橡胶铁是不是重金属天然高分子化合物

您的举报已经提交成功,我们将尽快处理,谢谢!
不属于,天然油脂是混合物,其中有甘油等其它杂质。
酚醛树脂是苯酚和甲醛缩聚成的。是高分子聚合物。
高分子化合物包括蛋白质,脂类,糖等分子质量比较大的。
标准答案是:由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
通俗地说,有机高分子化合物包括纤维素、蛋白质、蚕丝、橡胶、淀粉...
二、高分子化合物的作用
高分子化合物是分子量大的化合物,也称高聚物。如纤维素、蛋白质、蚕丝、橡胶、淀粉等天然高分子化合物,以及以高聚物为基础的合成材料,如...
混合物,高分子化合物具体每一个分子量都很大,但每个分子量又不一样,所以高分子化合物是混合物
油脂皮肤调理的5个基础步骤
1、清洁:选择性质温和清爽的洗面奶,不仅可以洗净皮肤油脂还能够清除化妆品残余和灰尘,洗脸的顺序,先清洁额头和鼻翼,然后是下巴和两...
大家还关注下列物质中,属于高分子化合物的是(  )
B.天然橡胶
D.硬脂酸甘油酯
E.硬脂酸甘油酯
A.酶是蛋白质,蛋白质是生物体组织的基本组成部分,相对分子质量可高达几百万,为天然高分子化合物,故A正确;B.天然橡胶是聚异戊二烯,由异戊二烯加聚形成的,是天然高分子化合物,故B正确;C.淀粉是多糖,相对分子质量在一万以上,为天然高分子化合物,故C正确;D.硬脂酸甘油酯相对分子质量为890较小,不是高分子化合物,故D错误;E.硬脂酸甘油酯相对分子质量为890较小,不是高分子化合物,故E错误;故选ABC.
试题“下列物质中,属于高分子化合物的是(  )
A....”;主要考察你对
等知识点的理解。
When do people usually eat dinner?
Most young people find
exciting to watch a football match.
A. it B. this C. that D. one
根据含义提示完成句子。1. One of my classmates is going to be a policeman when he _____ _____ (长大).2. I"d be very _____
_____ _____
(非常想听听) your opinion.3. In those days, people all _____
(过着艰苦的干活).4. Lots of people are _____
_____ (做兼职工作) jobs now.5. Our purpose is to do _____
(更多) things but use _____
(较少) time.
高考全年学习规划
该知识易错题
该知识点相似题
高考英语全年学习规划讲师:李辉
更多高考学习规划:
客服电话:400-676-2300
京ICP证050421号&京ICP备号 &京公安备110-1081940& 网络视听许可证0110531号
旗下成员公司下列属于天然高分子化合物的是(  )A. 淀粉B. 蛋白质C. 塑料D. 顺丁橡胶
fvYK43YH31
A.淀粉(C6H10O5)n,植物的光合作用把二氧化碳和水合成淀粉和氧气,它的相对分子质量在10000万以上,所以它是天然高分子化合物,故A正确;B.蛋白质是生物体一切组织的基本组成部分,氨基酸为构成蛋白质的基本结构单元,蛋白质相对分子质量可高达几百万,为天然高分子化合物,故B正确;C.塑料是由合成树脂制成的,是一种合成有机高分子材料,故C错误;D.顺丁橡胶是1,3丁二烯发生加聚反应生成的高聚物,属于有机合成材料,故D错误;故选AB.
为您推荐:
其他类似问题
高分子化合物(又称高聚物)一般相对分子质量高于10000,结构中有重复的结构单元;有机高分子化合物可以分为天然有机高分子化合物(如淀粉、纤维素、蛋白质天然橡胶等)和合成有机高分子化合物(如聚乙烯、聚氯乙烯等),据此即可解答.
本题考点:
有机高分子化合物的结构和性质.
考点点评:
本题考查了天然高分子化合物,注意式量的大小和天然是解题的关键,平时须注意基础知识的积累掌握.难度较小.
扫描下载二维码高中化学 天然高分子化合物是什么
简称天然高分子.相对于合成高分子而言,是自然界或矿物中由生化作用或光合作用而形成高分子化合物.存在于动物、植物或矿物内.例如纤维素、淀粉、蛋白质、木质素、天然橡胶、石棉、云母等.常含有其他高分子物质或矿物杂质.可用物理和化学方法净化、加工或改性.广泛用于工业、农业、交通运输业、国防和人民生活中.参见高分子化合物.天然高分子化合物都是混合物.
为您推荐:
其他类似问题
扫描下载二维码高分子化合物_百度百科
高分子化合物
(macromolecular compound):所谓化合物,是指那些由众多或原子团主要以结合而成的相对在一万以上的化合物。由千百个原子彼此以结合形成特别大、具有重复结构单元的化合物。(可分为无机高分子化合物和)是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、等。大多数高分子的相对在一万到百万之间,其分子链是由许多简单的通过重复连接而成。一般把相对分子质量高于10000的分子称为高分子。高分子通常由10^3~10^5个原子以共价键连接而成。由于高分子多是由通过聚合反应而制得的,因此也常被称为或,用于聚合的小分子则被称为“”。举例:纤维素、蛋白质、、橡胶、淀粉等,以及以高聚物为基础的,如各种塑料,,、涂料与等。可以分为天然有机高分子化合物(如、、、、顺丁橡胶等)和合成有机高分子化合物(如、、等等),它们的相对分子质量可以从几万直到几百万或更大,但他们的化学组成和结构比较简单,往往是由无数(n)结构小单元以重复的方式排列而成。
高分子化合物性质
高分子化合物(又称)的分子比低分子的分子大得多。一般有机化合物的不超过1000,而高分子化合物的相对分子质量可高达104~106万。由于高分子化合物的相对分子质量很大,所以在物理、化学和力学性能上与有很大差异。
高分子化合物的相对分子质量虽然很大,但组成并不复杂,它们的分子往往都是由特定的通过共价键多次重复连接而成。
同一种高分子化合物的分子链所含的链节数并不相同,所以高分子化合物实质上是由许多链节结构相同
高分子化合物
而聚合度不同的化合物所组成的混合物,其相对分子质量与聚合度都是平均值。
高分子化合物几乎无,常温下常以固态或液态存在。固态高聚物按其可分为和。前者分子排列规整有序;而后者分子排列无规则。同一种高分子化合物可以兼具和两种结构。大多数的都是非晶态结构。
组成的原子之间是以共价键相结合的,高分子链一般具有链型和体型两种不同的。
当今世界上作为材料使用的大量高分子化合物,是以煤、石油、天然气等为起始原料制得低分子有机化合物,再经聚合反应而制成的。这些低分子化合物称为“单体”,由它们经而生成的高分子化合物又称为。通常将聚合反应分为加成聚合和缩合聚合两类,简称加聚和。
由一种或多种单体相互加成,结合为高分子化合物的反应,叫做。在该反应过程中没有产生其他,生成的聚合物的化学组成与单体的基本相同。
是指由一种或多种单体互相缩合生成高聚物,同时析出其他低分子化合物(如水、氨、醇、卤化氢等)的反应。缩聚反应生成的高聚物的化学组成与单体的不同。高分子从相对分子质量到组成,从结构到性能,从合成到应用,都有其自身的规律。为了合成它、利用它,需先建立一些必要的基本概念。
高分子化合物分类
高分子化合物的种类很多,主要分类方法有如下四种:
按来源分类
可把高分子分成和两大类。
按材料的性能分
可把高分子分成、和三大类。
塑料按其热熔性能又可分为(如聚乙烯、聚氯乙烯等)和(如、环氧树脂
、不饱和聚酯树脂等)两大类。前者为线型结构的高分子,受热时可以软化和流动,可以反复多次塑化成型,次品和废品可以回收利用,再加工成产品。后者为的高分子,一经成型便发生固化,不能再加热软化,不能反复加工成型,因此,次品和废品没有回收利用的价值。塑料的共同特点是有较好的(尤其是体形结构的高分子),作使用。
纤维又可分为和。后者又可分为人造纤维(如粘胶纤维、纤维等)和合成纤维(如、等)。人造纤维是用(如短棉绒、竹、木、毛发等)经化学加工处理、抽丝而成的。合成纤维是用低分子原料合成的。纤维的特点是能抽丝成型,有较好的强度和挠曲性能,作使用。
橡胶包括天然胶和合成橡胶。橡胶的特点是具有良好的高弹性能,作弹性材料使用。
按用途分类:
可分为通用高分子,高分子,,仿生高分子,,高分子药物,高分子试剂,高分子催化剂和等。
塑料中的“四烯”(聚乙烯、、聚氯乙烯和),纤维中的“四纶”(、涤纶、和),橡胶中的“四胶”(、顺丁橡胶、和乙丙橡胶)都是用途很广的高分子材料,为通用高分子。
工程塑料是指具有特种性能(如耐高温、耐辐射等)的高分子材料。如、聚碳酸酯、聚砚、、聚芳醚、聚芳和含氟高分子、含硼高分子等都是较成熟的品种,已广泛用作工程材料。
、感光性高分子、高分子试剂和高分子催化剂等都属功能高分子。
医用高分子、药用高分子在医药上和生理卫生上都有特殊要求,也可以看作是功能高分子。
可分为碳链高分子、、和无机高分子四大类。
碳链高分子的主链是由联结而成的。
杂链高分子的主链除碳原子外,还含有氧、氮、硫等其他元素,如:如、、等。易水解。
元素有机高分子主链由碳和、氮、硫等以外其他元素的原子组成,如、氧、、钛、等元素,但是有机基团,如聚硅氧烷等。
无机高分子是主链和侧链基团均由或基团构成的。天然如云母,水晶等,合成无机高分子如玻璃。
高分子化合物的系统命名比较复杂,实际上很少使用,习惯上天然高分子常用俗名。合成高分子则通常按制备方法及原料名称来命名,如用加聚反应制得的高聚物,往往是在原料名称前面加个“聚”字来命名。例如,氯乙烯的聚合物称为聚氯乙烯,的聚合物称为聚苯乙烯等。如用缩聚反应制得的高聚物,则大多数是在简化后的原料名称后面加上“树脂”二字来命名。例如,酚醛树脂、等。在未制成制品前也常有“树脂”来称呼。例如,,聚乙烯树脂等。此外,在商业上常给高分子物质以商品名称。例如,纤维称为尼龙—6,纤维称为涤纶,纤维称为腈纶等
高分子化合物特点
高分子同低分子比较,具有如下几个特点:
高分子的相对分子质量很大,具有“多分散性”。大多数高分子都是由一种或几种单体聚合而成。
通常低分子的相对分子质量是在一千以下,而高分子的相对分子质量是在五千以上,因此,相对分子质量很大是高分子化合物的特征,是高分子同低分子最根本的区别,亦是高分子物质具有各种独特性能,如比重小、强度大,具有高弹性和可塑性等的基本原因。至于相对分子质量介于一千至五千之间的物质是属低分子还是属高分子,这要由它们的物理机械性能来决定。一般来说,高分子化合物具有较好的强度和弹性。而低分子化合物则没有,也就是说,其相对分子质量必须达到其物理机械性能方面与低分子化合物具有明显差别时,才能称为高分子化合物。
高分子的相对分子质量虽然很大,但其化学组成一般都比较简单,常由许多相同的链节以共价键重复结合而成高分子链。例如,聚是由许多氯乙烯分子聚合而成的:
像氯乙烯这样聚化合物的低分子化合物称为单体。组成高分子链的重复结构单位(如—CH2—CHCI—)称为链节。链节数目n称为聚合度。因此,高分子的相对分子质量=聚合度×链节量。
应该指出,合成高分子的技术还不可能象在生物体内合成蛋白质那样严格、精确——具有一定的顺序、结构和相对分子质量,所以,合成的的总是不同的,也就是说,同一种合成的高分子化合物中各个分子的相对分子质量大小总是不同的(当然,合成的蛋白质如胰岛素是例外)。因此,合成高分子化合物实际上是相对分子质量大小不同的同系混合物。我们讲的高分子化合物的相对分子质量指的是平均,聚合度也是平均聚合度。高分子化合的中相对分子质量大小不等的现象称为高分子的多分散性(即)。这种现象在低分子中不存在,但对高分子化合物的性能却有很大的影响。相对分子质量和分散性问题都是合成高分子时必须注意控制的一个问题。
高分子的基本上只有两种,一种是线型结构,另一种
高分子化合物
是体型结构。线型结构的特征是分子中的原子以共价键互相连结成一条很长的卷曲状态的“链”(叫分子链)。的特征是分子链与分子链之间还有许多交联起来,形成三度空间的网络结构。这两种不同的结构,性能上有很大的差异。
高分子由于其相对分子质量很大,通常都处于固体或凝胶状态,有较好的机械强度;又由于其分子是由结合而成的,故有较好的绝缘性和耐腐蚀性能;由于其分子链很长,分子的长度与直径之比大于一千,故有较好的可塑性和高弹性。高弹性是高聚物独有的性能。此外,溶解性、熔融性、溶液的行为和结晶性等方面和低分子也有很大的差别。一般来说,高分子的分散性越大,性能越差。
以上几点,归根结底是高分子的运动形态和低分子的运动形态不同的缘故。这就是高分子要从普通有机化学中独立出来研究,成为一门新学科——的根本原因。
高分子化合物制备
高分子的合成
合成高分子化合物最基本的反应有两类:一类叫(简称缩聚反应),另一类叫加成聚合反应(简称加聚反应)。这两类合成反应的单体结构、聚合机理和具体实施方法都不同。
缩聚反应指具有两个或两个以上官能团的单体,相互缩合并产生小分子副(水、醇、氨、卤化氢等)而生成高分子化合物的聚合反应。如:
单体中对苯二甲酸和乙二醇各有两个官能团,生成大分子时,向两个方向延伸,得到的是。
苯酚和甲醛虽然是单官能团化合物,但它们反应的初步产物是多官能团的,这些多官能团分子缩聚成线型或体型的高聚物,即树酯。
加聚反应是指由一种或两种以上单体化合成高聚物的反应,在反应过程中没有低分子物质生成,生成的高聚物与原料物质具有相同的化学组成,其相对分子质量为原料相对分子质量的整改数倍,仅由一种单体发生的加聚反应称为均聚反应。例如,氯合成聚氯乙烯:
由两种以上单体共同聚合称为共聚反应。例如,苯乙烯与甲基酸甲酯共聚:
共聚产物称为共聚物,其性能往往优于均聚物。因此,通过共聚方法可以改善产品性能。
加聚反应具有如下两个特点:
(1)加聚反应所用的单体是带有双键或叁键的不饱和键和化合物。例如,乙烯、丙烯、氯乙烯、苯乙烯、、甲酯等,者是常用的重要单体,加聚反应发生在不饱和键上。
(2)加聚反应是通过一连串的单体分子间的互相加成反应来完成的:
而且反应一旦发生,便以连锁反应方式很快进行下去得到高分子化合物(通常称为加聚物)。相对分子质量增长几乎与时间无关,但单体则随同时间而增大。
上述两个特点就是加聚反应和缩聚反应最基本的区别。
加聚反应根据反应活性中心的不同可以分为加聚反应和离子型加聚反应两大类。
高分子化合物结构
高分子化合物分子的大小对影响很小,一个,不管它在小分子中或大分子中,都会起反应。大分子与小分子的不同,主要在于它的,而高分子之所以能用作材料,也正是由于这些物理性质。下面简要讨论高分子的结构与物理性能的关系。
高分子的分子结构可以分为两种基本类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物。第二种是,具有这种结构的高分子化合物称为体型高分子化合物。此外,有些高分子是带有的,称为支链高分子,也属于线型结构范畴。有些高分子虽然分子链间有交联,但交联较少,这种结构称为,属体型结构范畴。
在线型结构(包括带有支链的)高分子物质中有独立的大分子存在,这类高聚物的溶剂中或在加热下,大分子可以彼此分离开来。而在体形结构(分子链间大量交联的)的高分子物质中则没有独立的大分子存在,因而也没有相对分子质量的意义,只有的意义。交联很少的网状结构高分子物质也可能被分离的大分子存在(犹如一张张“鱼网”仍可以分开一样)。
应该指出,上述两种基本结构实际上是对高分子的分子模型的直观模拟,而分子的真实精细结构除了少数(如定向聚合物)外,一般并不清楚。
两种不同的结构,表现出相反的性能。(包括结构)高聚物由于有独立的分子存在,故具有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。高聚物由于没有独立大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。因此从结构上看,橡胶只能是线型结构或交联很少的网状结构的高分子,纤维也只能是线型的高分子,而塑料则两种结构的高分子都有。
高分子化合物的聚集状态
高聚物的性能不仅与高分子的相对分子质量和分子结构有关,也和分子间的互相关系,即聚集状态有关。同属的高聚物,有的具有高弹性(如天然橡胶),有的则表现出很坚硬(如聚苯乙烯),就是由于它们的聚集状态不同的缘故。即使是同一种高聚物由于聚集状态不同,性能也会有很大的差别,例如,化学纤维在制造过程中必须经过拉伸,就是为了改变聚物内部分子的聚集状态,使其分子链排列得整齐一些,从而提高分子间的吸引力,使制品强度更好。所以研究高聚物的聚集状态是了解高聚物结构与性能关系的又一个重要方面。
晶相高聚物和非晶相高聚物
从结晶状态来看,线型结构的高聚物有晶相的和非晶相的。晶相高聚物由于其内部分子排列很有规律,分子间的作用力较大,故其耐热性和都比非晶相的高,熔限较窄。非晶相高聚物没有一定的熔点,耐热性能和机械强度都比晶相的低,由于高分子的分子链很长,要使分子链间的每一部分都作有序排列是很困难的,因此,高聚物都属于非晶相或部分结晶的。部分结晶高聚物的结晶性区域称为;微晶的多少称为。例如,常见的聚氯乙烯、天然橡胶、纤维等高聚物都是属于线型非晶相的高聚物。只有少数是得到的,如聚乙烯、聚苯乙烯等是部分晶相的。部分晶相的高聚物是由晶相的微晶部分镶嵌于无定形部分中而成的。纤维的拉伸目的就是使高聚物的无定形部分排列得更规整一些,或使原来方向不一的微晶顺着纤维方向伸直排列。分子一旦较规整地排列后,就增强了分子间的吸引力,使其不能恢复到原来的无序状态。如果分子间的吸引力不够大,拉伸后仍能恢复到无定形状态,那就是弹性体(如橡胶)。主要的合成纤维如(尼龙)其分子链是由拉在一起的;(腈纶)和聚酯的分子间有强烈的偶极-偶极吸引。这就是说,作为纤维,其分子间必须有较强的吸引力。由于晶相高聚物,具有熔点高、强度大的性能,给我们指出了提高合成材料机械强度的一个重要方向。
体型结构的高聚物,例如,、环氧树脂等,由于分子链间有大量的交联,分子链不可能产生有序排列,因而都是非晶相的,对于少量交联的网状高聚物,因其交联少,链段间也可能产生局部的有序排列,但这种局部的有序排列,其分子间的吸引力不足以保持在这种状态,而容易恢复到原来的无序状态。所以橡胶硫化(少量)后,仍能保持良好弹性。
线型非晶相高聚物的聚集状态
线型非晶相高聚物具有三种不同的物理状态:、高弹态和粘流态。犹如低分子物质具有三态(固态、液态和气态)一样,但是高聚物的三态和低分子的三态本质是不同的。橡胶和聚氯乙烯等塑料都是线型非晶相高聚物,但橡胶具有很好的弹性,而塑料则表现出良好的硬度,其原因就是由于它们在室温下所处的状态不同的缘故。塑料所处的状态是玻璃态,橡胶所处的状态是,把高聚物加热到熔融时所处的状态就是。玻璃态的特征是很困难,硬度大;高弹态的特征是形变很容易,具有高弹性;粘流态的特征是形变能任意发生,具有流动性。这三种物理状态,随着温度的变化可互相转化:
这就是说,随着温度的变化,材料所处的状态和性能也会发生改变。塑料加热到一定温度时,就会从玻璃态过渡到,失去塑料原有的性能,而出现橡胶高弹性能。温度继续升高到一定程度时,又会从高弹态进一步过渡到粘流态,对橡胶来说,如果把温度降低到足够低时,它就会从高弹态过渡到,失去橡胶的弹性,而变得象塑料一样坚硬。这就告诉我们,应用时,必须注意其使用温度范围,否则,便不能发挥材料本身应有的性能。例如,只能在温度75℃以下使用。因为高于此温度时便会失去其应有的强度,而表现出柔软而富有弹性,温度再高时(175℃)便熔融了。又如天然橡胶要在—73℃至122℃的温度范围内才有高弹性也是这个道理,因为低于—73℃时,失去弹性变得象塑料一样坚硬,高于122℃时便熔融了。
从聚集状态的研究可知线型结构的塑料、纤维橡胶之间并没有绝对的界限,温度改变,三态可以相互转化。线型结构的塑料与纤维之间更没有本质上的区别。例如,尼龙—6加工成板材或管材等结构材料就是塑料,拉成丝就是纤维。注意,这里所说的三态的相互转变并不是“”。
体型结构的高聚物,因分子链间有大量交联,因此只有一种聚集状态——玻璃态,加热到足够高温时,便发生分解。
综上所述,要了解高聚物的基本性能(高弹性、可塑性和机械强度、硬度等),必须从高聚物的组成、相对分子质量、分子结构和聚集状态几个方面去分析。塑料之所以形变困难,有较好的机械强度,是因为它是线型或的高聚物,并且在室温下分子链和都不能发生运动的缘故。橡胶之所以有很好的弹性,是因为它是线型或交联很少的高聚物,并且在室温下分子链不能运动,而链段运动容易发生的缘故。}

我要回帖

更多关于 天然橡胶分子量 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信