15千瓦两极三相电机电机同心式有几种绕法

24槽、2极三相单层同心式绕组穿线、嵌线工艺
1绕组展开图 24槽、2极单层同心式绕组,在小型三相异步电动机中应用得很广泛,并且都采用了穿线、嵌线的工艺方法。这种绕组的展开图如图1所示。它是穿线、嵌线的依据。┌───────┐│甄一“’云~之 │└───────┘2线圈的绕制 一相的四个线圈是一个接一个连续绕成的。线圈与线圈之间的连接线,不经焊接,在绕线时就已经连接好了。线圈的绕制顺序是按绕组展开图中的顺序布置的。绕好线的一相线圈如图2所示。例图2加:C相自左至右为C:(小线圈、按y“2~11)C:、C3(两个大线圈、按y“1~12》和C‘(小线圈)。A相和B相的绕线方法与C相完全一样,下标号码t;的一相四个线圈绕向一致,但在展开图中3、4两线圈的绕向与1.下标县云祖与C相相对应。这样绕成的。因此,应用下述的单相穿线法,使3、4两线圈的绕向与1、、2两线圈的绕向是相反2两线圈的绕向相反。3单相穿线工艺3。13。2左侧,3 .3将图2倒置,使C‘(小线圈)在最左边,引线由C‘...&
(本文共4页)
权威出处:
当前,对生产批量很大的叠式绕组一般仍用手工嵌线,定子铁心嵌线一般在木制不可调的嵌线桌上进行,这种木桌高度是固定的,不适用于身高不同的操作者嵌线,嵌线时推动和翻转铁心很费力。转子嵌线在一对木制的支承架上进行,支承架与转轴之间的接触面积大,摩擦也大,转子铁心转动困难。木制结构强度差,操作安全不可靠。为此,设计制造了定、转子可调组合式嵌线桌,该桌适用范围广、省力、使用方便。现将该结构介绍如下。一、结构组合式嵌线桌由定子嵌线活动转盘、转子嵌线活动支承架和转椅三部分组成,见图(其中转椅部份在此省略)。各部分的结构分述如下: (1)定子嵌线桌上装有转盘,转盘和心轴连为一体,可作圆周运动和进行高度升降调节,转盘上装有两个滚轮,滚轮间距可调,间距调节范困视工件大小而定(调节范围适月jy系列Hso~315定子嵌线要求),桌旁挂有渣箩,桌面下部为工具柜, (2)转子嵌线活动支承架有2个(一对)位于定子嵌线桌旁,用铰链与定子嵌线桌上的桌架连接。每个支...&
(本文共2页)
权威出处:
国内的定子嵌线机分立式和卧式两种,均为“拉入法”嵌线。立式嵌线机为大连电机厂所采用,本刊已作介绍。下面简单报导上海跃进电机厂采用的卧式嵌线机。 嵌线机的外貌如图1。图中所示为正在嵌线的情况。图1定子嵌线机的外貌 嵌线原理:用与定子槽数相等的导指夹持导线,推头沿导指长度方向移动,从而把三相绕组拉入定槽中,即通常所说的“拉入法”嵌线。 嵌线机的主要结构有嵌线头和冲槽楔机构。 嵌线头机构主要由嵌线头(导指和推头)、槽楔箱和推槽楔座等组成,如图2所示。 嵌线机的结构示于图3。其动作过程为:冲槽楔机构把红钢纸槽楔冲入槽楔箱中,机械手把带线圈的嵌线头装在嵌线机上,定子铁心套入嵌线头并使导指伸出定子铁芯20一30毫米,推头和推槽楔座一起动作,把线圈和槽楔嵌到定子稽中。图2中表示出导指的形状。这里所用的线规是争1 .08毫米,为了减小导线在导指中的排线高度,导指间隙在设计制时控制在2.2毫米左右。 冲槽楔机构的作用,是把0 .8毫米厚的红钢纸成...&
(本文共2页)
权威出处:
一、概述 电机生产中利用手工嵌线,工时多、劳动强度大,历来是电机制造中的一大薄弱环节。 针对生产上的实际需要,我厂于去年n月份对分马力电机定子嵌线机进行了试制。经过对71一4极,56一4极,120瓦2极电机等几种产品的反复摸索和试验,使嵌线机结构、加工方法、绕组形式和嵌线工艺等方面不断得到了改进和完善。目前120瓦2极定子嵌线机已用于生产,经小批生产验证,嵌线的速度显著提高,质量也比较稳定,效果良好。 本嵌线机具有结构简单、制造容易、上马快和生产效率高的优点,不但适用于目前生产的120瓦2极三相分马力电机定子的嵌线,而且当冲片内径、槽数和槽口尺寸相同时,亦可适用于不同铁芯长度的2极及2极以上的单、三相分马力电机的定子嵌线。二、结构原理 本机的总体结构为立式,线圈拉入式。总体结构如图1。全机由导向条、顶线头(蘑菇头)、槽楔顶入装置、铁心推压机械手、油缸、液压阀体、电器操纵系统及床身等几部分组成。}—丫助-一一~一~;卜5一一二二、...&
(本文共3页)
权威出处:
目前在中小型电机制造中,嵌线大都采用手工,劳动强度大,占用工时多。为了改变这种情况,我国在1 958年就开始研制定子嵌线机。当时研究的是“直接绕嵌”法刀1962年已制成较完善的“直绕法”嵌线机。1971年又研制成较简单的“拉入法嵌线机”。在上海、大连、天津、沈阳等地相继试制推广。同时还试制了配套的绕线机、整形机、插槽绝缘机和端部绑扎机等设备。有些单位还试制了其他形式的嵌线机,例如电磁吸入法、绕嵌法、导片法嵌线机等。据不完全统计,目前已试制了嵌线机和配套设备共72台,投产使用的有48台。其中5号机坐以下的4极电机用拉入法嵌线比较成熟。现在将上海革新电机厂、大连电机厂和上海跃进电机厂应用情况简介如下: 一、上海革新电机厂从1972年便开始应用。目前已有嵌线机和配套设备共12台,生产油泵电机和分马力电机共八个规格,月产量2000台以上。 嵌线机采用拉入法嵌线。将绕好后的线圈套在导指间隙中,由推线头和槽楔推杆将线圈和槽楔拉入到定子槽中。...&
(本文共2页)
权威出处:
随着精纺面料产品更新换代,原来一色服装面料将逐渐转型。取而代之后是高支轻薄型和将不同颜色的毛纱用作嵌线交织在面料中,使精纺面料产生隐形或明显的条格,受到消费者的喜爱。嵌线顾名思义是将一根毛纱嵌在不同颜色的织物上,它的条干均匀要求很高,条干的粗节与细节或其他纱疵将会明显反映暴露出来。直接影响到面料的外观质量。如果选用涤纶嵌线,它的条干均匀度是好,但在生产应用中对织物布面容易引起吊径,并且影响呢面质量和手感风格。因此做好嵌线条干将显得更为迫切。根据嵌线特点,需从以下方面做好。1工艺设计与操作1.1由于嵌线条干均匀度要求高,首先必须保证粗纱条干CV值质量。结合车间自身生产设备优化工艺流程。同时,要考虑到牵伸倍数、并合次数、进条根数,又要预计到增加毛粒的工序。通过小样试验,对比最后确定纺纱工艺流程。1.2B412混条,B423头针,(OKK)ELE-6一针,HG-6(2C)二针,HG-6(2CW)三针,HFV-5(DAS)粗纱,FB44...&
(本文共1页)
权威出处:
扩展阅读:
CNKI手机学问
有学问,才够权威!
出版:《中国学术期刊(光盘版)》电子杂志社有限公司
地址:北京清华大学 84-48信箱 大众知识服务
互联网出版许可证 新出网证(京)字008号
京ICP证040431号
服务咨询:400-810--9993
订购咨询:400-819-9993
传真:010-三相7.5kw二极电机双层同心叠绕与单层交叉绕法有什么区别?
全部答案(共1个回答)
人认为:采用双层同心叠绕较省材料,性能较好,但嵌线较繁锁。
中心高132毫米,电机轴的直径38毫米。型号:Y132S2-2
九星市场,在漕宝路六号桥。
一& 检查机油平面用柴油机的机油尺来检查机油平面。为了得到精确的读数,机油平面应停机15分钟后,机油流回到油底壳时检查,机油尺度保持和原装的油底壳配对,尽可能地...
答: 胎心过快怎么办 可能是缺氧了,我们这边的处理方法是吸氧。
答: 考试合格啊!
答: 当前世界上有四个最大的科学难题,全球各专业的科学家都在设法揭开大自然的这些秘密,如能解开这些谜团,那么人类的生活以及对世界的看法将发生根本的变化。  一、人体基...
答:  2011年二级建造师考试时间(部分省市时间不统一)日 期
科 目6月26日  上午9:00-12:00
大家还关注
确定举报此问题
举报原因(必选):
广告或垃圾信息
激进时政或意识形态话题
不雅词句或人身攻击
侵犯他人隐私
其它违法和不良信息
报告,这不是个问题
报告原因(必选):
这不是个问题
这个问题分类似乎错了
这个不是我熟悉的地区
相关问答:123456789101112131415查看: 2874|回复: 4
双层叠绕(1-13)等效单双层同心式
阅读权限35
签到天数: 2 天连续签到: 1 天[LV.1]初来乍到
本帖最后由 范攀科 于
16:12 编辑
一下是RM5.0计算的清单和绕组数据& &
Three-Phase Induction Motor Design
File: d:/rm5/maxwell/default/223-yfr13-2wfs.pjt/223-yfr13-2wfs.res
& &&&GENERAL DATA
Given Output Power (kW): 13.4
Rated Voltage (V): 220
Winding Connection: Delta
Number of Poles: 2
Given Speed (rpm): 3550
Frequency (Hz): 60
Stray Loss (W): 130
Friction and Wind Loss (W): 0
Type of Load: Constant Power
Iron Core Length (mm):& &110
Stacking Factor of Iron Core: 0.98
Type of Steel: DW465-50
Operating Temperature (C): 25
& &&&STATOR DATA
Number of Stator Slots: 36
Outer Diameter of Stator (mm):& &223
Inner Diameter of Stator (mm):& &120
Type of Stator Slot: 2
Dimension of Stator Slot
& && &&&hs0_stator (mm):& &0.8
& && &&&hs1_stator (mm):& &0.89
& && &&&hs2_stator (mm):& &15.6
& && &&&bs0_stator (mm):& &3.2
& && &&&bs1_stator (mm):& &6.3
& && &&&bs2_stator (mm):& &8.7
Top Tooth Width (mm):& &4.46694
Bottom Tooth Width (mm):& &4.78965
Number of Conductors per Slot: 31
Number of Parallel Branches: 2
Number of Wires per Conductor: 2
Type of Coils: 21
Coil Pitch: 13
Wire Diameter (mm):& &1.15039
Wire Wrap Thickness (mm):& &0.08
Slot Insulation Thickness (mm):& &0.3
Top Free Space in Slot (%): 0
Bottom Free Space in Slot (%): 0
Conductor Length Adjustment (mm):& &15
& &&&ROTOR DATA
Number of Rotor Slots: 28
Air Gap (mm):& &1
Inner Diameter of Rotor (mm):& &37.2
Type of Rotor Slot: 1
Dimension of Rotor Slot
& && &&&hr0_top (mm):& &0.5
& && &&&hr01_top (mm):& &0.5
& && &&&hr2_top (mm):& &13.5
& && &&&br0_top (mm):& &0
& && &&&br1_top (mm):& &6.8
& && &&&br2_top (mm):& &3.8
Cast Rotor: Yes
Half Slot: No
Skew Width: 0
End Length of Bar (mm):& &0
Height of End Ring (mm):& &28
Width of End Ring (mm):& &24.5
Resistivity of Rotor Bar
&&at 75 Centigrade (ohm.mm^2/m): 0.0434
Resistivity of Rotor Ring
&&at 75 Centigrade (ohm.mm^2/m): 0.0434
& &&&MATERIAL CONSUMPTION
Armature Copper Density (kg/m^3):& &8900
Rotor Bar Material Density (kg/m^3):& &2700
Rotor Ring Material Density (kg/m^3):& &2700
Armature Core Steel Density (kg/m^3):& &7700
Rotor Core Steel Density (kg/m^3):& &7700
Armature Copper Weight (kg):& &0.779344
Rotor Bar Material Weight (kg):& &0.793172
Rotor Ring Material Weight (kg):& &1.03576
Armature Core Steel Weight (kg):& &18.4447
Rotor Core Steel Weight (kg):& &5.95851
Total Net Weight (kg):& &27.0115
Armature Core Steel Consumption (kg):& &33.0084
Rotor Core Steel Consumption (kg):& &9.38776
& &&&RATED-LOAD OPERATION
Stator Resistance (ohm): 0.307333
Stator Leakage Reactance (ohm): 0.469449
Rotor Resistance (ohm): 0.175683
Rotor Leakage Reactance (ohm): 0.845778
Resistance Corresponding to
&&Iron-Core Loss (ohm): 693.174
Magnetizing Reactance (ohm): 25.2046
Stator Phase Current (A): 24.4724
Current Corresponding to
&&Iron-Core Loss (A): 0.300421
Magnetizing Current (A): 8.26215
Rotor Phase Current (A): 22.0188
Copper Loss of Stator Winding (W): 552.182
Copper Loss of Rotor Winding (W): 255.528
Iron-Core Loss (W): 187.682
Friction & Wind Loss (W): 0
Stray Loss (W): 130
Input Power (kW): 14.5706
Output Power (kW): 13.4452
Mechanical Shaft Torque (N.m): 36.3423
Efficiency (%): 92.2763
Power Factor: 0.894057
Rated Slip: 0.0186507
Rated Shaft Speed (rpm): 3532.86
& &&&NO-LOAD OPERATION
No-Load Stator Resistance (ohm): 0.307333
No-Load Stator Leakage Reactance (ohm): 0.469641
No-Load Rotor Resistance (ohm): 0.175675
No-Load Rotor Leakage Reactance (ohm): 6.26332
No-Load Stator Phase Current (A): 8.57058
No-Load Iron-Core Loss (W): 201.67
No-Load Input Power (W): 406.642
No-Load Power Factor: 0.0489063
No-Load Slip: 9.1
No-Load Shaft Speed (rpm): 3599.97
& &&&BREAK-DOWN OPERATION
Break-Down Slip: 0.23
Break-Down Torque (N.m): 152.933
Break-Down Torque Ratio: 4.20812
Break-Down Phase Current (A): 160.837
& &&&LOCKED-ROTOR OPERATION
Locked-Rotor Torque (N.m): 85.0987
Locked-Rotor Phase Current (A): 236.482
Locked-Rotor Torque Ratio: 2.34159
Locked-Rotor Current Ratio: 9.66322
Locked-Rotor Stator Resistance (ohm): 0.307333
Locked-Rotor Stator
&&Leakage Reactance (ohm): 0.447622
Locked-Rotor Rotor Resistance (ohm): 0.19655
Locked-Rotor Rotor
&&Leakage Reactance (ohm): 0.340939
& &&&DETAILED DATA AT RATED OPERATION
Stator Slot Leakage Reactance (ohm): 0.159972
Stator End-Winding Leakage
&&Reactance (ohm): 0.252672
Stator Differential Leakage
&&Reactance (ohm): 0.0568046
Rotor Slot Leakage Reactance (ohm): 0.659622
Rotor End-Winding Leakage
&&Reactance (ohm): 0.0453581
Rotor Differential Leakage
&&Reactance (ohm): 0.140841
Skewing Leakage Reactance (ohm): 0
Slot Fill Factor (%): 73.7693
Stator Winding Factor: 0.866563
Stator-Teeth Flux Density (Tesla): 1.63267
Rotor-Teeth Flux Density (Tesla): 1.73181
Stator-Yoke Flux Density (Tesla): 1.45928
Rotor-Yoke Flux Density (Tesla): 1.33858
Air-Gap Flux Density (Tesla): 0.686458
Stator-Teeth Ampere Turns (A.T): 56.8828
Rotor-Teeth Ampere Turns (A.T): 103.086
Stator-Yoke Ampere Turns (A.T): 55.5302
Rotor-Yoke Ampere Turns (A.T): 3.50544
Air-Gap Ampere Turns (A.T): 641.401
Correction Factor for Magnetic
&&Circuit Length of Stator Yoke: 0.505594
Correction Factor for Magnetic
&&Circuit Length of Rotor Yoke: 0.314028
Saturation Factor for Teeth: 1.24941
Saturation Factor for Teeth & Yoke: 1.34145
Induced-Voltage Factor: 0.946562
Stator Current Density (A/mm^2): 5.88621
Specific Electric Loading (A/mm): 36.2226
Stator Thermal Load (A^2/mm^3): 213.214
Rotor Bar Current Density (A/mm^2): 3.98674
Rotor Ring Current Density (A/mm^2): 2.47535
Half-Turn Length of
&&Stator Winding (mm):& &377.455
& &&&WINDING ARRANGEMENT
The 3-phase, 2-layer winding can be arranged in 36 slots as below:
AAAAAAZZZZZZBBBBBBXXXXXXCCCCCCYYYYYY
Angle per slot (elec. degrees): 10
Phase-A axis (elec. degrees): 89.8383
First slot center (elec. degrees): 0
& &&&TRANSIENT FEA INPUT DATA
For one phase of the Stator Winding:
&&Number of Turns: 186
&&Parallel Branches: 2
&&Terminal Resistance (ohm): 0.307333
&&End Leakage Inductance (H): 0.
For Rotor End Ring Between Two Bars of One Side:
&&End Ring Resistance (ohm): 5.2
&&End Ring Leakage Inductance (H): 1.0
&&Skew Leakage Inductance (H): 0
2D Equivalent Value:
&&Equivalent Air-Gap Length (mm): 110
&&Equivalent Stator Stacking Factor: 0.98
&&Equivalent Rotor Stacking Factor: 0.98
Estimated Rotor Inertial Moment (kg m^2): 0.0163311
RM5.0双层叠绕计算清单
Three-Phase Induction Motor Design
File: d:/rm5/maxwell/default/223-yfr13-2wfs-dengxiao-ys.pjt/223-yfr13-2wfs-dengxiao-ys.res
& &&&GENERAL DATA
Given Output Power (kW): 13.4
Rated Voltage (V): 220
Winding Connection: Delta
Number of Poles: 2
Given Speed (rpm): 3550
Frequency (Hz): 60
Stray Loss (W): 130
Friction and Wind Loss (W): 0
Type of Load: Constant Power
Iron Core Length (mm):& &110
Stacking Factor of Iron Core: 0.98
Type of Steel: DW465-50
Operating Temperature (C): 25
& &&&STATOR DATA
Number of Stator Slots: 36
Outer Diameter of Stator (mm):& &223
Inner Diameter of Stator (mm):& &120
Type of Stator Slot: 2
Dimension of Stator Slot
& && &&&hs0_stator (mm):& &0.8
& && &&&hs1_stator (mm):& &0.89
& && &&&hs2_stator (mm):& &15.6
& && &&&bs0_stator (mm):& &3.2
& && &&&bs1_stator (mm):& &6.3
& && &&&bs2_stator (mm):& &8.7
Top Tooth Width (mm):& &4.46694
Bottom Tooth Width (mm):& &4.78965
Number of Conductors per Slot: 31
Number of Parallel Branches: 2
Number of Wires per Conductor: 2
Type of Coils: 20
Coil Pitch: 13
Wire Diameter (mm):& &1.15039
Wire Wrap Thickness (mm):& &0.08
Slot Insulation Thickness (mm):& &0.3
Top Free Space in Slot (%): 0
Bottom Free Space in Slot (%): 0
Conductor Length Adjustment (mm):& &15
& &&&ROTOR DATA
Number of Rotor Slots: 28
Air Gap (mm):& &1
Inner Diameter of Rotor (mm):& &37.2
Type of Rotor Slot: 1
Dimension of Rotor Slot
& && &&&hr0_top (mm):& &0.5
& && &&&hr01_top (mm):& &0.5
& && &&&hr2_top (mm):& &13.5
& && &&&br0_top (mm):& &0
& && &&&br1_top (mm):& &6.8
& && &&&br2_top (mm):& &3.8
Cast Rotor: Yes
Half Slot: No
Skew Width: 0
End Length of Bar (mm):& &0
Height of End Ring (mm):& &28
Width of End Ring (mm):& &24.5
Resistivity of Rotor Bar
&&at 75 Centigrade (ohm.mm^2/m): 0.0434
Resistivity of Rotor Ring
&&at 75 Centigrade (ohm.mm^2/m): 0.0434
& &&&MATERIAL CONSUMPTION
Armature Copper Density (kg/m^3):& &8900
Rotor Bar Material Density (kg/m^3):& &2700
Rotor Ring Material Density (kg/m^3):& &2700
Armature Core Steel Density (kg/m^3):& &7700
Rotor Core Steel Density (kg/m^3):& &7700
Armature Copper Weight (kg):& &0.779344
Rotor Bar Material Weight (kg):& &0.793172
Rotor Ring Material Weight (kg):& &1.03576
Armature Core Steel Weight (kg):& &18.4447
Rotor Core Steel Weight (kg):& &5.95851
Total Net Weight (kg):& &27.0115
Armature Core Steel Consumption (kg):& &33.0084
Rotor Core Steel Consumption (kg):& &9.38776
& &&&RATED-LOAD OPERATION
Stator Resistance (ohm): 0.307333
Stator Leakage Reactance (ohm): 0.402194
Rotor Resistance (ohm): 0.0776728
Rotor Leakage Reactance (ohm): 0.350375
Resistance Corresponding to
&&Iron-Core Loss (ohm): 284.788
Magnetizing Reactance (ohm): 2.48528
Stator Phase Current (A): 78.6217
Current Corresponding to
&&Iron-Core Loss (A): 0.638698
Magnetizing Current (A): 73.1884
Rotor Phase Current (A): 24.8667
Copper Loss of Stator Winding (W): 5699.22
Copper Loss of Rotor Winding (W): 144.088
Iron-Core Loss (W): 348.525
Friction & Wind Loss (W): 0
Stray Loss (W): 130
Input Power (kW): 19.7314
Output Power (kW): 13.4096
Mechanical Shaft Torque (N.m): 35.9523
Efficiency (%): 67.9606
Power Factor: 0.377747
Rated Slip: 0.0106309
Rated Shaft Speed (rpm): 3561.73
& &&&NO-LOAD OPERATION
No-Load Stator Resistance (ohm): 0.307333
No-Load Stator Leakage Reactance (ohm): 0.402206
No-Load Rotor Resistance (ohm): 0.0776717
No-Load Rotor Leakage Reactance (ohm): 0.723826
No-Load Stator Phase Current (A): 75.705
No-Load Iron-Core Loss (W): 372.876
No-Load Input Power (W): 5794.17
No-Load Power Factor: 0.113362
No-Load Slip: 5.1
No-Load Shaft Speed (rpm): 3599.98
& &&&BREAK-DOWN OPERATION
Break-Down Slip: 0.14
Break-Down Torque (N.m): 175.296
Break-Down Torque Ratio: 4.8758
Break-Down Phase Current (A): 217.112
& &&&LOCKED-ROTOR OPERATION
Locked-Rotor Torque (N.m): 70.0901
Locked-Rotor Phase Current (A): 336.292
Locked-Rotor Torque Ratio: 1.94953
Locked-Rotor Current Ratio: 4.27734
Locked-Rotor Stator Resistance (ohm): 0.307333
Locked-Rotor Stator
&&Leakage Reactance (ohm): 0.395609
Locked-Rotor Rotor Resistance (ohm): 0.0869011
Locked-Rotor Rotor
&&Leakage Reactance (ohm): 0.137815
& &&&DETAILED DATA AT RATED OPERATION
Stator Slot Leakage Reactance (ohm): 0.108977
Stator End-Winding Leakage
&&Reactance (ohm): 0.252672
Stator Differential Leakage
&&Reactance (ohm): 0.0405451
Rotor Slot Leakage Reactance (ohm): 0.298961
Rotor End-Winding Leakage
&&Reactance (ohm): 0.0200543
Rotor Differential Leakage
&&Reactance (ohm): 0.0313569
Skewing Leakage Reactance (ohm): 0
Slot Fill Factor (%): 73.7693
Stator Winding Factor: 0.576204
Stator-Teeth Flux Density (Tesla): 2.1434
Rotor-Teeth Flux Density (Tesla): 2.27355
Stator-Yoke Flux Density (Tesla): 2.04234
Rotor-Yoke Flux Density (Tesla): 1.8734
Air-Gap Flux Density (Tesla): 0.901195
Stator-Teeth Ampere Turns (A.T): 880.408
Rotor-Teeth Ampere Turns (A.T): 1780.31
Stator-Yoke Ampere Turns (A.T): 1465.24
Rotor-Yoke Ampere Turns (A.T): 96.8263
Air-Gap Ampere Turns (A.T): 842.043
Correction Factor for Magnetic
&&Circuit Length of Stator Yoke: 0.197321
Correction Factor for Magnetic
&&Circuit Length of Rotor Yoke: 0.148464
Saturation Factor for Teeth: 4.15983
Saturation Factor for Teeth & Yoke: 6.01493
Induced-Voltage Factor: 0.826788
Stator Current Density (A/mm^2): 18.9105
Specific Electric Loading (A/mm): 116.371
Stator Thermal Load (A^2/mm^3): 2200.64
Rotor Bar Current Density (A/mm^2): 2.99377
Rotor Ring Current Density (A/mm^2): 1.85882
Half-Turn Length of
&&Stator Winding (mm):& &377.455
& &&&WINDING ARRANGEMENT
Average coil pitch is: 13.6452
Angle per slot (elec. degrees): 10
Phase-A axis (elec. degrees): 85
First slot center (elec. degrees): 0
& &&&TRANSIENT FEA INPUT DATA
For one phase of the Stator Winding:
&&Number of Turns: 186
&&Parallel Branches: 2
&&Terminal Resistance (ohm): 0.307333
&&End Leakage Inductance (H): 0.
For Rotor End Ring Between Two Bars of One Side:
&&End Ring Resistance (ohm): 5.2
&&End Ring Leakage Inductance (H): 1.0
&&Skew Leakage Inductance (H): 0
2D Equivalent Value:
&&Equivalent Air-Gap Length (mm): 110
&&Equivalent Stator Stacking Factor: 0.98
&&Equivalent Rotor Stacking Factor: 0.98
Estimated Rotor Inertial Moment (kg m^2): 0.0163311
同心式等效计算清单
[两种就变了跨距为什么性能差别这么大呢?
西莫电机论坛会员交流专用群欢迎您加群请注明论坛用户名及所从事专业,否则不予通过
该用户从未签到
借贵地问一个问题,因为我实在是找不到其它方式询问了,希望楼主不要介意。
我想发贴,但一直让我选择主题类别,找了半天找不到,是在哪里啊!
西莫电机论坛会员交流专用群欢迎您加群请注明论坛用户名及所从事专业,否则不予通过
阅读权限20
该用户从未签到
& & 在你的帖子主题的右边。
西莫电机论坛会员交流专用群欢迎您加群请注明论坛用户名及所从事专业,否则不予通过
阅读权限10
签到天数: 2 天连续签到: 2 天[LV.1]初来乍到
楼主的清单看上去太费劲,从概念上分析,单层同心式绕组与双层叠绕组的绕组系数不同,单层同心式的Kdp要大,另外二者端部长度不同,单层同心式端部要长,因此,电阻、电感参数会大不同。
西莫电机论坛会员交流专用群欢迎您加群请注明论坛用户名及所从事专业,否则不予通过
阅读权限25
签到天数: 94 天连续签到: 1 天[LV.6]常住居民II
多多学习,多多进步啊
西莫电机论坛会员交流专用群欢迎您加群请注明论坛用户名及所从事专业,否则不予通过
Powered by您的位置: >
来源:  作者:张琴琴;陈莉;刘阿宁;杨香蕊;
空心杯电机斜绕组与同心式绕组性能分析  0引言空心杯电机属于永磁直流伺服电机,它的结构特点在于电枢铁心上没有齿和槽,这种新颖的结构与等同条件下的齿槽电机相比具有输出功率密度大,转矩波动小,电气时间常数小,体积小、重量轻,转子转动惯量小,无齿槽效应,提高了电机的快速响应性能,使电机的运转特性得到了极大改善,具备了齿槽电机所无法达到的控制和拖动特性。因此,空心杯电机的应用越来越广泛。空心杯电机绕组电枢杯类型有多种:盘式绕组、直绕组、斜绕组、同心式绕组、叠绕组等。斜绕组以其绕线工艺简单易操作被广泛应用,国外两大知名空心杯电机生产公司德国某公司和瑞士某公司均采用斜绕组电枢杯,采用先进的绕线工艺技术,采用自动化设备一次性绕制成型,合格率100%,绕组杯平整度,一致性很好。近几年,瑞士某公司同时研发使用同心式绕组电枢杯,并号称该同心式绕组结构电机为“世界上最大功率密度电机”,同心式绕组电枢杯电机体积小、重量轻,可输出更大转矩的EC-POWER电机,国内尚未查到任何类似产品投入市场。本文分析了德国某公司和瑞士某公司斜绕组电枢杯的结构和工艺流程,重点剖析了瑞士某公司新提出的同心式绕组电枢杯的结构,从理论角度对绕组的切割磁场的有效长度、同样匝(本文共计3页)          
相关文章推荐
看看这些杂志对你有没有帮助...
单期定价:6.40元/期全年定价:5.12元/期 共61.40元
      }

我要回帖

更多关于 电机线圈绕线机 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信