盾结构的主要结构和电磁炉工作原理和结构?

 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
盾构机的构造与工作原理
下载积分:3000
内容提示:盾构机的构造与工作原理
文档格式:PPT|
浏览次数:1|
上传日期: 05:25:51|
文档星级:
该用户还上传了这些文档
盾构机的构造与工作原理
官方公共微信【图文】盾构机的构造工作原理_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
盾构机的构造工作原理
上传于||暂无简介
大小:16.17MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
泥水盾工作原理讲解.ppt41页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
文档加载中...广告还剩秒
需要金币:300 &&
你可能关注的文档:
··········
··········
2、气垫仓内问题处理 气垫仓内条件恶劣,处理困难 常见的问题: 泥浆门问题:泄漏、异常损坏 碎石机问题:泄漏、淤塞、管路损坏、异常损坏 传感器问题:工作不正常、损坏 原 因: 管路磨损 安装质量 保护管路泄漏
措 施: 预防:严格试运转和防护和固定,并认真检查管路和连接情况,并对油缸进行加压试验。 处理:关闭泥浆门,创造常压处理故障的条件:特殊情况为泄漏量大和泄漏量小时 带压进仓:
3、管片破损 症状:转弯半径为800m时,管片破损严重 原因:盾壳失圆 处理措施: 管片拼装点位选择 掘进姿态控制 4、注浆控制 症状:管路堵塞,清理困难 原因:注浆配比及其原材料质量 地质原因 措施:优化配比、严格材料进场 掌握管理清洗技巧 5、泥浆循环操作技巧 管路堵塞:掘进时流量变小 措施:降低掘进速度;提高掘进流速;提高浆液粘度
管路冲击:症状是震动和爆管 措施:减小流量变化速度 管路磨损和损坏:症状是管漏和破裂 措施:减少软管数量 增加弯头外弧厚度 管路分配:症状是堵管 措施:合理分配管路 6、泥浆质量控制 比重控制 比重控制:理论进浆比重1.05~1.25,出浆比重1.1~1.4 武汉进浆比重,粘土段1.15 ~1.25之间,粗砂段1.07 ~1.17之间,比重有点偏高。 比重偏高的影响主要是泵的负荷增大、泵阀的磨损加快。 原因:分离设备分离极限达不到;废浆排放的成本考虑和环境受限;沉淀效果不理想。 措施:优化沉淀效果和分离能力 优化掘进速度
粘度控制: 理论要求粘度要达到18s(漏斗粘度)以上。 武汉实际粘度17s左右。 主要影响:泥浆的携渣能力差;泥膜质量较差; 原因:粘度高,影响分离设备效果,比重更高,比重和粘度进行折中考虑 措施:提高分离效率
正在加载中,请稍后...35536人阅读
一般硬盘正面贴有产品标签,主要包括厂家信息和产品信息,如商标、型号、序列号、生产日期、容量、参数和主从设置方法等。这些信息是正确使用硬盘的基本依据,下面将逐步介绍它们的含义。
硬盘主要由盘体、控制电路板和接口部件等组成,如图1-1所示。盘体是一个密封的腔体。硬盘的内部结构通常是指盘体的内部结构;控制电路板上主要有硬盘BIOS、硬盘缓存(即CACHE)和主控制芯片等单元,如图1-2所示;硬盘接口包括电源插座、数据接口和主、从跳线,如图1-3所示。
图1-1 硬盘的外观
图1-2 控制电路板
图1-3 硬盘接口
电源插座连接电源,为硬盘工作提供电力保证。数据接口是硬盘与主板、内存之间进行数据交换的通道,使用一根40针40线(早期)或40针80线(当前)的IDE接口电缆进行连接。新增加的40线是信号屏蔽线,用于屏蔽高速高频数据传输过程中的串扰。中间的主、从盘跳线插座,用以设置主、从硬盘,即设置硬盘驱动器的访问顺序。其设置方法一般标注在盘体外的标签上,也有一些标注在接口处,早期的硬盘还可能印在电路板上。
此外,在硬盘表面有一个透气孔(见图1-1),它的作用是使硬盘内部气压与外部大气压保持一致。由于盘体是密封的,所以,这个透气孔不直接和内部相通,而是经由一个高效过滤器和盘体相通,用以保证盘体内部的洁净无尘,使用中注意不要将它盖住。
1.2 硬盘的内部结构
硬盘的内部结构通常专指盘体的内部结构。盘体是一个密封的腔体,里面密封着磁头、盘片(磁片、碟片)等部件,如图1-4所示。
图1-4 硬盘内部结构
硬盘的盘片是硬质磁性合金盘片,片厚一般在0.5mm左右,直径主要有1.8in(1in=25.4mm)、2.5in、3.5in和5.25in 4种,其中2.5in和3.5in盘片应用最广。盘片的转速与盘片大小有关,考虑到惯性及盘片的稳定性,盘片越大转速越低。一般来讲,2.5in硬盘的转速在5 400 r/min~7 200 r/ min之间;3.5in硬盘的转速在4 500 r/min~5 400 r/min之间;而5.25in硬盘转速则在3 600 r/min~4 500 r/min之间。随着技术的进步,现在2.5in硬盘的转速最高已达15 000 r/min,3.5in硬盘的转速最高已达12 000 r/min。
有的硬盘只装一张盘片,有的硬盘则有多张盘片。这些盘片安装在主轴电机的转轴上,在主轴电机的带动下高速旋转。每张盘片的容量称为单碟容量,而硬盘的容量就是所有盘片容量的总和。早期硬盘由于单碟容量低,所以,盘片较多,有的甚至多达10余片,现代硬盘的盘片一般只有少数几片。一块硬盘内的所有盘片都是完全一样的,不然控制部分就太复杂了。一个牌子的一个系列一般都用同一种盘片,使用不同数量的盘片,就出现了一个系列不同容量的硬盘产品。
盘体的完整构造如图1-5所示。
图1-5 盘体的完整结构
硬盘驱动器采用高精度、轻型磁头驱动/定位系统。这种系统能使磁头在盘面上快速移动,可在极短的时间内精确地定位在由计算机指令指定的磁道上。目前,磁道密度已高达5 400Tpi(每英寸磁道数)或更高;人们还在研究各种新方法,如在盘上挤压(或刻蚀)图形、凹槽和斑点等作为定位和跟踪标记,以提高到和光盘相等的道密度,从而在保持磁盘机高速度、高位密度和高可靠性的优势下,大幅度提高存储容量。
硬盘驱动器内的电机都是无刷电机,在高速轴承支持下机械磨损很小,可以长时间连续工作。高速旋转的盘体产生明显的陀螺效应,所以,在硬盘工作时不宜搬动,否则,将增加轴承的工作负荷。为了高速存储和读取信息,硬盘驱动器的磁头质量小,惯性也小,所以,硬盘驱动器的寻道速度明显快于软驱和光驱。
硬盘驱动器磁头与磁头臂及伺服定位系统是一个整体。伺服定位系统由磁头臂后的线圈和固定在底板上的电磁控制系统组成。由于定位系统限制,磁头臂只能在盘片的内外磁道之间移动。因此,不管开机还是关机,磁头总在盘片上;所不同的是,关机时磁头停留在盘片启停区,开机时磁头“飞行”在磁盘片上方。
硬盘上的数据是如何组织与管理的呢?硬盘首先在逻辑上被划分为磁道、柱面以及扇区,其结构关系如图1-6所示。
图1-6 磁头、柱面和扇区
每个盘片的每个面都有一个读写磁头,磁盘盘面区域的划分如图1-7所示。磁头靠近主轴接触的表面,即线速度最小的地方,是一个特殊的区域,它不存放任何数据,称为启停区或着陆区(Landing Zone),启停区外就是数据区。在最外圈,离主轴最远的地方是“0”磁道,硬盘数据的存放就是从最外圈开始的。那么,磁头是如何找到“0”磁道的位置的呢?从图1-5中可以看到,有一个“0”磁道检测器,由它来完成硬盘的初始定位。“0”磁道是如此的重要,以致很多硬盘仅仅因为“0”磁道损坏就报废,这是非常可惜的。这种故障的修复技术在后面的章节中有详细的介绍。
图1-7 硬盘盘片的启停区和数据区
早期的硬盘在每次关机之前需要运行一个被称为Parking的程序,其作用是让磁头回到启停区。现代硬盘在设计上已摒弃了这个虽不复杂却很让人不愉快的小缺陷。硬盘不工作时,磁头停留在启停区,当需要从硬盘读写数据时,磁盘开始旋转。旋转速度达到额定的高速时,磁头就会因盘片旋转产生的气流而抬起,这时磁头才向盘片存放数据的区域移动。盘片旋转产生的气流相当强,足以使磁头托起,并与盘面保持一个微小的距离。这个距离越小,磁头读写数据的灵敏度就越高,当然对硬盘各部件的要求也越高。早期设计的磁盘驱动器使磁头保持在盘面上方几微米处飞行。稍后一些设计使磁头在盘面上的飞行高度降到约0.1μm~0.5μm,现在的水平已经达到0.005μm~0.01μm,这只是人类头发直径的千分之一。气流既能使磁头脱离开盘面,又能使它保持在离盘面足够近的地方,非常紧密地跟随着磁盘表面呈起伏运动,使磁头飞行处于严格受控状态。磁头必须飞行在盘面上方,而不是接触盘面,这种位置可避免擦伤磁性涂层,而更重要的是不让磁性涂层损伤磁头。但是,磁头也不能离盘面太远,否则,就不能使盘面达到足够强的磁化,难以读出盘上的磁化翻转(磁极转换形式,是磁盘上实际记录数据的方式)。
硬盘驱动器磁头的飞行悬浮高度低、速度快,一旦有小的尘埃进入硬盘密封腔内,或者一旦磁头与盘体发生碰撞,就可能造成数据丢失,形成坏块,甚至造成磁头和盘体的损坏。所以,硬盘系统的密封一定要可靠,在非专业条件下绝对不能开启硬盘密封腔,否则,灰尘进入后会加速硬盘的损坏。另外,硬盘驱动器磁头的寻道伺服电机多采用音圈式旋转或直线运动步进电机,在伺服跟踪的调节下精确地跟踪盘片的磁道,所以,硬盘工作时不要有冲击碰撞,搬动时要小心轻放。
这种硬盘就是采用温彻斯特(Winchester)技术制造的硬盘,所以也被称为温盘。其结构特点如下。
①磁头、盘片及运动机构密封在盘体内。
②磁头在启动、停止时与盘片接触,在工作时因盘片高速旋转,带动磁头“悬浮”在盘片上面呈飞行状态(空气动力学原理),“悬浮”的高度约为0.1μm~0.3μm,这个高度非常小,图1-8标出了这个高度与头发、烟尘和手指印的大小比较关系,从这里可以直观地“看”出这个高度有多“高”。
图1-8 盘片结构及磁头高度示意图
③磁头工作时与盘片不直接接触,所以,磁头的加载较小,磁头可以做得很精致,检测磁道的能力很强,可大大提高位密度。
④磁盘表面非常平整光滑,可以做镜面使用。
下面对“盘面”、“磁道”、“柱面”和“扇区”的含义逐一进行介绍。
硬盘的盘片一般用铝合金材料做基片,高速硬盘也可能用玻璃做基片。玻璃基片更容易达到所需的平面度和光洁度,且有很高的硬度。磁头传动装置是使磁头部件作径向移动的部件,通常有两种类型的传动装置。一种是齿条传动的步进电机传动装置;另一种是音圈电机传动装置。前者是固定推算的传动定位器,而后者则采用伺服反馈返回到正确的位置上。磁头传动装置以很小的等距离使磁头部件做径向移动,用以变换磁道。
硬盘的每一个盘片都有两个盘面(Side),即上、下盘面,一般每个盘面都会利用,都可以存储数据,成为有效盘片,也有极个别的硬盘盘面数为单数。每一个这样的有效盘面都有一个盘面号,按顺序从上至下从“0”开始依次编号。在硬盘系统中,盘面号又叫磁头号,因为每一个有效盘面都有一个对应的读写磁头。硬盘的盘片组在2~14片不等,通常有2~3个盘片,故盘面号(磁头号)为0~3或0~5。
磁盘在格式化时被划分成许多同心圆,这些同心圆轨迹叫做磁道(Track)。磁道从外向内从0开始顺序编号。硬盘的每一个盘面有300~1 024个磁道,新式大容量硬盘每面的磁道数更多。信息以脉冲串的形式记录在这些轨迹中,这些同心圆不是连续记录数据,而是被划分成一段段的圆弧,这些圆弧的角速度一样。由于径向长度不一样,所以,线速度也不一样,外圈的线速度较内圈的线速度大,即同样的转速下,外圈在同样时间段里,划过的圆弧长度要比内圈划过的圆弧长度大。每段圆弧叫做一个扇区,扇区从“1”开始编号,每个扇区中的数据作为一个单元同时读出或写入。一个标准的3.5in硬盘盘面通常有几百到几千条磁道。磁道是“看”不见的,只是盘面上以特殊形式磁化了的一些磁化区,在磁盘格式化时就已规划完毕。
所有盘面上的同一磁道构成一个圆柱,通常称做柱面(Cylinder),每个圆柱上的磁头由上而下从“0”开始编号。数据的读/写按柱面进行,即磁头读/写数据时首先在同一柱面内从“0”磁头开始进行操作,依次向下在同一柱面的不同盘面即磁头上进行操作,只在同一柱面所有的磁头全部读/写完毕后磁头才转移到下一柱面,因为选取磁头只需通过电子切换即可,而选取柱面则必须通过机械切换。电子切换相当快,比在机械上磁头向邻近磁道移动快得多,所以,数据的读/写按柱面进行,而不按盘面进行。也就是说,一个磁道写满数据后,就在同一柱面的下一个盘面来写,一个柱面写满后,才移到下一个扇区开始写数据。读数据也按照这种方式进行,这样就提高了硬盘的读/写效率。
一块硬盘驱动器的圆柱数(或每个盘面的磁道数)既取决于每条磁道的宽窄(同样,也与磁头的大小有关),也取决于定位机构所决定的磁道间步距的大小。更深层的内容请参考其他书籍,限于篇幅,这里不再深入介绍。
操作系统以扇区(Sector)形式将信息存储在硬盘上,每个扇区包括512个字节的数据和一些其他信息。一个扇区有两个主要部分:存储数据地点的标识符和存储数据的数据段,如图1-9所示。
图1-9 硬盘扇区的构成
标识符就是扇区头标,包括组成扇区三维地址的三个数字:扇区所在的磁头(或盘面)、磁道(或柱面号)以及扇区在磁道上的位置即扇区号。头标中还包括一个字段,其中有显示扇区是否能可靠存储数据,或者是否已发现某个故障因而不宜使用的标记。有些硬盘控制器在扇区头标中还记录有指示字,可在原扇区出错时指引磁盘转到替换扇区或磁道。最后,扇区头标以循环冗余校验(CRC)值作为结束,以供控制器检验扇区头标的读出情况,确保准确无误。
扇区的第二个主要部分是存储数据的数据段,可分为数据和保护数据的纠错码(ECC)。在初始准备期间,计算机用512个虚拟信息字节(实际数据的存放地)和与这些虚拟信息字节相应的ECC数字填入这个部分。
扇区头标包含一个可识别磁道上该扇区的扇区号。有趣的是,这些扇区号物理上并不连续编号,它们不必用任何特定的顺序指定。扇区头标的设计允许扇区号可以从1到某个最大值,某些情况下可达255。磁盘控制器并不关心上述范围中什么编号安排在哪一个扇区头标中。在很特殊的情况下,扇区还可以共用相同的编号。磁盘控制器甚至根本就不管数据区有多大,只管读出它所找到的数据,或者写入要求它写的数据。
给扇区编号的最简单方法是l,2,3,4,5,6等顺序编号。如果扇区按顺序绕着磁道依次编号,那么,控制器在处理一个扇区的数据期间,磁盘旋转太远,超过扇区间的间隔(这个间隔很小),控制器要读出或写入的下一扇区已经通过磁头,也许是相当大的一段距离。在这种情况下,磁盘控制器就只能等待磁盘再次旋转几乎一周,才能使得需要的扇区到达磁头下面。
显然,要解决这个问题,靠加大扇区间的间隔是不现实的,那会浪费许多磁盘空间。许多年前,IBM的一位杰出工程师想出了一个绝妙的办法,即对扇区不使用顺序编号,而是使用一个交叉因子(interleave)进行编号。交叉因子用比值的方法来表示,如3﹕1表示磁道上的第1个扇区为1号扇区,跳过两个扇区即第4个扇区为2号扇区,这个过程持续下去直到给每个物理扇区编上逻辑号为止。例如,每磁道有17个扇区的磁盘按2﹕1的交叉因子编号就是:l,10,2,11,3,12,4,13,5,14,6,15,7,16,8,17,9,而按3﹕1的交叉因子编号就是:l,7,13,2,8,14,3,9,15,4,10,16,5,11,17,6,12。当设置1﹕l的交叉因子时,如果硬盘控制器处理信息足够快,那么,读出磁道上的全部扇区只需要旋转一周;但如果硬盘控制器的后处理动作没有这么快,磁盘所转的圈数就等于一个磁道上的扇区数,才能读出每个磁道上的全部数据。将交叉因子设定为2﹕1时,磁头要读出磁道上的全部数据,磁盘只需转两周。如果2﹕1的交叉因子仍不够慢,磁盘旋转的周数约为磁道的扇区数,这时,可将交叉因子调整为3﹕1,如图1-10所示。
图1-10 不同交叉因子的效果示例
图1-10所示的是典型的MFM(Modified Frequency Modulation,改进型调频制编码)硬盘,每磁道有17个扇区,画出了用三种不同的扇区交叉因子编号的情况。最外圈的磁道(0号柱面)上的扇区用简单的顺序连续编号,相当于扇区交叉因子是1﹕1。1号磁道(柱面)的扇区按2﹕1的交叉因子编号,而2号磁道按3﹕1的扇区交叉因子编号。
早期的硬盘管理工作中,设置交叉因子需要用户自己完成。用BIOS中的低级格式化程序对硬盘进行低级格式化时,就需要指定交叉因子,有时还需要设置几种不同的值来比较其性能,而后确定一个比较好的值,以期硬盘的性能较好。现在的硬盘BIOS已经自己解决这个问题,所以,一般低级格式化程序不再提供这一选项设置。
系统将文件存储到磁盘上时,按柱面、磁头、扇区的方式进行,即最先是第1磁道的第一磁头下(也就是第1盘面的第一磁道)的所有扇区,然后,是同一柱面的下一磁头,……,一个柱面存储满后就推进到下一个柱面,直到把文件内容全部写入磁盘。系统也以相同的顺序读出数据。读出数据时通过告诉磁盘控制器要读出扇区所在的柱面号、磁头号和扇区号(物理地址的三个组成部分)进行。磁盘控制器则直接使磁头部件步进到相应的柱面,选通相应的磁头,等待要求的扇区移动到磁头下。在扇区到来时,磁盘控制器读出每个扇区的头标,把这些头标中的地址信息与期待检出的磁头和柱面号做比较(即寻道),然后,寻找要求的扇区号。待磁盘控制器找到该扇区头标时,根据其任务是写扇区还是读扇区,来决定是转换写电路,还是读出数据和尾部记录。找到扇区后,磁盘控制器必须在继续寻找下一个扇区之前对该扇区的信息进行后处理。如果是读数据,控制器计算此数据的ECC码,然后,把ECC码与已记录的ECC码相比较。如果是写数据,控制器计算出此数据的ECC码,与数据一起存储。在控制器对此扇区中的数据进行必要处理期间,磁盘继续旋转。由于对信息的后处理需要耗费一定的时间,在这段时间内,磁盘已转了相当的角度。
交叉因子的确定是一个系统级的问题。一个特定硬盘驱动器的交叉因子取决于:磁盘控制器的速度、主板的时钟速度、与控制器相连的输出总线的操作速度等。如果磁盘的交叉因子值太高,就需多花一些时间等待数据在磁盘上存入和读出。如果交叉因子值太低,就会大大降低磁盘性能。
前面已经述及,系统在磁盘上写入信息时,写满一个磁道后转到同一柱面的下一个磁头,当柱面写满时,再转向下一柱面。从同一柱面的一个磁道到另一个磁道,从一个柱面转到下一个柱面,每一个转换都需要时间,在此期间磁盘始终保持旋转,这就会带来一个问题:假定系统刚刚结束对一个磁道前一个扇区的写入,并且已经设置了最佳交叉因子比值,现在准备在下一磁道的第一扇区写入,这时,必须等到磁头转换好,让磁头部件重新准备定位在下一道上。如果这种操作占用的时间超过了一点,尽管是交叉存取,磁头仍会延迟到达。这个问题的解决办法是以原先磁道所在位置为基准,把新的磁道上全部扇区号移动约一个或几个扇区位置,这就是磁头扭斜。磁头扭斜可以理解为柱面与柱面之间的交叉因子,已由生产厂设置好,用户一般不用去改变它。磁头扭斜的更改比较困难,但是,它们只在文件很长、超过磁道结尾进行读出和写入时才发挥作用,所以,扭斜设置不正确所带来的时间损失比采用不正确的扇区交叉因子值带来的损失要小得多。交叉因子和磁头扭斜可用专用工具软件来测试和更改。更具体的内容这里就不再详述,毕竟现在很多用户都没有见过这些参数。
扇区号存储在扇区头标中,扇区交叉因子和磁头扭斜的信息也存放在这里。最初,硬盘低级格式化程序只是行使有关磁盘控制器的专门职能来完成设置任务。由于这个过程可能破坏低级格式化的磁道上的全部数据,也极少采用。
扇区交叉因子由写入到扇区头标中的数字设定,所以,每个磁道可以有自己的交叉因子。在大多数驱动器中,所有磁道都有相同的交叉因子。但有时因为操作上的原因,也可能导致各磁道有不同的扇区交叉因子。如在交叉因子重置程序工作时,由于断电或人为中断,就会造成一些磁道的交叉因子发生了改变,而另一些磁道的交叉因子没有改变。这种不一致性对计算机不会产生不利影响,只是有最佳交叉因子的磁道要比其他磁道的工作速度更快。
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:40294次
排名:千里之外
评论:12条盾构机构造及工作原理简介(一);伴随着2012年我司在新行业拓展上的力度不断加大;下面,本文会通过盾构机的起源及发展史、盾构机在中;一、盾构机的起源和发展史;盾构发明于19世纪初期,首先应用于开挖英国伦敦泰;布鲁诺尔构想的盾构机机械内部结构由不同的单元格组;另一种方法是每一个单元格能单独地向;前推进;1825年,他第一次在伦敦泰晤土河下开始用一个断;泰晤士河
盾构机构造及工作原理简介(一)
伴随着2012年我司在新行业拓展上的力度不断加大,轨道交通这个名词也越来越多的出现在公司会议及公告中。而盾构机作为我司进入轨道交通行业的切入点,在我司的发展战略中占据着重要地位。那么盾构机究竟是一种什么样的设备呢?盾构机是如何工作的呢?而我们港迪电气的产品在盾构机这样一个大型设备中又起到了什么作用呢?
下面,本文会通过盾构机的起源及发展史、盾构机在中国的发展历程、盾构机概述、盾构机的构造及工作原理、盾构机上的电力系统,中国盾构机的现状及发展前景六个方面来介绍盾构机的产生与发展,并逐渐解答上述问题。
一、盾构机的起源和发展史
盾构发明于19世纪初期,首先应用于开挖英国伦敦泰晤士河水底隧道。1818年,法国的布鲁诺尔(M.I.Brune1)从蛀虫钻孔得到启示,最早提出了用盾构法建设隧道的设想,并在英国取得专利。下图为布鲁诺尔注册专利的盾构。
布鲁诺尔构想的盾构机机械内部结构由不同的单元格组成,每一个单元格可 容纳一个工人独立工作并对工人起到保护作用。采用的方法是将所有的单元格牢 靠地装在盾壳上。当时布鲁诺尔设计了两种方法,一种是当一段隧道挖完后,整个盾壳由液压千斤顶借助后靠向前推进;
另一种方法是每一个单元格能单独地向
前推进。(第一种方法后来被采用,并得到了推广应用,演变为成熟的盾构法)。 此后,布鲁诺尔逐步完善了盾构结构的机械系统,设计成用全断面螺旋式开挖的封闭式盾壳,衬彻紧随其后的方式。
1825年,他第一次在伦敦泰晤土河下开始用一个断面高6.8m、宽11.4m,并由12个邻接的框架组成的矩形盾构修建隧道。如下图,第一台用于隧道施工的盾构机,其每一个框架分成3个舱,每一个舱里有一个工人,共有36个工人。
泰晤士河下的隧道工程施工期间遇到了许多困难,在经历了五次以上的特大洪水后,直到1843年,经过18年施工,才完成了全长458m的第一条盾构法隧道。
1830年,英国的罗德发明“气压法”辅助解决隧道涌水。
1865年,英国的布朗首次采用圆形盾构和铸铁管片,1869年用圆形盾构在泰吾士河下修建外径2.2m的隧道。
1866年,莫尔顿申请“盾构”专利。盾构最初称为小筒(cell)或圆筒(cylinder),在莫尔顿专利中第一次使用了“盾构” ( shield )这一术语。
年,工程师格瑞海德发现在强渗水性的地层中很难用压缩空气支撑隧
道工作面,因此开发了用液体支撑隧道工作面的盾构,通过液体流,以泥浆的形式出土。
1876年英国人约翰?荻克英森?布伦敦和姬奥基?布伦敦申请第一个机械化盾构专利。这台盾构有一个由几块板构成的半球形的旋转刀盘,开挖的土料落入径向装在刀盘上的料斗中,料斗将渣料转运至胶带输送机上,再将它转运到后面从盾构中运出,这一构想后来被用于修建地铁隧道工程。
1886年,格瑞海德在伦敦地下施工中将压缩空气方法与盾构掘进相组合使用,在压缩空气条件下施工,标志着在承压水地层中掘进隧道的一个重大进步,20世纪初,大多数隧道都是采用格瑞海德盾构法修建的。
1917年,日本引进盾构施工技术,是欧美国家以外第一个引进盾构的国家。 1963年,土压平衡盾构首先由日本Sato Kogyo公司(佐藤工业)开发出来。下图为当时设计的土压平衡盾构示意图。
1974年第一台土压平衡盾构在东京被采用。该盾构由日本制造商IHI(石川岛播磨)设计,其外径3.72m,掘进了1900m的主管线。
在以后的年代里,很多厂商以土压盾构、压力保持盾构、软泥盾构、土壤压力盾构、泥压盾构等名称生产了“土压平衡盾构”。所有这些名称的盾构都应有了同一种工法国际上称为“土压平衡系统”(EPBS)。
年,日本最引人注目的泥水盾构隧道工程开工。东京湾海底隧道长
10km,是世界最长公路专用海底隧道,用八台直径14.14m泥水加压式盾构施工。
1992年,日本研制成世界上第一台三圆泥水加压式盾构(由3个直径7.8m的刀头构成,总长17.3m),并成功地用于大阪市地铁7号线“商务公园站”车站工程施工。
二、我国盾构机的发展历程
纵观我国盾构法隧道的发展历程,大体上可以分为以下三个阶段:
(1)起步阶段(20世纪60年代-80年代初):
1962年2月,我国上海市城建局隧道处开始塘桥试验隧道工程。采用直径
4.16m的一台普通敞胸盾构在两种有代表性的地层下进行掘进试验,用降水或气压来稳定粉砂层及软粘土地层。选用由螺栓连接的单层钢筋混疑土管片作为隧道衬砌,环氧煤焦油作为接缝防水材料。试验获得成功,采集了大量盾构法隧道数据资料。
(2)平稳发展阶段(20世纪80年代中-2000年):
1962年2月,我国上海市城建局隧道处开始塘桥试验隧道工程。采用直径
4.16m的一台普通敞胸盾构在两种有代表性的地层下进行掘进试验,用降水或气压来稳定粉砂层及软粘土地层。选用由螺栓连接的单层钢筋混疑土管片作为隧道衬砌,环氧煤焦油作为接缝防水材料。试验获得成功,采集了大量盾构法隧道数据资料。
(3)快速发展阶段
进入21世纪,随着国家经济、技术的迅猛发展为地铁建设带来了重大机遇,同时也为盾构技术应用和发展提供了广阔的平台和空间。国家有关部门已经规定人口在300万以上、GDP值在1000亿以上、年财政收入在100亿以上的城市均可以建地铁。目前我国正处于轨道交通建设的繁荣时期,中国已经成为世界上最大的城市轨道交通市场。同时,盾构机在越江道路、输气和市政排水隧洞等工程中也得到了广泛应用。
三、盾构机概述
盾构机是掘进机的一种类型,其全称为盾构隧道掘进机,是在钢壳体保护下完成隧道掘进、拼装作业,由主机和后配套组成的机电一体化设备。其名称是由“盾构”和“隧道掘进机”组合而成。其中“隧道掘进机”说明该设备是一种隧
道掘进的专用工程机械,而“盾构”二字则来源于盾构法施工。盾构法施工是利用盾构进行隧道开挖,衬砌等作业的施工方法,其中盾构指的是一种带有护罩的专用设备,利用尾部已装好的衬砌块作为支点向前推进,用刀盘切割土体,同时排土和拼装后面的预制混凝土衬砌块。
为适应各种不同的土质,所以盾构的种类繁多。按其构造特点和开挖方法,可归纳为以下四类:敞口式盾构、普通闭胸式盾构、普通挤压式盾构、TBM硬岩盾构。其中敞口式盾构或称普通盾构、普通闭胸式盾构或称普通挤压式盾构(半机械化盾构)以及TBM硬岩盾构在本司的产品中尚未涉及,因此不作详述,下面主要了解一下机械式闭胸盾构。
在盾构的切口环和支承环间设密封隔墙,使形成密封舱,在密封舱内通入压缩空气,用气压稳定开挖面土体,这种盾构机称之为局部气压盾构。局部气压盾构的优点是操作人员可在常压下工作。但由于出土装置、盾尾密封装置和衬砌接缝间的漏气等技术上的难题不易解决,故使用不多。
而正面密封舱中设泥浆或泥浆加气压平衡装置的称泥水平衡盾构、泥水加压式平衡盾构。泥水加压式盾构是在局部气压盾构基础上发展而成。在局部气压盾构的密封舱内通入泥水以代替压缩空气,利用泥水压力来稳定开挖面土体,同时避免盾尾和衬砌接缝等处产生漏气。盾构掘进时,转动开挖面大刀盘以切削土层,切削下来的土可利用泥水通过管道送往地面处理,从而解决了密封舱内的连续出土问题。由于泥水盾构既能抵抗地下水压,又无压缩空气的泄漏和喷发问题,故对隧道埋深的适应性较大;弃土可采用管道输送,安全可靠,效率较高。缺点是配套设备较多,施工费用和设备投资较高。泥水加压式盾构适用于冲积形成砂砾、砂、粉砂、粘土层、弱固结的互层地基以及含水率高开挖面不稳定的地层;洪积形成的砂砾、砂、粉砂、粘土层以及含水很高固结松散易于发生涌水破坏的地层,是一种适用于多种土质条件的盾构型式。但是对于难以维持开挖面稳定性的高透水性地基、砾石地基,有时也要考虑采用辅助施工方法。
包含各类专业文献、专业论文、应用写作文书、高等教育、行业资料、外语学习资料、生活休闲娱乐、文学作品欣赏、57盾构机构造及工作原理简介(一)_图文等内容。 
 盾构机构造及工作原理简介(一)_电力/水利_工程科技_专业资料。盾构机构造及工作原理简介(一) 伴随着 2012 年我司在新行业拓展上的力度不断加大,轨道交通这个名词...  盾构法隧道的基本原理是用一件有形的盾构机构造及工作原理简介(二) 四、盾构机的主控系统及工作原理下图是天地重工生产的土压平衡盾构机示意图, 通过这台土压...  盾构机构造及工作原理简介(三)_电力/水利_工程科技_专业资料。盾构机构造及工作原理简介(三) 五、盾构机的辅控系统及工作原理盾构机的功能单元及其相应的控制系统...  盾构机构造及工作原理简介(四) 前文中已经介绍了盾构机上的各种主控、辅控设备及系统,这些设备和系统 一般都安装于靠前即靠近盾体的台车上, 但还有一个重要的...  盾构机结构( EPB 总体结构图)盾构是一个具备多种功能于一体的综合性隧洞开挖...电磁 流量阀 、泡沫发生器、 压力传感器、管路组 成, 其工作原理如图 所示。 ...  盾构机构造及工作原理 1.盾构机的发展历史 盾构机作为修建地下隧道的一种设备,...4.3.1、刀盘驱动密封、集中润滑系统:前面已介绍 4.3.2、盾尾密封及油脂注入...  盾构机的基本工作原理就是一个圆柱体的钢组件沿隧 ...使用大刀盘的盾构,机械构造复 杂,消耗动力较大。...盾构机的工作原理介绍 9页 免费 泥水式盾构机发展概况...  盾构机结构( EPB 总体结构图)盾构是一个具备多种功能于一体的综合性隧洞开挖...电磁 流量阀 、泡沫发生器、 压力传感器、管路组 成, 其工作原理如图 所示。 ...  第二章 挖掘机的基本构造及工作原理第一节 概述 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、...}

我要回帖

更多关于 电磁炉工作原理和结构 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信