备为离心捕集器,也称微粒收集器、旋风除尘器。编辑本段其他应用工业中常用离心除渣器来净化纸浆浆料,使浆料高速回转或产生回转旋涡作用,把尘粒分离出来。还常用离心干燥机,或称离心脱水机,依靠离心力将水分脱去。展望离心分离法与其他方法相结合,可以产生新的更为有效的分离方法,这是离心分离法的现代发展方向。在这方面,离心分离法与色谱法结合而产生的场流分级法(或称外力场流动分馏法)就是一个典型例子。1966年J.C.吉丁斯提出一类新的无固定相的色谱分离法,即场流分级法,或称单相色谱。这种方法的最初构思,是以离心力压迫分子于柱壁而代替固定相的保留作用,这样产生的分离方法称离心色谱,也叫&&&&沉积场流分级法。后来依据这一基本思想,以电场、磁场、热梯度等代替离心力场,得到不同的场流分级法,从而建立了一类分离方法体系。场流分级法不但对大分子和胶体有很强的分离能力,而且它也能分离分子量小于103的物质和大于30微米的远远超出胶体范围的固体颗粒,其可分离的分子量有效范围约为103101,这样宽的连续分离范围是空前未有的。近年来出现的离心制备薄层色谱法是离心分离法渗透于色谱领域而产生的又一种高效分离法。层析薄板为圆形,样品注射于圆心四周,从垂直于圆心的方向连续地加入展开剂,薄板旋转,各不同组分即沿径向迅速展开。在紫外灯照射下可观察到谱带的移动,由于板面设置是倾斜的,可沿斜向直接接收各分开的组分。该法已用于天然产物、合成产物及异构体等的快速分离提纯,分离效果优于制备薄层色谱和柱层色谱法,在一定程度上与制备型高压液相色谱法相似,但在节省时间和溶剂等方面优于后者。利用离心力将溶液中密度不同的成分进行分离,从而发明了一种设备——离心分离机。编辑本段离心技术是利用不同物质之间的密度等差异,用离心力场进行分离和提取的物理分离分析技术,广泛用于生物学、医学、农学、化学、化工等领域。本书对离心分离技术从原理到实践进行了较详细的介绍,尤其重点介绍了在生物学科研和生产中的实例。因此,在离心分离技术的理论和实际应用中,本书可起到工具书的作用。本书可供生物学、农学、医学、化学、化工等领域的科研人员、实验室人员、管理人员和设备维修人员等参考。萃取分离混合物编辑本段萃取分离混合物萃取是利用系统中组分在溶剂中有不同的溶解度来分离混合物的单元操作,利用相似相溶原理,萃取有两种方式:液-液萃取,用选定的溶剂分离液体混合物中某种组分,溶剂必须与被萃取的混合物液体不相溶,具有选择性的溶解能力,而且必须有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性。如用苯分离煤焦油中的酚;用有机溶剂分离石油馏分中的烯烃;用CCl4萃取水中的Br2.固-液萃取,也叫浸取,用溶剂分离固体混合物中的组分,如用水浸取甜菜中的&&&&糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏叫“渗沥”或“浸沥”。概述萃取是利用系统中组分在溶剂中有不同的溶解度来分离混合物的单元操作,利用相似相溶原理,萃取有两种方式:液-液萃取,用选定的溶剂分离液体混合物中某种组分,溶剂必须与被萃取的混合物液体不相溶,具有选择性的溶解能力,而且必须有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性。如用苯分离煤焦油中的酚;用有机溶剂分离石油馏分中的烯烃;用CCl4萃取水中的Br2.固-液萃取,也叫浸取,用溶剂分离固体混合物中的组分,如用水浸取甜菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏叫“渗沥”或“浸沥”。虽然萃取经常被用在化学试验中,但它的操作过程并不造成被萃取物质化学成分的改变(或说化学反应),所以萃取操作是一个物理过程。萃取是有机化学实验室中用来提纯和纯化化合物的手段之一。通过萃取,能从固体或液体混合物中提取出所需要的化合物。这里介绍常用的液-液萃取。编辑本段|回到顶部基本原理利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。同时,在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中,实验证明,在一定温度下,该化合物与此两种溶剂不发生分解、电解、缔&&&&合和溶剂化等作用时,此化合物在两液层中之比是一个定值。不论所加物质的量是多少,都是如此。属于物理变化。用公式表示。CA/CB=KCA.CB分别表示一种化合物在两种互不相溶地溶剂中的量浓度。是一个常数,K称为“分配系&&&&数”。有机化合物在有机溶剂中一般比在水中溶解度大。用有机溶剂提取溶解于水的化合物是萃取的典型实例。在萃取时,若在水溶液中加入一定量的电解质(如氯化钠),利用“盐析效应”以降低有机物和萃取溶剂在水溶液中的溶解度,常可提高萃取效果。要把所需要的化合物从溶液中完全萃取出来,通常萃取一次是不够的,必须重复萃取数次。利用分配定律的关系,可以算出经过萃取后化合物的剩余量。设:V为原溶液的体积w0为萃取前化合物的总量w1为萃取一次后化合物的剩余量w2为萃取二次后化合物的剩余量w3为萃取n次后化合物的剩余量S为萃取溶液的体积经一次萃取,原溶液中该化合物的浓度为w1/V;而萃取溶剂中该化合物的浓度为(w0-w1)/S;两者之比等于K,即:w1/V=Kw1=w0KV(w0-w1)/SKV+S同理,经二次萃取后,则有w2/V=K即(w1-w2)/Sw2=w1KV=w0KVKV+SKV+S因此,经n次提取后:wn=w0(KV)KV+S当用一定量溶剂时,希望在水中的剩余量越少越好。而上式KV/(KV+S)总是小于1,所以n越大,wn就越小。也就是说把溶剂分成数次作多次萃取比用全部量的溶剂作一次萃取为好。但应该注意,上面的公式适用于几乎和水不相溶地溶剂,例如苯,四氯化碳等。而与水有少量互溶地溶剂乙醚等,上面公式只是近似的。但还&&&&是可以定性地指出预期的结果。萃取可分为以下几种:一、双水相萃取双水相萃取技术((Two-aqueousphaseextraction,简称ATPS)是指亲水性聚合物水溶液在一定条件下可以形成双水相,由于被分离物在两相中分配不同,便可实现分离被广泛用于生物化学细胞生物学和生物化工等领域的产品分离和提取双水相萃取技术设备投资少,操作简单该类双水相体系多为聚乙二醇-葡萄糖和聚乙二醇-无机盐两种由于水溶性高聚物难以挥发,使反萃取必不可少,且盐进入反萃取剂中,对随后的分析测定带来很大的影响另外水溶性高聚物大多黏度较大,不易定量操作,也给后续研究带来麻烦事实上,普通的能与水互溶的有机溶剂在无机盐的存在下也可生成双水相体系,并已用于血清铜和血浆铬的形态分析基于与水互溶的有机溶剂和盐水相的双水相萃取体系具有价廉!低毒!较易挥发而无需反萃取和避免使用黏稠水溶性高聚物等特点。二、有机溶剂萃取水洗分液法是用水将有机相中溶于水的杂质分离出来,达到纯化有机相的目的。有机溶剂萃取法就是常说的萃取,即用有机溶剂把水相、固相(或其它不溶于该溶剂的相)中溶于该溶剂的组分分离出来的方法。理论部分见Afeastforeye的内容。一般萃取实验中,萃取后的有机相(含所需化合物)还要用水或饱和食盐水洗,进一步纯化有机相。这两种方法都需要分液漏斗,操作过程基本相同,只需确定哪一层(相)需要保留。三、超临界萃取超临界萃取所用的萃取剂为超临界流体,超临界流体是介于气液之间的一种既非气态又非液态的物态,这种物质只能在其温度和压力超过临界点时才能存在。超临界流体的密度较大,与液体相仿,而它的粘度又较接近于气体。因此超临界流体是一种十分理想的萃取剂。超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂流体的压力和温度,就可以把样品中的不同组分按在流体中溶解度的大小,先后萃取出来,在低压下弱极性的物质先萃取,随着压力的增加,极性较大和大分子量的物质与基本性质,所以在程序升压下进行超临界萃取不同萃取组分,同时还可以起到分离的作用。温度的变化体现在影响萃取剂的密度与溶质的蒸汽压两个因素,在低温区(仍&&&&在临界温度以上),温度升高降低流体密度,而溶质蒸汽压增加不多,因此,萃取剂的溶解能力时的升温可以使溶质从流体萃取剂中析出,温度进一步升高到高温区时,虽然萃取剂的密度进一步降低,但溶质蒸汽压增加,挥发度提高,萃取率不但不会减少反而有增大的趋势。除压力与温度外,在超临界流体中加入少量其他溶剂也可改变它对溶质的溶解能力。其作用机理至今尚未完全清楚。通常加入量不超过10%,且以极性溶剂甲醇、异丙醇等居多。加入少量的极性溶剂,可以使超临界萃取技术的适用范围进一步扩大到极性较大化合物。超临界流体萃取过程简介将萃取原料装入萃取釜。采用二氧化碳为超临界溶剂。二氧化碳气体经热交换器冷凝成液体,用加压泵把压力提升到工艺过程所需的压力(应高于二氧化碳的临界压力),同时调节温度,使其成为超临界二氧化碳流体。二氧化碳流体作为溶剂从萃取釜底部进入,与被萃取物料充分接触,选择性溶解出所需的化学成分。含溶解萃取物的高压二氧化碳流体经节流阀降压到低于二氧化碳临界压力以下进入分离釜(又称解析釜),由于二氧化碳溶解度急剧下降而析出溶质,自动分离成溶质和二氧化碳气体二部分,前者为过程产品,定期从分离釜底部放出,后者为循环二氧化碳气体,经过热交换器冷凝成二氧化碳液体再循环使用。整个分离过程是利用二氧化碳流体在超临界状态下对有机物有特异增加的溶解度,而低于临界状态下对有机物基本不溶解的特性,将二氧化碳流体不断在萃取釜和分离釜间循环,从而有效地将需要分离提取的组分从原料中分离出来。四、液膜萃取是一项新的萃取技术。以水为连续相,分散以表面活性剂和有机相包覆有水相内核的液滴,形成一乳状液。在外水相中某些组分被液滴外的有机相萃取后进入液滴内的水相,实现萃取分离。由于液滴的直径只几微米,液膜的比表面大,加以被萃取组分很快从有机相转入内水相,传质推动力大、传质不受外水相与表机相平衡浓度的限制,故萃取效率很高。技术的难点是破乳。目前在高压静电场下破乳是最有效的。可用在金属离子分离、生物产品分离以及污水处理等方面。五、固相萃取固相萃取法是色谱法的一个重要的应用。在此方法中,使一定体积的样品溶液通过装有固体吸附剂的小柱,样品中与吸附剂有强作用的组分被完全吸附;然后,用强洗脱溶剂将被吸附的组分洗脱出来,定容成小体积被测样品溶液。使用固相萃取法,可以使样品中的组分得到浓缩,同时可初步除去对感兴趣组分有干扰的成分,从而&&&&提高了分析的灵敏度。固相萃取不仅可用于色谱分析中的样品预处理,而且可用于红外光谱、质谱、核磁共振、紫外和原子吸收等各种分析方法的样品预处理。C18固相萃取小柱具有疏水作用,对非极性的组分有吸附作用,因此可以从水中将多核芳烃萃取出来,完成浓缩样品的作用。固相萃取小柱还有其他类型,如极性、离子交换等。六、液固萃取利用填充了细颗粒吸附剂的小柱作液-固萃取(1iquid~solidextraction,LSE)的方法很快就把液一液萃取方法比了下去,在样品基质的简化和痕量样品的富集等方面建立起自己的地位。液一液萃取有这样的一些问题:劳动力密集;经常受到乳化等实际问题的困扰;倾向于消耗大量的高纯度溶剂,这些溶剂往往对操作者健康和环境造成危害;在排放的时候带来额外的费用。液一固萃取则有廉价、省时、溶剂消耗和处理的步骤简单的优点。液一固萃取步骤可以很容易利用专用的流程单元组,自动地在多通道中同时萃取样品并把样品制备成适自动进样的样品;或利用离心式分析器批量处理大批样品,达到增加样品的通量、减少劳动力的费用的目的。液一固萃取用于现场采样很方便,它使人们不必把大量样品送到实验室中去处理,最大程度地减少样品运输和储存的问题。液一固萃取技术不是没有它的问题,但这些问题和在液一液萃取中遇到的问题是不一样的,这两种技术可以看作是互补的。膜分离技术百科名片膜分离技术&&&&膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。目录膜分离技术概念膜的性质应用膜分离优点膜分离技术发展史、现状常用的膜分离过程膜分离技术及其应用展开编辑本段膜分离技术概念膜分离技术由于具有常温下操作、无相态变化、高效节能、在生产过程中不产生污染等特点,因此在饮用水净化、工业用水处理,食品、饮料用水净化、除菌,生物活性物质回收、精制等方面得到广泛应用,并迅速推广到纺织、化工、电力、食品、冶金、石油、机械、生物、制药、发酵等各个领域。分离膜因其独特的结构和性能,在环境保护和水资源再生方面异军突起,在环境工程,特别是废水处理和中水回用方面有着广泛的应用前景。编辑本段膜的性质膜是具有选择性分离功能的材料。利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一,可将膜分为微滤膜、超滤膜、般为微米级,依据其孔径的不同(或称为截留分子量)&&&&纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。编辑本段应用膜分离是在20世纪初出现,20世纪60年代后迅膜分离技术在中药分离纯化、浓缩中的应用速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。膜是具有选择性分离功能的材料。利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。编辑本段膜分离优点在常温下进行有效成分损失极少,特别适用于热敏性物质,如抗生素等医药、果汁、酶、蛋白的分离与浓缩无相态变化保持原有的风味,能耗极低,其费用约为蒸发浓缩或冷冻浓缩的1/3-1/8&&&&无化学变化典型的物理分离过程,不用化学试剂和添加剂,产品不受污染选择性好可在分子级内进行物质分离,具有普遍滤材无法取代的卓越性能适应性强处理规模可大可小,可以连续也可以间隙进行,工艺简单,操作方便,易于自动化编辑本段膜分离技术发展史、膜分离技术发展史、现状发展史膜在大自然中,特别是在生物体内是广泛存在的,但我们人类对它的认识、利用、模拟直至现在人工合成的历史过程却是漫长而曲折的。我国膜科学技术的发展是从1958年研究离子交换膜开始的。60年代进入开创阶段。1965年着手反渗透的探索,1967年开始的全国海水淡化会战,大大促进了我国膜科技的发展。70年代进入开发阶段。这时期,微滤、电渗析、反渗透和超滤等各种膜和组器件都相继研究开发出来,80年代跨入了推广应用阶段。80年代又是气体分离和其他新膜开发阶段。现状随着我国膜科学技术的发展,相应的学术、技术团体也相继成立。她们的成立为规范膜行业的标准、促进膜行业的发展起着举足轻重的作用。半个世纪以来,膜分离完成了从实验室到大规模工业应用的转变,成为一项高效节能的新型分离技术。1925年以来,差不多每十年就有一项新的膜过程在工业上得到应用。由于膜分离技术本身具有的优越性能,故膜过程现在已经得到世界各国的普遍重视。在能源紧张、资源短缺、生态环境恶化的今天,产业界和科技界把膜过程视为二十一世纪工业技术改造中的一项极为重要的新技术。曾有专家指出:谁掌握了膜技术谁就掌握了化学工业的明天。80年代以来我国膜技术跨入应用阶段,同时也是新膜过程的开发阶段。在这一时期,膜技术在食品加工、海水淡化、纯水、超纯水制备、医药、生物、环保等领域得到了较大规模的开发和应用。并且,在这一时期,国家重点科技攻关项目和自然科学基金中也都有了膜的课题。目前,这一潜力巨大的新兴行业正在以蓬勃的激情挑战市场,为众多的企业带来了较为显著的经济效益、社会效益和环境效益。编辑本段常用的膜分离过程&&&&微滤鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。具体涉及领域主要有:医药工业、食品工业(明胶、葡萄酒、白酒、果汁、牛奶等)、高纯水、城市污水、工业废水、饮用水、生物技术、生物发酵等。超滤早期的工业超滤应用于废水和污水处理。三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、饮料工业、医药工业、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。纳滤纳滤的主要应用领域涉及:食品工业、植物深加工、饮料工业、农产品深加工、生物医药、生物发酵、精细化工、环保工业……反渗透由于反渗透分离技术的先进、高效和节能的特点,在国民经济各个部门都得到了广泛的应用,主要应用于水处理和热敏感性物质的浓缩,主要应用领域包括以下:食品工业、牛奶工业、饮料工业、植物(农产品)深加工、生物医药、生物发酵、制备饮用水、纯水、超纯水、海水、苦咸水淡化、电力、电子、半导体工业用水、医药行业工艺用水、制剂用水、注射用水、无菌无热源纯水、食品饮料工业、化工及其它工业的工艺用水、锅炉用水、洗涤用水及冷却用水其他除了以上四种常用的膜分离过程,另外还有渗析、控制释放、膜传感器、膜法气体分离等。编辑本段膜分离技术及其应用第一部分膜分离技术简介膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。错流膜工艺中各种膜的分离与截留性能以膜的孔径和截留分子量来加以区别,下图简单示意了四种不同的膜分离过程:&&&&(箭头反射表示该物质无法透过膜而被截留):微滤(MF)又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙烯、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。超滤(UF)是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1nm分子量之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。纳滤(NF)是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80~1000的范围内,孔径为几纳米,因此称纳滤。基于纳滤分离技术的优越特性,其在制药、生物化工、食品工业等诸多领域显示出广阔的应用前景。对于纳滤而言,膜的截留特性是以对标准NaCl、MgSO4、CaCl2溶液的截留率来表征,通常截留率范围在60~90%,相应截留分子量范围在100~1000,故纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行。反渗透(RO)是利用反渗透膜只能透过溶剂(通常是水)而截留离子物质或小分子物质的选择透过性,以膜两侧静压为推动力,而实现的对液体混合物分离的膜过程。反渗透是膜分离技术的一个重要组成部分,因具有产水水质高、运行成本低、无污染、操作方便运行可靠等诸多优点,而成为海水和苦咸水淡化,以及纯水制备的最节能、最简便的技术.目前已广泛应用于医药、电子、化工、食品、海水淡化等诸多行业。反渗透技术已成为现代工业中首选的水处理技术。反渗透的截留对象是所有的离子,仅让水透过膜,NaCl的截留率在98%以上,对出水为无离子水。反渗透法能够去除可溶性的金属盐、有机物、细菌、胶体粒子、发热物质,也即能截留所有的离子,在生产纯净水、软化水、无离子水、产品浓缩、废水处理方面反渗透膜已经应用广泛。&&&&膜分离的基本工艺原理是较为简单的(参见下图)。在过滤过程中料液通过泵的加压,料液以一定流速沿着滤膜的表面流过,大于膜截留分子量的物质分子不透过膜流回料罐,小于膜截留分子量的物质或分子透过膜,形成透析液。故膜系统都有两个出口,一是回流液(浓缩液)出口,另一是透析液出口。在单位时间(Hr)单位膜面积(m2)透析液流出的量(L)称为膜通量(LMH),即过滤速度。影响膜通量的因素有:温度、压力、固含量(TDS)、离子浓度、黏度等。膜分离操作基本工艺流程由于膜分离过程是一种纯物理过程,具有无相变化,节能、体积小、可拆分等特点,使膜广泛应用在发酵、制药、植物提取、化工、水处理工艺过程及环保行业中。对不同组成的有机物,根据有机物的分子量,选择不同的膜,选择合适的膜工艺,从而达到最好的膜通量和截留率,进而提高生产收率、减少投资规模和运行成本。第二部分膜分离系统应用1、澄清纯化技术——超/微滤膜系统澄清纯化分离所采用的膜主要是超/微滤膜,由于其所能截留的物质直径大小分布范围广,被广泛应用于固液分离、大小分子物质的分离、脱除色素、产品提纯、油水分离等工艺过程中。超/微滤膜分离可取代传统工艺中的自然沉降、板框过滤、真空转鼓、离心机分离、溶媒萃取、树脂提纯、活性炭脱色等工艺过程。澄清纯化技术可采用的膜分离组件主要有:陶瓷膜、平板膜、不锈钢膜、中空纤维膜、卷式膜、管式膜。采用膜分离澄清纯化的优点:1)、可得到绝对的真溶液,产品稳定性好;2)、过滤分离收率高;3)、分离效果好,产品质量高,运行成本低;4)、缩短生产周期,降低生产成本;5)、过程无需添加化学药品、溶媒溶剂,不带入二次污染物质;6)、操作简便,占地面积小,劳动力成本低;7)、可拓展性好,容易实现工业化扩产需求;8)、设备可自动运行,稳定性好,维护方便。2、浓缩提纯技术——纳滤膜系统膜分离技术在浓缩提纯工艺上主要采用截留分子量在100~1000Dal的纳滤膜。纳滤膜的主要特点是对二价离子、功能性糖类、小分子色素、多肽等物质的截留性能高于98%,而对一些单价离子、小分子酸碱、醇等有30~50%的透过性能,常被应用于溶质的分级、溶液中低分子物质的洗脱和离子组分的调整、溶液体系的浓缩等物质的分离、精制、浓缩工艺过程中。纳滤膜分离技术常被用于取代传统工艺中的冷冻干燥、薄膜蒸发、离子交换除盐、树脂工艺浓缩、中和等工艺过程。浓缩提纯技术可采用的膜组件主要有:卷式膜、管式膜。&&&&采用纳滤膜分离技术浓缩提纯的优点:1)、能耗极低,节省浓缩过程成本;2)、过程无化学反应、无相变化,不带入其他杂质及造成产品的分解变性;3)、在常温下达到浓缩提纯目的,不造成有效成分的破坏,工艺过程收率高;4)、可完全脱除产品的盐分,减少产品灰分,提高产品纯度;5)、可回收溶液中的酸、碱、醇等物质;6)、设备结构简洁紧凑,占地面积小;7)、操作简便,可实现自动化作业,稳定性好,维护方便。第三部分行业应用1、制药行业●生物发酵液过滤除菌及下游分离纯化精制●树脂解析液的浓缩及解析剂回收●农药水剂、粉剂的生产应用●中药浸提液过滤除杂及浓缩●中药浸膏生产应用●合成药、原料药、中间体等的脱盐浓缩●结晶母液回收二、食品行业●乳清废水处理●乳制品生产加工应用●果汁澄清脱色●食品添加剂纯化浓缩●茶饮料澄清浓缩●啤酒、葡萄酒、黄酒的精制加工●天然色素提取液的除杂及浓缩●氨基酸发酵液过滤澄清及精制三、染料化工和助剂水溶性染料反应液的脱盐浓缩●染料盐析母液废水回收四、淀粉糖品●糖液分离纯化及浓缩●果葡糖浆色普分离纯化●糖醇色普分离纯化●单糖、低聚糖及多糖的分离纯化及浓缩五、环保及水处理领域●纺织、染整、印染废水处理及回用●电镀工业废水零排放及资源回收●矿山及冶金废水处理回收&&&&●淀粉废水处理●造纸废水木质素回收及废水处理●电泳漆废水涂料回收●酸、碱废水处理回收●市政污水的处理及回用●洗车水、桑拿水、游泳池水、洗浴废水等循环处理●工业生产所用的各类软化水、纯水、超纯水制备六、生物技术●生物蛋白、多肽、酶制剂等酵液过滤澄清及精制第四部分——膜系统图片膜系统图片第四部分1、陶瓷膜系统(生物发酵液过滤除菌、中药植提浸提液过滤除杂)2、卷式膜系统(流体的过滤除杂精制及浓缩)3、中空膜系统(水处理行业预处理)吸附科技名词定义中文名称:吸附英文名称:adsorption定义:物质在两相界面上浓集的现象。所属学科:地理学(一级学科);环境地理学(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片当流体与多孔固体接触时,流体中某一组分或多个组分在固体表面处产生积蓄,此现象称为吸附。吸附也指物质(主要是固体物质)表面吸住周围介质(液体或气体)中的分子或离子现象。吸附属于一种传质过程,物质内部的分子和周围分子有互相吸引的引力,但物质表面的分子,其中相对物质外部的作用力没有充分发挥,所以液体或固体物质的表面可以吸附其他的液体或气体,尤其是表面面积很大的情况下,这种吸附力能产生很大的作用,所以工业上经常利用大面积的物质进行吸附,如活性炭、水膜等。目录&&&&概念原理吸附操作操作评价设备吸附的分类吸附的作用应用?展开编辑本段概念吸附:当流体与多孔固体接触时,流体中某一组分或多个组分在固体表面处产生积蓄,此现象称为吸附。吸附也指物质(主要是固体物质)表面吸住周围介质(液体或气体)中的分子或离子现象。吸附属于一种传质过程,物质内部的分子和周围分子有互相吸引的引力,但物质表面的分子,其中相对物质外部的作用力没有充分发挥,所以液体或固体物质的表面可以吸附其他的液体或气体,尤其是表面面积很大的情况下,这种吸附力能产生很大的作用,所以工业上经常利用大面积的物质进行吸附,如活性炭、水膜等。吸附物、吸附剂:在固体表面积蓄的组分称为吸附物或吸附质(adsorbate),多孔固体称为吸附剂(adsorbent)。广义地讲,指固体表面对气体或液体的吸着现象。固体称为吸附剂,被吸附的物质称为吸附质。根据吸附质与吸附剂表面分子间结合力的性质,可分为物理吸附和化学吸附。物理吸附由吸附质与吸附剂分子间引力所引起,结合力较弱,吸附热比较小,容易脱附,如活性炭对气体的吸附。化学吸附则由吸附质与吸附剂间的化学键所引起,犹如化学反应,吸附常是不可逆的,吸附热通常较大,如气相催化加氢中镍催化剂对氢的吸附。在化工生产中,吸附专指用固体吸附剂处理流体混合物,将其中所含的一种或几种组分吸附在固体表面上,从而使混合物组分分离,是一种属于传质分离过程的&&&&单元操作,所涉及的主要是物理吸附。吸附分离广泛应用于化工、石油、食品、轻工和环境保护等部门。编辑本段原理当液体或气体混合物与吸附剂长时间充分接触后,系统达到平衡,吸附质的平衡吸附量(单位质量吸附剂在达到吸附平衡时所吸附的吸附质量),首先取决于吸附剂的化学组成和物理结构,同时与系统的温度和压力以及该组分和其他组分的浓度或分压有关。对于只含一种吸附质的混合物,在一定温度下吸附质的平衡吸附量与其浓度或分压间的函数关系的图线,称为吸附等温线。对于压力不太高的气体混合物,惰性组分对吸附等温线基本无影响;而液体混合物的溶剂通常对吸附等温线有影响。同一体系的吸附等温线随温度而改变。温度愈高,平衡吸附量愈小。当混合物中含有几种吸附质时,各组分的平衡吸附量不同,被吸附的各组分浓度之比,一般不同于原混合物组成,即分离因子(见传质分离过程)不等于1。吸附剂的选择性愈好,愈有利于吸附分离。分离只含一种吸附质的混合物时,过程最为简单。当原料中吸附质含量很低,而平衡吸附量又相当大时,混合物与吸附剂一次接触就可使吸附质完全被吸附。吸附剂经脱附再生后循环使用,并同时得到吸附质产品。但是工业上经常遇到的一些情况,是混合物料中含有几种吸附质,或是吸附剂的选择性不高,平衡吸附量不大,若混合物与吸附剂仅进行一次接触就不能满足分离要求,或吸附剂用量太大时,须用多级的或微分接触的传质设备。编辑本段吸附操作利用某些多孔固体有选择地吸附流体中的一个或几个组分,从而使混合物分离的方法称为吸附操作,它是分离和纯净气体和液体混合物的重要单元操作之一。实际上,人们很早就发现并利用了吸附现象,如生活中用木炭脱湿和除臭等。随着新型吸附剂的开发及吸附分离工艺条件等方面的研究,吸附分离过程显示出节能、产品纯度高、可除去痕量物质、操作温度低等突出特点,使这一过程在化工、医药、食品、轻工、环保等行业得到了广泛的应用,例如:(1)气体或液体的脱水及深度干燥,如将乙烯气体中的水分脱到痕量,再聚合。(2)气体或溶液的脱臭、脱色及溶剂蒸气的回收,如在喷漆工业中,常有大量的有机溶剂逸出,采用活性炭处理排放的气体,既减少环境的污染,又可回收有价值的溶剂。(3)气体中痕量物质的吸附分离,如纯氮、纯氧的制取。(4)分离某些精馏难以分离的物系,如烷烃、烯烃、芳香烃馏分的分离。(5)废气和废水的处理,如从高炉废气中回收一氧化碳和二氧化碳,从炼厂废&&&&水中脱除酚等有害物质。编辑本段操作评价评价吸附分离的指标有:①吸附质的回收率(当吸附质是有价值的物料时)或吸附质的净化率(当吸附质是有害杂质时);②设备的操作强度,即单位设备体积所能处理的混合气体或溶液的流量;③能量消耗,包括输送物料和吸附剂的能耗,脱附时升温的热能消耗等。吸附剂的平衡吸附量和吸附选择性对吸附操作的上述指标都有决定性的影响,选用平衡吸附量大、吸附选择性高的吸附剂可以显著改善过程的经济性。此外,吸附剂的用量以及操作的温度和压力,对上述指标有重要影响,必须谨慎决定。编辑本段设备有以下类型:①吸附槽。用于吸附操作的搅拌槽,如在吸附槽中用活性白土精制油品或糖液。②固定床吸附设备。用于吸附操作的固定床传质设备,应用最广。③流化床吸附设备。吸附剂于流态化状态下进行吸附,如用流化床从硝酸厂尾气中脱除氮的氧化物。当要求吸附质回收率较高时,可采用多层流态化设备。流化床吸附容易连续操作,但物料返混及吸附剂磨损严重。④移动床吸附柱。又称超吸附柱,用于吸附中的移动床传质设备,曾用于分离烯烃的中间工厂。编辑本段吸附的分类物理吸附:也称为范德华吸附,它是吸附质和吸附剂以分子间作用力为主的吸附。化学吸附:是吸附质和吸附剂以分子间的化学键为主的吸附。物理吸附,是指吸附剂与吸附质之间是通过分子间引力(即范德华力)而产生的吸附,在吸附过程中物质不改变原来的性质,因此吸附能小,被吸附的物质很容易再脱离,如用活性炭吸附气体,只要升高温度,就可以使被吸附的气体逐出活性炭表面。化学吸附,是指吸附剂与吸附质之间发生化学作用,生成化学键引起的吸附,在吸附过程中不仅有引力,还运用化学键的力,因此吸附能较大,要逐出被吸附的物质需要较高的温度,而且被吸附的物质即使被逐出,也已经产生了化学变化,不再是原来的物质了,一般催化剂都是以这种吸附方式起作用。还有一种可以进行连续操作的分子筛,物料连续进入填充床,分子筛可以只吸附固定体积的分子,再释放,而将体积过大的分子拦住,石油气和天然气的分离经常采用这种方式。物理吸附和化学吸附并不是孤立的,往往相伴发生。在污水处理技术中,大部分的吸附往往是几种吸附综合作用的结果。由于吸附质、吸附剂及其他因素的影响,可&&&&能某种吸附是起主导作用的。编辑本段吸附的作用吸附作用是催化、脱色、脱臭、防毒等工业应用中必不可少的单元操作。在吸附的应用方面,通常在催化化学反应的进行方面应用较多,具体到工业上催化剂使用量都是很大的,多以吨计!编辑本段应用吸附操作中,吸附质在流体中的平衡浓度通常很小,吸附分离可以进行得十分完全。但由于固体吸附剂在输送、计量和控制等方面比较困难,所以仅宜于用来分离吸附质浓度很低的流体混合物。此外,也可以作为其他传质分离操作的补充,以达到组分十分完全分离的目的。对于组分挥发度很接近的料液,当精馏难以实现分离时,用吸附分离可能会经济些。目前,工业上的主要用途有:①气体和液体的深度干燥;②食品、药品、有机石油产品的脱色、脱臭;③有机异构物(如混合二甲苯)的分离;④空气分离以制取富氧空气;⑤从废水或废气中除去有害的物质等。随着新型高效吸附剂的研究和工艺过程的开发,吸附操作必将愈来愈广泛地应用于各工业生产部门。&&&&&&&& &&&&}

我要回帖

更多关于 高沸点溶剂有哪些 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信