一元二次方程求解问题一下这题第二问要怎么分析和这个电路要怎么分析

2014年西南交通大学西南交大电路分析考研全套资料真题笔记
400-000-3682& 辅导班QQ:
2014年西南交通大学西南交大电路分析考研全套资料真题笔记
一、真题及真题解析
(1)年西南交通大学电路分析试题,2011年电路分析一试题;
(2)年西南交通大学电路分析试题解析,2011年电路分析一试题解析;第一手资料,非常清晰;特别说明,此次答案已经全新修订,步骤详尽,而且非常规范;目前市场上流传的版本非常不规范,步骤不完善,而且字迹潦草,部分题目解题思路也存在问题;
(3)年西南交通大学电路分析二试题;
(4)年西南交通大学电路分析二试题解析;第一手资料,非常工整;
(5)2012年西南交通大学电路分析一和二真题及解析;该部分内容属于后续资料,从以往的经验来看2012年10月份以后就能够提供,当然这是建立在学校依然公布真题的前提下,否则我们亦无法提供;
(6)西南交通大学电路分析总结(状元心得)
二、电路分析复习指南
简介:遵循电路分析 谭永霞
第二版,介绍了重难点,制定了作业题(交大老师隋唐布置的题目),更加难能可贵的是,古德书店开发了电路分析 谭永霞 第二版
习题全解(使用过第二版教材的都知道,第二版在第一版基础上增加了大量题目,这极有可能是考察重点),最后还附带了本科生教学大纲(仅供参考)。
第一章 电路的基本概念及基本定律
1-1 实际电路与电路模型(基础知识,掌握)
基本物理量与参考方向(基础知识,掌握;参考方向,需意会)
1-3 电阻、电感和电容元件(基础知识,掌握)
1-4 独立电源(基础知识,掌握)
1-5 受控电源(题目中常出现,理解)
1-6 基尔霍夫定律(KVL、KCL,重要,熟记)
作业一 1-1&
1-2& 1-3& 1-4&
1-6& 1-7& 1-9&
第二章 电阻电路的等效变换
2-1 电阻的串联与并联(熟记串并联特点)
电阻的三角形(Δ)连接与星形(Y)连接(熟记两者相互变化的规则)
电路的串联、并联(要能正确合并电源、准确判断多余元件)
2-4 电源的等效变换(熟记等效变换的规则)
作业二 2-1&
2-2& 2-3& 2-5&
2-7& 2-8& 2-9&
2-10& 2-11& 2-14
线性电路的基本分析方法(重点掌握支路电流、节点电压、网孔电流、回路法)
3-1 支路电流法
3-2 结点电压法
3-3 网孔电流法
3-4 网络图论基础(了解,不会出考题)
3-5 回路分析法
3-6 割集分析法(考试不作要求)
作业三 3-1&
3-2& 3-3& 3-5&
3-7& 3-8& 3-9&
3-10& 3-12&
3-13& 3-15&
3-16& 3-17&
3-19& 3-21&
3-22& 3-23& 3-24
线性电路的基本定理(本章处处皆是知识点、考点)
4-1 叠加定理(重点掌握)
4-2 替代定理(理解)
戴维南定理与诺顿定理(重点掌握,戴维南定理更重要一些)
4-4 特勒根定理(掌握)
4-5 互易定理(掌握)
4-6 对偶定理(理解)
4-1& 4-2& 4-3&
4-4& 4-6& 4-7&
4-9& 4-10& 4-14&
4-20& 4-21
含有运算放大器电路的分析方法(理解掌握理想放大器的电流、电压特性)
5-1 运算放大器简介(略)
5-2 运算放大器的电路模型(了解等效电路模型)
5-3 理想运算放大器(理想放大器的电流、电压特性)
5-4 含有理想运算放大器电路的分析
5-1至5-8全部都要做
第六章 正弦交流电路的稳态分析
6-1 正弦量(基础知识,但不会直接考)
6-2 相量法的基本知识(基础知识,要求:会变换)
基本定律与基本元件的相量形式(基础知识,但不会直接出题)
6-4 阻抗与导纳(基础知识,但不会直接出题)
正弦交流电路的功率(掌握有功功率、无功功率、视在功率、复功率)
6-6 功率因数的提高(学会用向量图分析电路)
正弦交流电路的稳态分析(要多做题,达到熟练贯通前面章节所学知识)
最大功率传输(掌握“最佳匹配”,即负载获得最大功率的条件)
6-9 串联电路的谐振(掌握谐振时的特征)
并联电路的谐振(掌握谐振时的特征,看一下例6-14)
作业六 6-2&
6-3& 6-4& 6-5&
6-6& 6-7& 6-8&
6-9& 6-13& 6-14&
6-16& 6-17&
6-22& 6-23&
6-24& 6-25&
6-27& 6-28&
6-30& 6-31& 6-32
第七章 含有互感的电路
互感与互感电压(掌握:用右手定则判断感应电压的“+、-”,参考例7-1)
含有互感电路的分析计算(本节为重点,所有知识都要掌握)
空芯变压器(主要内容还是互感电路分析,掌握原副边等效电路)
全耦合变压器与理想变压器(重点,还是掌握等效电路)
作业七 7-1&
7-2& 7-3& 7-4&
7-5& 7-6& 7-8&
7-9& 7-10& 7-11&
7-12& 7-13&
7-14& 7-15& 7-16
第八章 三相电路的正弦稳态分析
8-1 三相电路(基础知识)
8-2 对称三相电路的计算(重点,也是考点)
不对称三相电路(平时考试不做要求,考研就不清楚了,看历年真题中有无涉及)
8-4 三相电路的功率及测量(掌握三表法测功率)
作业八 8-2&
8-3& 8-4& 8-5&
8-7& 8-8& 8-9&
8-10& 8-12& 8-13
第九章 非正弦周期电流电路
9-1 非正弦周期电流及傅里叶级数(基础知识)
9-2 具有对称性的波形(掌握对称特性)
周期非正弦量的有效值、绝对平均值和功率(掌握I、U的有效值,平均值及视在功率S的计算公式)
非正弦周期电流电路的计算(看课本例题,要求会计算)
9-5 三相电路中的高次谐波(不要求)
作业九 9-1&
9-2& 9-6& 9-8&
9-9& 9-11& 9-13&
第十章 双口网络(本章有考题)
10-1 双口网络简介(略)
双口网络的四组方程及参数(重点,考点,Y、Z、T、H参数,关键是理解如何推导出来的,死记硬背有点难度)
双口网络的等效电路(掌握T型和π型等效电路模型)
10-4 回转器和负阻抗变换器(理解,会做题)
10-5 双口网络的连接(不作要求)
10-1& 10-2&
10-3& 10-4&
10-7& 10-8&
10-9& 10-10&
10-11& 10-12&
10-14& 10-15
一阶电路的时域分析(本章每节都是重点,必考大题)
11-1 引言(略)
11-2 初始条件的确定
11-3 一阶电路的零输入响应
11-4 一阶电路的零状态响应
11-5 一阶电路的全响应
11-6 一阶电路的三要素法
11-7 一阶电路的阶跃响应
11-8 一阶电路的冲激响应
11-9 卷积积分法
11-1& 11-2&
11-4& 11-6&
11-7& 11-8&
11-9& 11-10&
11-11& 11-12&
11-13& 11-14&
11-16& 11-21&
11-22& 11-23&
11-28& 11-29&
11-32& 11-34
第十二章 二阶电路的时域分析(本章不是考点)
12-1 二阶电路的零输入响应
12-2 二阶电路的零状态响应和全响应
12-3 二阶电路的阶跃响应和冲激响应
第十三章 拉普拉斯变换及其应用(本章重点,必考大题)
13-1 拉普拉斯变换(理解定义)
13-2 基本函数的拉普拉斯变换(熟记各种变换)
13-3 拉普拉斯变换的基本性质(熟记所有性质)
13-4 拉普拉斯逆变换(重点)
电路的复频域模型(重点:电阻、电感、电容及耦合电感元件的复频域模型)
线性电路的复频域分析(考题就是这里了,一定要看书上例题)
网络函数(重点,并要求学会绘制零极点坐标图)
第十四章 状态方程(有考题)
14-1 电路的状态变量及状态方程(基础)
状态方程的建立(重点,直接法,个人见解,更好用一点)
状态方程的复频域解法(这节就把书上的内容看会看懂就行了,也是重点)
作业十四& 全做
第十五章 非线性电阻电路(有考题)
15-1 非线性电阻元件(基础)
非线性电阻电路的图解法(能会做例15-3即可)
非线性电阻电路的分段线性化法(折线法)(重点,多做题,参考例15-5)
非线性电阻电路的小信号分析法(重点,看P412,掌握求解过程,参考15-6)
作业十五 全做
第十六章 PSPICE分析电路(绝对不考)
电路仿真工具简介
16-2 输入文件的一般规定
16-3 元件描述造句
16-4 分析和控制语句
三、电路分析辅导班笔记知识点汇总
简介:按照章节讲历届辅导出现的知识点进行了归纳,并指定了例题进行巩固,制定例题均源于电路分析
谭永霞 第二版 习题全解,
西南交通大学考研电路分析高分总结
西南交通大学_电路分析A总复习附例题
四、DVD光盘
(1)名校本科视频;
华中科技大学
《电路》邱关源编高教
西南交通大学
《电路分析》谭永霞主编西交
西安交通大学
&并赠送年电路分析辅导班笔记原版。(DVD光盘里面)真题中经常会有原题出现。
五、后续资料;例第一部分第(5)项内容就是十分重要的后续资料;如果是电子版则群内发送,如果是纸张版则快递发送,快递费用买家承担。
&价格:第一部分(160元)+第二部分(100元)
+第三部分(60元)+第四部分(30元)=240元(全套优惠价格)
&爱他教育考研辅导班招生手册
/item.htm?spm=a1z10.1.w.3.jr9J7V&id=
亲爱的同学:
经过不断的努力和发展,我们已成功帮助上万人顺利考进了目标院校,这个数字还在增加,2014年我们总结出了一套完整的科学辅导方法,我们已整理出最新最全最优质的考研专业课复习资料,爱他教育辅导班大部分通过淘宝支付宝报名,100%诚信可靠,100%安全放心,让您报的放心,学得安心,考的顺心,爱他教育拥有全国最大的考研资料库,拥有了全国最强大的师资团队,开设了考研专业课、公共课考研辅导(政治,英语,数学),
专业涉及金融学,管理学,经济学,会计,贸易,保险与精算,物理,生物,化学与化工,数学专业,机械,电子,电气工程,材料,土木/建筑,自动化,地学,
药学,艺术,体育,新闻传播学,文学,法学,政治学与行政学,环境与市政,英语专业,小语种,社会学,哲学,开设了公共课考研辅导,公共课辅导涉及政治,
英语,数学等科目;形成了针对不同学习基础的全程班,一对一,保录计划等综合性科学辅导体系,辅导技术日臻完善,辅导效果立竿见影。期待2014年能和同学们一起共创佳绩,同创辉煌。
一、全程小班课程设置
二、<font STYLE="BACKGroUnD-CoLor: rgb(255,255,0)" COLOR="#FF年爱他教育考研VIP一对一招生简章
1.课程设置
2.一对一课程特色:
1.较强的针对性:一对一辅导突出个性化,适合不同基础层次的学员,并根据学员的时间灵活安排课程,最大限度的满足学员的需求。
2.个性化的辅导:一对一辅导老师根据学员基础状况及复习进度在模块化授课方案基础上为学员制定个性化辅导方案,并在授课过程中不断优化和调整。
3.全程答疑:辅导老师对学员全程一对一负责,全程指导,全程监督,全程答疑,使学员不走弯路,获得最佳复习效果。
4.全程跟踪:采用成熟的模块化授课方案,配备专业师资教学,为考生制定辅导计划书,设置串讲/基础/强化/冲刺全程辅导课程,逐步提高考生成绩
三、<font COLOR="#FF年爱他教育考研保录班招生简章
1.课程设置
2.保录班辅导班课程特色-:
一对一辅导:
一对一辅导采用成熟的模块化授课方案。一对一辅导老师会根据学员的基础状况及复习进度在模块化授课方案的基础上为学员制定个性化的一对一辅导方案,并在授课过程中不断优化和调整。
课前课后辅导老师均会合理安排复习任务,保证学员按照既定的辅导计划学习,不走弯路。
全程答疑:
专业教师对学员从报班之日起提供全程24小时答疑服务,主要通过面对面、QQ、电话、电子邮件等方式,随时解答学员在复习中遇到的问题(包括报考问题、难题解答等);专职班主任及客服系统为学员全程解答考研常规问题。
复试辅导:
学员通过初试,在复试的备考过程中享受考研复试保过班的全程辅导(包括所报专业的研究生一对一辅导、面试秘训、全套资料等)。
一:实现梦想——经济学考研
学员:金*武专业课一卡通学员
报考专业:东北财经大学
去年在我准
备考研的时候,心里不知做过多少次的斗争。不考研就意味着我只有使尽浑身解数找一份卑微的工作,想象一下缥缈的未来和那些在社会上所要经历的风雨,再看看
校园里的静谧,我只有埋头到那堆资料里。想着研究生出来后工作的起点和有些人会羡慕的眼神,我对自己的选择一无反顾。学校专业定下来后,往年的专业课考卷
那是肯定要搞到的,如果有什么专业课辅导班之类的,那一定不要错过,要知道专业课的分数可以相差很悬殊的啊。正是考虑到了这一点,我参加了爱他教育的专业课一卡通,很有针对性,在机构辅导老师的指导帮助下,我通过自己的刻苦努力,初试取得了专业第六的好成绩,专业课突破135分,通过复试笔试面试等的辅导,在复试时又取得了专业第三的好成绩,成功被东北财经大学经济学专业录取。
二:跨考复旦——新闻传播考研
学员:曾*专业课全程班学员
报考专业:复旦大学新闻传播
我是武大学生,学的是中国文学,本科的成绩差不多保本校也算够用。然后我生生砍掉所有别人看好的可能性,选择了新闻硕士。其实本就觉得希望渺茫,只安慰自己认真努力就好,报了爱他教育的VIP超级保录班。有了老师的指导和研友的鼓励,感觉越来越好了。
到11月的时候,看前几年真题,硬是几乎都不会。度弄的自己很绝望。那时候只是想,失败了,收获了可能得到的,不过是下学期重找工作,大不了再去写稿子
呗。最后两个月,有些患得患失地心里坚定希望和重在参与反复交替,那个时候,连续的每天都是做梦,每天又坚持6点多起来,每天到自习室趴桌子睡觉。那个时
候觉得不自信,成功几乎是个太小概率的事情,我就是逼着自己好好走完这个过程。站到最后的时候,我发现,不是以为的希望渺茫,只是我花了太多时间去纠结担
心,还好我成功走进了复旦。
三:跨考东财——会计考研
学员:王*何专业课全程班学员
报考专业:东北财经大学会计学
为了圆自己进入名校的梦想,决定报考东北财经大学会计硕士专业的研究生。他本科学习的是化学专业,由于专业跨度大,专业课基础薄弱,故找不到学习的方向,总觉得无从下手。报名参加了爱他教育专业课保录班,辅导老师立即针对他的情况,为他联系了专业课顾问并制定了详细的复习规划。由于之前一点专业基础都没有,专业课顾问为他提供了很多入门的书籍,并一步步指导他继续深入的学习。通过半年的努力,他不仅对专业知识有了更深更广的理解,同时对于考研的题目类型答题思路也都有了详细的掌握。目前,他已经以400分的成绩顺利被东北财经大学录取了。在给我们的捷报中,他表示,希望更多的人了解爱他超级保录计划,加入专业课保录班,圆更多人的名校梦。
拾回信心工业设计
刘暑期强化
江南学工业设计
江工业设计江工业设计。因为是工科生,我最担心的不是英语,而是专业手绘,于是萌生了报个班狂补一下手绘的想法,后来在网上找到了爱他教育工业设计考研辅导班,就这样,暑假只在家待了短短的20天后就奔赴无锡。这7天的学习,虽然很短暂,但我想说真的是很充实的7天,我不想说在这5天里我有了多大多大的提高,因为那是不切实际的,手绘这种东西是不可能在一朝一夕就迅速提高的,最重要的还是自己的练习和积累,但是,这7天里,在刘老师的悉心指导下,跟那么多和我有着共同的目标的同学在一起,我开始对考研充满了热情,也更加明确了自己的定位,尤其是对于手绘,我不再有所畏惧,而且也找到了正确的练习方法,让我在复习的过程中少走了许多弯路,大大的提高了复习效率。
、报名联系方式
电话:400-000-3682,手机:,QQ:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。问题1:会对电路进行简化. 对一个复杂的电路.画出等效电路图.是一项基本功.也是电路分析和计算的基础.在复杂电路中.当导体间串.并联的组合关系不很规则时.要进行电路的简化.简化电路方法较多.这里介绍——精英家教网——
暑假天气热?在家里学北京名师课程,
问题1:会对电路进行简化. 对一个复杂的电路.画出等效电路图.是一项基本功.也是电路分析和计算的基础.在复杂电路中.当导体间串.并联的组合关系不很规则时.要进行电路的简化.简化电路方法较多.这里介绍两种常用的方法:等势法. 为例: 第一支线:以A经电阻R1到B(原则上以最简便直观的支路为第一支线). 第二支线:以A经由电阻R2到C到B. 第三支线:以A经电阻R3到D再经R1到B. 以上三支线并联.且C.D间接有S.简化图如图1(乙)所示. (2)等势法:以图2为例. 设电势A高B低.由A点开始.与A点等势的点没有.由此向下到C点.E点与C点等势.再向下到D点.F.B点与D点等势.其关系依次由图3所示. (3)注意:1对于复杂电路的简化可交替用分支法和等势法,2理想的电流表可视作短路,3理想的电压表和电容器可视作断路,4两等势点间的电阻可省去或视作短路. 问题2:会分析动态电路的有关问题 电路中局部的变化会引起整个电路电流.电压.电功率的变化.“牵一发而动全身 是电路问题的一个特点.处理这类问题常规思维过程是:首先对电路进行分析.然后从阻值变化的部分入手.由串.并联规律判断电路总电阻变化情况(若只有有效工作的一个电阻阻值变化.则不管它处于哪一支路.电路总电阻一定跟随该电阻变化规律而变).再由全电路欧姆定律判断电路总电流.路端电压变化情况.最后再根据电路特点和电路中电压.电流分配原则判断各部分电流.电压.电功率的变化情况. 为了快速而准确求解这类问题.同学们要熟记滑线变阻器常见三种接法的特点: 第一种:如图4所示的限流式接法. RAB随pb间的电阻增大而增大. 第二种:如图5所示分压电路.电路总电阻RAB等于AP段并联电阻RaP与PB段电阻RbP的串联.当P由a滑至b时.虽然Rap与Rpb变化相反.但电路的总电阻RAB持续减小,若P点反向移动.则RAB持续增大.证明如下: 所以当Rap增大时.RAB减小,当Rap减小时.RAB增大.滑动头P在a点时.RAB取最大值R2,滑动头P在b点时.RAB取最小值. 第三种:如图6所示并联式电路.由于两并联支路的电阻之和为定值.则两支路的并联电阻随两支路阻值之差的增大而减小,随两支路阻值之差的减小而增大.且支路阻值相差最小时有最大值.相差最大时有最小值.证明如下: 令两支路的阻值被分为Ra.Rb,且Ra+Rb=R0,其中R0为定值.则 可见.R//的确随Ra与Rb之差的增大而减小.随差的减小而增大.且当相差最小时.R//有最大值.相差最大时.R//有最小值. 此外.若两支路阻值相差可小至零.则R//有最大值R0/4. 例1.如图6所示.R1=4Ω.R2=5Ω.R3=7Ω.求P由a至b移动过程中.总电阻RAB如何变化? 分析与解:依据上述并联式电路的特点.则立刻可知:P调至RaP=4Ω时.RABmax=4Ω, P调至a点时.RABmin=3Ω,且P从a调至b时.RAB先增大后减小. 例2.如图7所示.电灯A标有“10V.10W .电灯B标有“8V.20W .滑动变阻器的总电阻为6Ω.当滑动触头由a端向b端滑动的过程中 A.安培表示数一直减小.伏特表示数一直增大, B. 安培表示数一直增大.伏特表示数一直减小, C. 安培表示数先增大后减小.伏特表示数先 减小后增大, D.安培表示数先减小后增大.伏特表示数先 增大后减小. 分析与解:可以求得电灯A的电阻RA=10Ω.电灯B的电阻RB=3.2Ω,因为.所以.当滑动触头由a向b端滑动的过程中.总电阻一直减小.即B选项正确. 例3.如图8所示.由于某一电阻断路.致使电压表和电流表的示数均比该电阻未断时要大.则这个断路的电阻可能是( ) A. R1 B. R2 C. R3 D. R4 分析与解:此类问题的常规解法是逐个分析进行判断. 若R1断路→R总变大→I总变小→U端变大→I2变大.即电流表示数变大.U端变大.I4变大→U4变大.所以选项A正确. 若R2断路.电流表示数为零.则B错 若R3断路.电压表示数为零.则C错 若R4断路→R总变大→I总变小→U端变大.即电流表和R2串联后两端电压变大.则电流表示数变大,R4断路后.则电压表的内阻大.所以R3所在支路近似断路.则电压表示数此时也变大.即D正确.所以答案AD. 例4. 如图9所示电路.电源的电动势为E.内阻为r.R0为固定电阻.R为滑动变阻器.在变阻器的滑片由a端移向b端的过程中.电容器C所带的电量( ) A. 逐渐增加 B. 逐渐减小 C. 先增加后减小 D. 先减少后增加 分析与解:由上述结论可知.在滑动变阻器的滑片由a端移向b端的过程中.图9所示电路的外电阻逐渐减小.根据闭合电路的欧姆定律可知:通过电源的电流I逐渐增大.路端电压逐渐减小.加在电容器C上的电压逐渐减小.C为固定电容器.其所带电量逐渐减少.所以只有选项B正确. 问题3:会求解三种功率的有关问题. 例5. 如图10所示.电路中电池的电动势E=5V.内电阻r=10Ω.固定电阻R=90Ω.R0是可变电阻.在R0从零增加到400Ω的过程中.求: (1)可变电阻R0上消耗功率最大的条件和最大热功率 (2)电池的电阻r和固定电阻R上消耗的最小热功率之和 分析与解:(1)可变电阻R0上消耗的热功率: 时.P0最大.其最大值: (2)当电流最小时.电阻r和R消耗的热功率最小.此时R0应调到最大400Ω.内阻r和固定电阻R上消耗的最小热功率之和为 本题关键:写出P0.P小表达式.进行数学变换.一定要养成先写表达式.再求极值的良好解题习惯.否则就容易出错.请同学们做一做例6. 例6.有四个电源.电动势均相等.内电阻分别为1.2.4.8.现从中选择一个对阻值为2Ω的电阻供电.欲使电阻获得的电功率最大.则所选电源的内电阻为: A.1 B.2 C.4 D.8. 正确答案为A.你做对了吗? 例7.有四盏灯.接入如图11中.L1和L2都标有“220V.100W 字样.L3和L4都标有“220V.40W 字样.把电路接通后.最暗的灯将是: A.L1, B.L2,C.L3,D.L4 分析与解::正确答案是C.由它们的额定电压.额定功率可判出: R1=R2&R3=R4.即R4&R1&R23并?.∴P4&P1&(P2+P3)(串联电路P∝R,而P3&P2.∴L3灯最暗 问题4:会解非理想电表的读数问题 同学们在求非理想电压表或非理想电流表的读数时.只要将电压表看作电阻RV.求出RV两端的电压就是电压表的示数,将电流表看作电阻RA.求出通过RA的电流就是电流表的示数. 例8.三个完全相同的电压表如图12所示接入电路中.已知V1表读数为8V.V3表的读数为5V.那么V2表读数为 . 分析与解:设三个完全相同的电压表的电阻均为R. 通过 的电流分别为I1.I2.I3.而由并联电 路的规律有:I1=I2+I3.所以有 =+.即有 U1=U2+U3 所以.U2=U1-U3=3V. 例9.阻值较大的电阻R1和R2串联后.接入电压U恒定的电路.如图13所示.现用同一电压表依次测量R1与R2的电压.测量值分别为U1与U2.已知电压表内阻与R1.R2相差不大.则: A.U1+U2=U, B.U1+U2&U, C.U1/U2=R1/R2, D.U1/U2≠R1/R2 分析与解:正确答案是B.C.电压表是个特殊的“电阻 .第一它的电阻Rv阻值较大,第二该“电阻 的电压是已知的.可以从表盘上读出.当把电压表与R1并联后.就等于给R1并联上一个电阻Rv.使得电压表所测的电压U1是并联电阻的电压.由于.所以U1小于R1电压的真实值.同理测量值U2也小于R2电压的真实值.因此U1+U2&U.选项B正确. 判断选项C.D的正确与否不能仅凭简单地定性推理.要通过计算后获得. 电压表与R1并联后.变成R并与R2串联.有: 同理: 可知U1/U2=R1/R2.选项C正确. 根据本题的结论可设计一个测量电阻的方法. 例10.如图14所示.电阻R1.R2并联后接入电流恒定为I的电路.现用同一电流表依次测量通过R1.R2的电流.测量值分别为I1.I2.则I1/I2=R1/R2.即:电流一定时.并联的两电阻被同一电流表测量的电流值与电阻成反比. 证明:当电流表电阻值RA小到可以忽略时.上述结论显然成立,当RA不可忽略时.用电流表测量哪一个电阻的电流时.就等于给这一电阻串联了一个电阻RA.使得电流表所测的电流是串联RA后的电流.因此.当电流表与R1串联后.电路变成电阻(R1+RA)与R2并联.故有:.同理. 从而有 问题5:会解含容电路 含容电路问题是高考中的一个热点问题.在高考试题中多次出现.同学们要注意复习.1.求电路稳定后电容器所带的电量 求解这类问题关键要知道:电路稳定后.电容器是断路的.同它串联的电阻均可视为短路.电容器两端的电压等于同它并联电路两端的电压. 例11.在图15所示的电路中,已知电容C=2μF,电源电动势E=12V,内电阻不计,R1∶R2∶R3∶R4=1∶2∶6∶3.则电容器极板a所带的电量为( ) A.-8×10-6C. B.4×10-6C. C.-4×10-6C. D.8×10-6C. 分析与解:电路稳定后.电容C作为断路看待.电路等价于R1和R2串联.R3和R4串联.由串联电路的特点得: . 即 同理可得 故电容C两端的电压为: 电容器极板a所带的电量为: . 即D选项正确. 【】
题目列表(包括答案和解析)
第十部分 磁场第一讲 基本知识介绍《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。一、磁场与安培力1、磁场a、永磁体、电流磁场→磁现象的电本质b、磁感强度、磁通量c、稳恒电流的磁场*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I&、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB&。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中&k = 1.0×10?7N/A2&。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。毕萨定律应用在“无限长”直导线的结论:B = 2k&;*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI&;*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI&。其中n为单位长度螺线管的匝数。2、安培力a、对直导体,矢量式为&= I;或表达为大小关系式&F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。b、弯曲导体的安培力⑴整体合力折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为F =&& = BI& = BI关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。证毕。由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)⑵导体的内张力弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。c、匀强磁场对线圈的转矩如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为M = BIS几种情形的讨论——⑴增加匝数至N&,则&M = NBIS&;⑵转轴平移,结论不变(证明从略);⑶线圈形状改变,结论不变(证明从略);*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα&,如图9-3;证明:当α&= 90°时,显然M = 0&,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ&,如图9-4。证明:当β&= 90°时,显然M = 0&,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。二、洛仑兹力1、概念与规律a、&= q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为与的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。b、能量性质由于总垂直与确定的平面,故总垂直&,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。问题:安培力可以做功,为什么洛仑兹力不能做功?解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v&,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1&= qv1B的合力(见图9-5)。很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。2、仅受洛仑兹力的带电粒子运动a、⊥时,匀速圆周运动,半径r =&&,周期T =&b、与成一般夹角θ时,做等螺距螺旋运动,半径r =&&,螺距d =&这个结论的证明一般是将分解…(过程从略)。☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1&,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)3、磁聚焦a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。4、回旋加速器a、结构&原理(注意加速时间应忽略)b、磁场与交变电场频率的关系因回旋周期T和交变电场周期T′必相等,故&=c、最大速度&vmax&=&= 2πRf5、质谱仪速度选择器&粒子圆周运动,和高考要求相同。第二讲 典型例题解析一、磁场与安培力的计算【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。【解说】这是一个关于毕萨定律的简单应用。解题过程从略。【答案】大小为8.0×10?6T&,方向在图9-9中垂直纸面向外。【例题2】半径为R&,通有电流I的圆形线圈,放在磁感强度大小为B&、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。【解说】本题有两种解法。方法一:隔离一小段弧,对应圆心角θ&,则弧长L =&θR&。因为θ&→
第六部分 振动和波第一讲 基本知识介绍《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。一、简谐运动1、简谐运动定义:=&-k& & & & & & &①凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。谐振子的加速度:=&-2、简谐运动的方程回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x方向的投影),圆周运动的半径即为简谐运动的振幅A&。依据:x&=&-mω2Acosθ=&-mω2对于一个给定的匀速圆周运动,m、ω是恒定不变的,可以令:mω2&= k&这样,以上两式就符合了简谐运动的定义式①。所以,x方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——位移方程:&= Acos(ωt +&φ) & & & & & & & & & & & & & & & & & & & &②速度方程:&=&-ωAsin(ωt +φ) & & & & & & & & & & & & & & & & & &&③加速度方程:=&-ω2A cos(ωt +φ) & & & & & & & & & & & & & & & & &&④相关名词:(ωt +φ)称相位,φ称初相。运动学参量的相互关系:=&-ω2A =&tgφ=&-3、简谐运动的合成a、同方向、同频率振动合成。两个振动x1&= A1cos(ωt +φ1)和x2&= A2cos(ωt +φ2)&合成,可令合振动x = Acos(ωt +φ)&,由于x = x1&+ x2&,解得A =&&,φ= arctg&显然,当φ2-φ1&= 2kπ时(k = 0,±1,±2,…),合振幅A最大,当φ2-φ1&=&(2k + 1)π时(k = 0,±1,±2,…),合振幅最小。b、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A1cos(ωt +&φ1)和y = A2cos(ωt +&φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t后,得一般形式的轨迹方程为+-2cos(φ2-φ1) = sin2(φ2-φ1)显然,当φ2-φ1&= 2kπ时(k = 0,±1,±2,…),有y =&x&,轨迹为直线,合运动仍为简谐运动;当φ2-φ1&=&(2k + 1)π时(k = 0,±1,±2,…),有+= 1&,轨迹为椭圆,合运动不再是简谐运动;当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。c、同方向、同振幅、频率相近的振动合成。令x1&= Acos(ω1t +&φ)和x2&= Acos(ω2t +&φ)&,由于合运动x = x1&+ x2&,得:x =(2Acost)cos(t +φ)。合运动是振动,但不是简谐运动,称为角频率为的“拍”现象。4、简谐运动的周期由②式得:ω=&&,而圆周运动的角速度和简谐运动的角频率是一致的,所以T = 2π& & & & & & & & & & & & & & & & & & & & & & & & & & &&⑤5、简谐运动的能量一个做简谐运动的振子的能量由动能和势能构成,即=&mv2&+&kx2&=&kA2注意:振子的势能是由(回复力系数)k和(相对平衡位置位移)x决定的一个抽象的概念,而不是具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。6、阻尼振动、受迫振动和共振和高考要求基本相同。二、机械波1、波的产生和传播产生的过程和条件;传播的性质,相关参量(决定参量的物理因素)2、机械波的描述a、波动图象。和振动图象的联系b、波动方程如果一列简谐波沿x方向传播,振源的振动方程为y = Acos(ωt + φ),波的传播速度为v ,那么在离振源x处一个振动质点的振动方程便是y = Acos〔ωt + φ -&·2π〕= Acos〔ω(t -&)+ φ〕这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y(x)的正弦函数,在x-y坐标下可以描绘出一个瞬时波形。所以,称y = Acos〔ω(t -&)+ φ〕为波动方程。3、波的干涉a、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。b、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S1和S2表示两个波源,P表示空间任意一点。当振源的振动方向相同时,令振源S1的振动方程为y1&= A1cosωt ,振源S1的振动方程为y2&= A2cosωt ,则在空间P点(距S1为r1&,距S2为r2),两振源引起的分振动分别是y1′= A1cos〔ω(t&?&)〕y2′= A2cos〔ω(t&?&)〕P点便出现两个频率相同、初相不同的振动叠加问题(φ1&=&&,φ2&=&),且初相差Δφ=&(r2&– r1)。根据前面已经做过的讨论,有r2&?&r1&= kλ时(k = 0,±1,±2,…),P点振动加强,振幅为A1&+ A2&;r2&?&r1&=(2k&?&1)时(k = 0,±1,±2,…),P点振动削弱,振幅为│A1-A2│。4、波的反射、折射和衍射知识点和高考要求相同。5、多普勒效应当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f和波相对介质的传播速度v是恒定不变的)——a、只有接收者相对介质运动(如图3所示)设接收者以速度v1正对静止的波源运动。如果接收者静止在A点,他单位时间接收的波的个数为f&,当他迎着波源运动时,设其在单位时间到达B点,则= v1&,、在从A运动到B的过程中,接收者事实上“提前”多接收到了n个波n =&=&=&显然,在单位时间内,接收者接收到的总的波的数目为:f + n =&f&,这就是接收者发现的频率f1&。即f1&=&f&显然,如果v1背离波源运动,只要将上式中的v1代入负值即可。如果v1的方向不是正对S&,只要将v1出正对的分量即可。b、只有波源相对介质运动(如图4所示)设波源以速度v2正对静止的接收者运动。如果波源S不动,在单位时间内,接收者在A点应接收f个波,故S到A的距离:= fλ&在单位时间内,S运动至S′,即= v2&。由于波源的运动,事实造成了S到A的f个波被压缩在了S′到A的空间里,波长将变短,新的波长λ′=&=&=&=&而每个波在介质中的传播速度仍为v&,故“被压缩”的波(A接收到的波)的频率变为f2&=&=&f&当v2背离接收者,或有一定夹角的讨论,类似a情形。c、当接收者和波源均相对传播介质运动当接收者正对波源以速度v1(相对介质速度)运动,波源也正对接收者以速度v2(相对介质速度)运动,我们的讨论可以在b情形的过程上延续…f3&=&&f2&=&f&关于速度方向改变的问题,讨论类似a情形。6、声波a、乐音和噪音b、声音的三要素:音调、响度和音品c、声音的共鸣第二讲 重要模型与专题一、简谐运动的证明与周期计算物理情形:如图5所示,将一粗细均匀、两边开口的U型管固定,其中装有一定量的水银,汞柱总长为L&。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k就有了,求周期就是顺理成章的事。本题中,可设汞柱两端偏离平衡位置的瞬时位移为x&、水银密度为ρ、U型管横截面积为S&,则次瞬时的回复力ΣF =&ρg2xS =&x由于L、m为固定值,可令:&= k&,而且ΣF与x的方向相反,故汞柱做简谐运动。周期T&=&2π=&2π答:汞柱的周期为2π&。学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。思路提示:找平衡位置(木板重心在两滚轮中央处)→ú力矩平衡和Σ?F6= 0结合求两处弹力→ú求摩擦力合力…答案:木板运动周期为2π&。巩固应用:如图7所示,三根长度均为L = 2.00m地质量均匀直杆,构成一正三角形框架ABC,C点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:N = mg & & & & & & & & & & & & & &①再回到框架,其静止平衡必满足框架所受合力矩为零。以C点为转轴,形成力矩的只有松鼠的压力N、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:MN&= Mf现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C点为x),上式即成:N·x = f·Lsin60° & & & & & & & & ②解①②两式可得:f =&x ,且f的方向水平向左。根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C在导轨上的投影点为参考点,x就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——=&-k其中k =&&,对于这个系统而言,k是固定不变的。显然这就是简谐运动的定义式。答案:松鼠做简谐运动。评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π&= 2π&= 2.64s 。二、典型的简谐运动1、弹簧振子物理情形:如图8所示,用弹性系数为k的轻质弹簧连着一个质量为m的小球,置于倾角为θ
第五部分 动量和能量第一讲 基本知识介绍一、冲量和动量1、冲力(F—t图象特征)→&冲量。冲量定义、物理意义冲量在F—t图象中的意义→从定义角度求变力冲量(F对t的平均作用力)2、动量的定义动量矢量性与运算二、动量定理1、定理的基本形式与表达2、分方向的表达式:ΣIx&=ΔPx&,ΣIy&=ΔPy&…3、定理推论:动量变化率等于物体所受的合外力。即=ΣF外&三、动量守恒定律1、定律、矢量性2、条件a、原始条件与等效b、近似条件c、某个方向上满足a或b,可在此方向应用动量守恒定律四、功和能1、功的定义、标量性,功在F—S图象中的意义2、功率,定义求法和推论求法3、能的概念、能的转化和守恒定律4、功的求法a、恒力的功:W = FScosα= FSF&= FS&Sb、变力的功:基本原则——过程分割与代数累积;利用F—S图象(或先寻求F对S的平均作用力)c、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点五、动能、动能定理1、动能(平动动能)2、动能定理a、ΣW的两种理解b、动能定理的广泛适用性六、机械能守恒1、势能a、保守力与耗散力(非保守力)→&势能(定义:ΔEp&=&-W保)b、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达2、机械能3、机械能守恒定律a、定律内容b、条件与拓展条件(注意系统划分)c、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。七、碰撞与恢复系数1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类)碰撞的基本特征:a、动量守恒;b、位置不超越;c、动能不膨胀。2、三种典型的碰撞a、弹性碰撞:碰撞全程完全没有机械能损失。满足——m1v10&+ m2v20&= m1v1&+ m2v2&m1&+&&m2&=&&m1&+&&m2解以上两式(注意技巧和“不合题意”解的舍弃)可得:v1&=&,& v2&=&对于结果的讨论:①当m1&= m2&时,v1&= v20&,v2&= v10&,称为“交换速度”;②当m1&<<&m2&,且v20&= 0时,v1&≈&-v10&,v2&≈&0&,小物碰大物,原速率返回;③当m1&>>&m2&,且v20&= 0时,v1&≈&v10&,v2&≈&2v10&,b、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律c、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一个整体,故有v1&= v2&=&3、恢复系数:碰后分离速度(v2&-&v1)与碰前接近速度(v10&-&v20)的比值,即:e =&&。根据“碰撞的基本特征”,0&≤&e&≤&1&。当e = 0&,碰撞为完全非弹性;当0&<&e&<&1&,碰撞为非弹性;当e = 1&,碰撞为弹性。八、“广义碰撞”——物体的相互作用1、当物体之间的相互作用时间不是很短,作用不是很强烈,但系统动量仍然守恒时,碰撞的部分规律仍然适用,但已不符合“碰撞的基本特征”(如:位置可能超越、机械能可能膨胀)。此时,碰撞中“不合题意”的解可能已经有意义,如弹性碰撞中v1&= v10&,v2&= v20的解。2、物体之间有相对滑动时,机械能损失的重要定势:-ΔE =&ΔE内&= f滑·S相&,其中S相指相对路程。第二讲 重要模型与专题一、动量定理还是动能定理?物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。先用动量定理推论解题。取一段时间Δt&,在这段时间内,飞船要穿过体积ΔV = S·vΔt的空间,遭遇nΔV颗太空垃圾,使它们获得动量ΔP&,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。&=&&=&&=&&=&&= nmSv2如果用动能定理,能不能解题呢?同样针对上面的物理过程,由于飞船要前进x = vΔt的位移,引擎推力须做功W =&x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔEk为零,所以:W =&ΔMv2即:vΔt =&(n m S·vΔt)v2得到:&=&nmSv2两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I =&t&,由此推出的&=&必然是飞船对垃圾的平均推力,再对飞船用平衡条件,的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。(学生活动)思考:如图1所示,全长L、总质量为M的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v将绳子拉直。忽略地面阻力,试求手的拉力F 。解:解题思路和上面完全相同。答:二、动量定理的分方向应用物理情形:三个质点A、B和C ,质量分别为m1&、m2和m3&,用拉直且不可伸长的绳子AB和BC相连,静止在水平面上,如图2所示,AB和BC之间的夹角为(π-α)。现对质点C施加以冲量I ,方向沿BC ,试求质点A开始运动的速度。模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。下面具体看解题过程——绳拉直瞬间,AB绳对A、B两质点的冲量大小相等(方向相反),设为I1&,BC绳对B、C两质点的冲量大小相等(方向相反),设为I2&;设A获得速度v1(由于A受合冲量只有I1&,方向沿AB ,故v1的反向沿AB),设B获得速度v2(由于B受合冲量为+,矢量和既不沿AB ,也不沿BC方向,可设v2与AB绳夹角为〈π-β〉,如图3所示),设C获得速度v3(合冲量+沿BC方向,故v3沿BC方向)。对A用动量定理,有:I1&= m1&v1& & & & & & & & & & & & & & & & &①B的动量定理是一个矢量方程:+= m2&,可化为两个分方向的标量式,即:I2cosα-I1&= m2&v2cosβ & & & & & & & & &②I2sinα= m2&v2sinβ & & & & & & & & & & & ③质点C的动量定理方程为:I - I2&= m3&v3& & & & & & & & & & & & & &④AB绳不可伸长,必有v1&= v2cosβ & & & & & ⑤BC绳不可伸长,必有v2cos(β-α) = v3& & &⑥六个方程解六个未知量(I1&、I2&、v1&、v2&、v3&、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——1、先用⑤⑥式消掉v2&、v3&,使六个一级式变成四个二级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & &⑴I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & ⑵I2sinα= m2&v1&tgβ & & & & & & & & & & & & & & & &⑶I - I2&= m3&v1(cosα+ sinαtgβ) & & & & & & & & &⑷2、解⑶⑷式消掉β,使四个二级式变成三个三级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & & & & & &㈠I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & & & & & ㈡I = m3&v1&cosα+ I2& & & & & & & & & & && & & & & & &&&㈢3、最后对㈠㈡㈢式消I1&、I2&,解v1就方便多了。结果为:v1&=&(学生活动:训练解方程的条理和耐心)思考:v2的方位角β等于多少?解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I1&,得I2的表达式,将I2的表达式代入⑶就行了。答:β= arc tg()。三、动量守恒中的相对运动问题物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N次抛球和将N个球一次性抛出是完全等效的。设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V1&第二过程获得的速度大小为V2&。第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N个球动量守恒。0 = Nm(-v) + MV1&得:V1&=&v & & & & & & & & & & & & & & & & & &①第二过程,必须逐次考查铅球与车子(人)的作用。第一个球与(N–1)个球、人、车系统作用,完毕后,设“系统”速度为u1&。值得注意的是,根据运动合成法则,铅球对地的速度并不是(-v),而是(-v + u1)。它们动量守恒方程为:0 = m(-v + u1) +〔M +(N-1)m〕u1得:u1&=第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u2&。它们动量守恒方程为:〔M+(N-1)m〕u1&= m(-v + u2) +〔M+(N-2)m〕u2&得:u2&=&&+&第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u3&。铅球对地的速度是(-v + u3)。它们动量守恒方程为:〔M+(N-2)m〕u2&= m(-v + u3) +〔M+(N-3)m〕u3得:u3&=&+&&+&以此类推(过程注意:先找uN和uN-1关系,再看uN和v的关系,不要急于化简通分)……,uN的通式已经可以找出:V2&= uN&=&&+&&+&&+ … +&即:V2&=&& & & & & & & & & & & & & & & &②我们再将①式改写成:V1&=&& & & & & & & & & & & & & & & & & & & & ①′不难发现,①′式和②式都有N项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V1&> V2&。结论:第一过程使车子获得的速度较大。(学生活动)思考:质量为M的车上,有n个质量均为m的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v、方向水平向后的初速往车下跳。第一过程,N个人同时跳下;第二过程,N个人依次跳下。试问:哪一次车子获得的速度较大?解:第二过程结论和上面的模型完全相同,第一过程结论为V1&=&&。答:第二过程获得速度大。四、反冲运动中的一个重要定式物理情形:如图4所示,长度为L、质量为M的船停止在静水中(但未抛锚),船头上有一个质量为m的人,也是静止的。现在令人在船上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L吗?本系统选船为参照,动量守恒吗?模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S =&t 。为寻求时间t ,则要抓人和船的位移约束关系。对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V),令指向船头方向为正向,则矢量关系可以化为代数运算,有:0 = MV + m(-v)&即:mv = MV&由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:m&= M& & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & ①设全程的时间为t ,乘入①式两边,得:mt = Mt设s和S分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S & & & & ②受船长L的约束,s和S具有关系:s + S = L & & & & & & & & & & & & & & & & & ③解②、③可得:船的移动距离 S =L(应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)另解:质心运动定律人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x表达。根据力矩平衡知识,得:x =&),又根据,末态的质量分布与初态比较,相对整体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。答:h 。(学生活动)思考:如图6所示,两个倾角相同的斜面,互相倒扣着放在光滑的水平地面上,小斜面在大斜面的顶端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M和m ,底边长分别为a和b ,试求:小斜面滑到底端时,大斜面后退的距离。解:水平方向动量守恒。解题过程从略。答:(a-b)。进阶应用:如图7所示,一个质量为M ,半径为R的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。为寻求轨迹方程,我们需要建立一个坐标:以半球球心O为原点,沿质点滑下一侧的水平轴为x坐标、竖直轴为y坐标。由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O′的方位角θ来表达质点的瞬时位置,如图8所示。由“定式”,易得:x =&Rsinθ & & & & & & & & & ①而由图知:y = Rcosθ & & & & & & & &②不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:&+&&= 1这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R和R的椭圆。五、功的定义式中S怎么取值?在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体(质心)的位移呢?我们先看下面一些事例。1、如图9所示,人用双手压在台面上推讲台,结果双手前进了一段位移而讲台未移动。试问:人是否做了功?2、在本“部分”第3页图1的模型中,求拉力做功时,S是否可以取绳子质心的位移?3、人登静止的楼梯,从一楼到二楼。楼梯是否做功?4、如图10所示,双手用等大反向的力F压固定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?在以上四个事例中,S若取作用点位移,只有第1、2、4例是做功的(注意第3例,楼梯支持力的作用点并未移动,而只是在不停地交换作用点),S若取物体(受力者)质心位移,只有第2、3例是做功的,而且,尽管第2例都做了功,数字并不相同。所以,用不同的判据得出的结论出现了本质的分歧。面对这些似是而非的“疑难杂症”,我们先回到“做功是物体能量转化的量度”这一根本点。第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。那么我们在解题中如何处理呢?这里给大家几点建议:&1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出能量(生物能)的机构,也是得到能量(机械能)的机构——这里的物理情形更象是一种生物情形。本题所求的功应理解为广义功为宜。以上四例有一些共同的特点:要么,受力物体情形比较复杂(形变,不能简单地看成一个质点。如第2、第3、第4例),要么,施力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S&。(另解:求货物动能的增加和与皮带摩擦生热的总和。)答:否。(学生活动)思考:如图12所示,人站在船上,通过拉一根固定在铁桩的缆绳使船靠岸。试问:缆绳是否对船和人的系统做功?解:分析同上面的“第3例”。答:否。六、机械能守恒与运动合成(分解)的综合物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够长。质量分别为m1和m2的A、B两个有孔小球,串在杆上,且被长为L的轻绳相连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B球运动L/2时的速度v2&。模型分析:A、B系统机械能守恒。A、B两球的瞬时速度不等,其关系可据“第三部分”知识介绍的定式(滑轮小船)去寻求。(学生活动)A球的机械能是否守恒?B球的机械能是否守恒?系统机械能守恒的理由是什么(两法分析:a、“微元法”判断两个WT的代数和为零;b、无非弹性碰撞,无摩擦,没有其它形式能的生成)?由“拓展条件”可以判断,A、B系统机械能守恒,(设末态A球的瞬时速率为v1&)过程的方程为:m2g&=&&+&& & & & & & ①在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:v1&= v/cos30°, v2&= v/sin30°两式合并成:v1&= v2&tg30°= v2/& & &②解①、②两式,得:v2&=&七、动量和能量的综合(一)物理情形:如图14所示,两根长度均为L的刚性轻杆,一端通过质量为m的球形铰链连接,另一端分别与质量为m和2m的小球相连。将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。忽略一切摩擦,试求:两杆夹角为90°时,质量为2m的小球的速度v2&。模型分析:三球系统机械能守恒、水平方向动量守恒,并注意约束关系——两杆不可伸长。(学生活动)初步判断:左边小球和球形铰链的速度方向会怎样?设末态(杆夹角90°)左边小球的速度为v1(方向:水平向左),球形铰链的速度为v(方向:和竖直方向夹θ角斜向左),对题设过程,三球系统机械能守恒,有:mg( L-L) =&m&+&mv2&+&2m& & &①三球系统水平方向动量守恒,有:mv1&+ mvsinθ= 2mv2& & & & & & & & ②左边杆子不形变,有:v1cos45°= vcos(45°-θ) & & & & &③右边杆子不形变,有:vcos(45°+θ) = v2cos45° & & & & ④四个方程,解四个未知量(v1&、v2&、v和θ),是可行的。推荐解方程的步骤如下——1、③、④两式用v2替代v1和v ,代入②式,解θ值,得:tgθ= 1/4&2、在回到③、④两式,得:v1&=&v2&, & v =&v2&3、将v1&、v的替代式代入①式解v2即可。结果:v2&=&(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少?解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。答:0 、&、0 。(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少?解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。答:&。进阶应用:在本讲模型“四、反冲……”的“进阶应用”(见图8)中,当质点m滑到方位角θ时(未脱离半球),质点的速度v的大小、方向怎样?解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。据运动的合成,有:&=&&+&&=&&-&其中必然是沿地面向左的,为了书写方便,我们设其大小为v2&;必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v相&。根据矢量减法的三角形法则,可以得到(设大小为v1)的示意图,如图16所示。同时,我们将v1的x、y分量v1x和v1y也描绘在图中。由图可得:v1y&=(v2&+ v1x)tgθ & & & & & & & & & & & & & & & & ①质点和半球系统水平方向动量守恒,有:Mv2&= mv1x& & & & & & & & &②对题设过程,质点和半球系统机械能守恒,有:mgR(1-cosθ) =&M&+&m&,即:mgR(1-cosθ) =&M&+&m(&+&) & & & & & & & & & & ③三个方程,解三个未知量(v2&、v1x&、v1y)是可行的,但数学运算繁复,推荐步骤如下——1、由①、②式得:v1x&=&v2&, & & & &v1y&= (tgθ) v2&&2、代入③式解v2&,得:v2&=3、由&=&&+&解v1&,得:v1&=v1的方向:和水平方向成α角,α= arctg&= arctg()这就是最后的解。〔一个附属结果:质点相对半球的瞬时角速度 ω =&&=&&。〕八、动量和能量的综合(二)物理情形:如图17所示,在光滑的水平面上,质量为M = 1 kg的平板车左端放有质量为m = 2 kg的铁块,铁块与车之间的摩擦因素μ= 0.5 。开始时,车和铁块以共同速度v = 6 m/s向右运动,车与右边的墙壁发生正碰,且碰撞是弹性的。车身足够长,使铁块不能和墙相碰。重力加速度g = 10 m/s2&,试求:1、铁块相对车运动的总路程;2、平板车第一次碰墙后所走的总路程。模型分析:本模型介绍有两对相互作用时的处理常规。能量关系介绍摩擦生热定式的应用。由于过程比较复杂,动量分析还要辅助以动力学分析,综合程度较高。由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的,当两对作用同时发生时,通常处理成“让短时作用完毕后,长时作用才开始”(这样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与车的作用尚未发生,而是在车与墙作用完了之后,才开始与铁块作用。规定向右为正向,将矢量运算化为代数运算。车第一次碰墙后,车速变为-v ,然后与速度仍为v的铁块作用,动量守恒,作用完毕后,共同速度v1&=&&=&&,因方向为正,必朝墙运动。(学生活动)车会不会达共同速度之前碰墙?动力学分析:车离墙的最大位移S =&,反向加速的位移S′=&,其中a = a1&=&,故S′< S ,所以,车碰墙之前,必然已和铁块达到共同速度v1&。车第二次碰墙后,车速变为-v1&,然后与速度仍为v1的铁块作用,动量守恒,作用完毕后,共同速度v2&=&&=&&=&,因方向为正,必朝墙运动。车第三次碰墙,……共同速度v3&=&&=&,朝墙运动。……以此类推,我们可以概括铁块和车的运动情况——铁块:匀减速向右→匀速向右→匀减速向右→匀速向右……平板车:匀减速向左→匀加速向右→匀速向右→匀减速向左→匀加速向右→匀速向右……显然,只要车和铁块还有共同速度,它们总是要碰墙,所以最后的稳定状态是:它们一起停在墙角(总的末动能为零)。1、全程能量关系:对铁块和车系统,-ΔEk&=ΔE内&,且,ΔE内&= f滑&S相&,即:(m + M)v2&= μmg·S相&代入数字得:S相&= 5.4 m2、平板车向右运动时比较复杂,只要去每次向左运动的路程的两倍即可。而向左是匀减速的,故第一次:S1&=&第二次:S2&=&&=&第三次:S3&=&&=&……n次碰墙的总路程是:ΣS = 2( S1&+ S2&+ S3&+ … + Sn&)=&( 1 +&&+&&+ … +&&)& =&( 1 +&&+&&+ … +&&)碰墙次数n→∞,代入其它数字,得:ΣS = 4.05 m(学生活动)质量为M 、程度为L的木板固定在光滑水平面上,另一个质量为m的滑块以水平初速v0冲上木板,恰好能从木板的另一端滑下。现解除木板的固定(但无初速),让相同的滑块再次冲上木板,要求它仍能从另一端滑下,其初速度应为多少?解:由第一过程,得滑动摩擦力f =&&。第二过程应综合动量和能量关系(“恰滑下”的临界是:滑块达木板的另一端,和木板具有共同速度,设为v ),设新的初速度为m&=( m + M )vm&-&( m + M )v2&= fL解以上三式即可。答:=&v0&。第三讲 典型例题解析教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。例题选讲针对“教材”第七、第八章的部分例题和习题。
第八部分 静电场第一讲 基本知识介绍在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。一、电场强度1、实验定律a、库仑定律内容;条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。b、电荷守恒定律c、叠加原理2、电场强度a、电场强度的定义电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。b、不同电场中场强的计算决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出——⑴点电荷:E = k结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如——⑵均匀带电环,垂直环面轴线上的某点P:E =&,其中r和R的意义见图7-1。⑶均匀带电球壳内部:E内&= 0外部:E外&= k&,其中r指考察点到球心的距离如果球壳是有厚度的的(内径R1&、外径R2),在壳体中(R1<r<R2):E =&&,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔即为图7-2中虚线以内部分的总电量…〕。⑷无限长均匀带电直线(电荷线密度为λ):E =&⑸无限大均匀带电平面(电荷面密度为σ):E = 2πkσ二、电势1、电势:把一电荷从P点移到参考点P0时电场力所做的功W与该电荷电量q的比值,即U =&参考点即电势为零的点,通常取无穷远或大地为参考点。和场强一样,电势是属于场本身的物理量。W则为电荷的电势能。2、典型电场的电势a、点电荷以无穷远为参考点,U = kb、均匀带电球壳以无穷远为参考点,U外&= k&,U内&= k3、电势的叠加由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式和叠加原理,我们可以求出任何电场的电势分布。4、电场力对电荷做功WAB&= q(UA&-&UB)= qUAB&三、静电场中的导体静电感应→静电平衡(狭义和广义)→静电屏蔽1、静电平衡的特征可以总结为以下三层含义——a、导体内部的合场强为零;表面的合场强不为零且一般各处不等,表面的合场强方向总是垂直导体表面。b、导体是等势体,表面是等势面。c、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率。2、静电屏蔽导体壳(网罩)不接地时,可以实现外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽。四、电容1、电容器孤立导体电容器→一般电容器2、电容a、定义式&C =&b、决定式。决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类,所以不同电容器有不同的电容⑴平行板电容器&C =&&=&&,其中ε为绝对介电常数(真空中ε0&=&&,其它介质中ε=&),εr则为相对介电常数,εr&=&&。⑵柱形电容器:C =&⑶球形电容器:C =&3、电容器的连接a、串联&&=&+++&…&+b、并联&C = C1&+ C2&+ C3&+&…&+ Cn&4、电容器的能量用图7-3表征电容器的充电过程,“搬运”电荷做功W就是图中阴影的面积,这也就是电容器的储能E&,所以E =&q0U0&=&C&=&电场的能量。电容器储存的能量究竟是属于电荷还是属于电场?正确答案是后者,因此,我们可以将电容器的能量用场强E表示。对平行板电容器&E总&=&E2&认为电场能均匀分布在电场中,则单位体积的电场储能&w =&E2&。而且,这以结论适用于非匀强电场。五、电介质的极化1、电介质的极化a、电介质分为两类:无极分子和有极分子,前者是指在没有外电场时每个分子的正、负电荷“重心”彼此重合(如气态的H2&、O2&、N2和CO2),后者则反之(如气态的H2O&、SO2和液态的水硝基笨)b、电介质的极化:当介质中存在外电场时,无极分子会变为有极分子,有极分子会由原来的杂乱排列变成规则排列,如图7-4所示。2、束缚电荷、自由电荷、极化电荷与宏观过剩电荷a、束缚电荷与自由电荷:在图7-4中,电介质左右两端分别显现负电和正电,但这些电荷并不能自由移动,因此称为束缚电荷,除了电介质,导体中的原子核和内层电子也是束缚电荷;反之,能够自由移动的电荷称为自由电荷。事实上,导体中存在束缚电荷与自由电荷,绝缘体中也存在束缚电荷和自由电荷,只是它们的比例差异较大而已。b、极化电荷是更严格意义上的束缚电荷,就是指图7-4中电介质两端显现的电荷。而宏观过剩电荷是相对极化电荷来说的,它是指可以自由移动的净电荷。宏观过剩电荷与极化电荷的重要区别是:前者能够用来冲放电,也能用仪表测量,但后者却不能。第二讲 重要模型与专题一、场强和电场力【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。【模型分析】这是一个叠加原理应用的基本事例。如图7-5所示,在球壳内取一点P&,以P为顶点做两个对顶的、顶角很小的锥体,锥体与球面相交得到球面上的两个面元ΔS1和ΔS2&,设球面的电荷面密度为σ,则这两个面元在P点激发的场强分别为ΔE1&= kΔE2&= k为了弄清ΔE1和ΔE2的大小关系,引进锥体顶部的立体角ΔΩ&,显然&=&ΔΩ&=&所以&ΔE1&= k&,ΔE2&= k&,即:ΔE1&=&ΔE2&,而它们的方向是相反的,故在P点激发的合场强为零。同理,其它各个相对的面元ΔS3和ΔS4&、ΔS5和ΔS6&…&激发的合场强均为零。原命题得证。【模型变换】半径为R的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。【解析】如图7-6所示,在球面上的P处取一极小的面元ΔS&,它在球心O点激发的场强大小为ΔE = k&,方向由P指向O点。无穷多个这样的面元激发的场强大小和ΔS激发的完全相同,但方向各不相同,它们矢量合成的效果怎样呢?这里我们要大胆地预见——由于由于在x方向、y方向上的对称性,Σ&=&Σ&= 0&,最后的ΣE =&ΣEz&,所以先求ΔEz&=&ΔEcosθ= k&,而且ΔScosθ为面元在xoy平面的投影,设为ΔS′所以&ΣEz&=&ΣΔS′而&ΣΔS′=&πR2&【答案】E = kπσ&,方向垂直边界线所在的平面。〖学员思考〗如果这个半球面在yoz平面的两边均匀带有异种电荷,面密度仍为σ,那么,球心处的场强又是多少?〖推荐解法〗将半球面看成4个球面,每个球面在x、y、z三个方向上分量均为&kπσ,能够对称抵消的将是y、z两个方向上的分量,因此ΣE = ΣEx&…〖答案〗大小为kπσ,方向沿x轴方向(由带正电的一方指向带负电的一方)。【物理情形2】有一个均匀的带电球体,球心在O点,半径为R ,电荷体密度为ρ ,球体内有一个球形空腔,空腔球心在O′点,半径为R′,= a ,如图7-7所示,试求空腔中各点的场强。【模型分析】这里涉及两个知识的应用:一是均匀带电球体的场强定式(它也是来自叠加原理,这里具体用到的是球体内部的结论,即“剥皮法则”),二是填补法。将球体和空腔看成完整的带正电的大球和带负电(电荷体密度相等)的小球的集合,对于空腔中任意一点P ,设&= r1&,&= r2&,则大球激发的场强为E1&= k&=&kρπr1&,方向由O指向P“小球”激发的场强为E2&= k&=&kρπr2&,方向由P指向O′E1和E2的矢量合成遵从平行四边形法则,ΣE的方向如图。又由于矢量三角形PE1ΣE和空间位置三角形OP O′是相似的,ΣE的大小和方向就不难确定了。【答案】恒为kρπa ,方向均沿O → O′,空腔里的电场是匀强电场。〖学员思考〗如果在模型2中的OO′连线上O′一侧距离O为b(b>R)的地方放一个电量为q的点电荷,它受到的电场力将为多大?〖解说〗上面解法的按部就班应用…〖答〗πkρq〔?〕。二、电势、电量与电场力的功【物理情形1】如图7-8所示,半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点,过圆心跟环面垂直的轴线上有P点,&= r&,以无穷远为参考点,试求P点的电势UP&。【模型分析】这是一个电势标量叠加的简单模型。先在圆环上取一个元段ΔL&,它在P点形成的电势ΔU = k环共有段,各段在P点形成的电势相同,而且它们是标量叠加。【答案】UP&=&〖思考〗如果上题中知道的是环的总电量Q ,则UP的结论为多少?如果这个总电量的分布不是均匀的,结论会改变吗?〖答〗UP&=&&;结论不会改变。〖再思考〗将环换成半径为R的薄球壳,总电量仍为Q ,试问:(1)当电量均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?(2)当电量不均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?〖解说〗(1)球心电势的求解从略;球内任一点的求解参看图7-5ΔU1&= k= k·= kσΔΩΔU2&= kσΔΩ它们代数叠加成 ΔU = ΔU1&+ ΔU2&= kσΔΩ而 r1&+ r2&= 2Rcosα所以 ΔU = 2RkσΔΩ所有面元形成电势的叠加&ΣU =&2RkσΣΔΩ注意:一个完整球面的ΣΔΩ = 4π(单位:球面度sr),但作为对顶的锥角,ΣΔΩ只能是2π ,所以——ΣU =&4πRkσ= k(2)球心电势的求解和〖思考〗相同;球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。〖答〗(1)球心、球内任一点的电势均为k&;(2)球心电势仍为k&,但其它各点的电势将随电量的分布情况的不同而不同(内部不再是等势体,球面不再是等势面)。【相关应用】如图7-9所示,球形导体空腔内、外壁的半径分别为R1和R2&,带有净电量+q&,现在其内部距球心为r的地方放一个电量为+Q的点电荷,试求球心处的电势。【解析】由于静电感应,球壳的内、外壁形成两个带电球壳。球心电势是两个球壳形成电势、点电荷形成电势的合效果。根据静电感应的尝试,内壁的电荷量为-Q&,外壁的电荷量为+Q+q&,虽然内壁的带电是不均匀的,根据上面的结论,其在球心形成的电势仍可以应用定式,所以…【答案】Uo&= k&-&k&+ k&。〖反馈练习〗如图7-10所示,两个极薄的同心导体球壳A和B,半径分别为RA和RB&,现让A壳接地,而在B壳的外部距球心d的地方放一个电量为+q的点电荷。试求:(1)A球壳的感应电荷量;(2)外球壳的电势。〖解说〗这是一个更为复杂的静电感应情形,B壳将形成图示的感应电荷分布(但没有净电量),A壳的情形未画出(有净电量),它们的感应电荷分布都是不均匀的。此外,我们还要用到一个重要的常识:接地导体(A壳)的电势为零。但值得注意的是,这里的“为零”是一个合效果,它是点电荷q 、A壳、B壳(带同样电荷时)单独存在时在A中形成的的电势的代数和,所以,当我们以球心O点为对象,有UO&= k&+ k&+ k&=&0QB应指B球壳上的净电荷量,故 QB&= 0所以 QA&= -q☆学员讨论:A壳的各处电势均为零,我们的方程能不能针对A壳表面上的某点去列?(答:不能,非均匀带电球壳的球心以外的点不能应用定式!)基于刚才的讨论,求B的电势时也只能求B的球心的电势(独立的B壳是等势体,球心电势即为所求)——UB&=&k&+ k〖答〗(1)QA&= -q ;(2)UB&= k(1-) 。【物理情形2】图7-11中,三根实线表示三根首尾相连的等长绝缘细棒,每根棒上的电荷分布情况与绝缘棒都换成导体棒时完全相同。点A是Δabc的中心,点B则与A相对bc棒对称,且已测得它们的电势分别为UA和UB&。试问:若将ab棒取走,A、B两点的电势将变为多少?【模型分析】由于细棒上的电荷分布既不均匀、三根细棒也没有构成环形,故前面的定式不能直接应用。若用元段分割→叠加,也具有相当的困难。所以这里介绍另一种求电势的方法。每根细棒的电荷分布虽然复杂,但相对各自的中点必然是对称的,而且三根棒的总电量、分布情况彼此必然相同。这就意味着:①三棒对A点的电势贡献都相同(可设为U1);②ab棒、ac棒对B点的电势贡献相同(可设为U2);③bc棒对A、B两点的贡献相同(为U1)。所以,取走ab前& 3U1&= UA& & & & & & & & &2U2&+ U1&= UB取走ab后,因三棒是绝缘体,电荷分布不变,故电势贡献不变,所以& UA′= 2U1& & & & & & & & &UB′= U1&+ U2【答案】UA′=&UA&;UB′=&UA&+&UB&。〖模型变换〗正四面体盒子由彼此绝缘的四块导体板构成,各导体板带电且电势分别为U1&、U2&、U3和U4&,则盒子中心点O的电势U等于多少?〖解说〗此处的四块板子虽然位置相对O点具有对称性,但电量各不相同,因此对O点的电势贡献也不相同,所以应该想一点办法——我们用“填补法”将电量不对称的情形加以改观:先将每一块导体板复制三块,作成一个正四面体盒子,然后将这四个盒子位置重合地放置——构成一个有四层壁的新盒子。在这个新盒子中,每个壁的电量将是完全相同的(为原来四块板的电量之和)、电势也完全相同(为U1&+ U2&+ U3&+ U4),新盒子表面就构成了一个等势面、整个盒子也是一个等势体,故新盒子的中心电势为U′= U1&+ U2&+ U3&+ U4&最后回到原来的单层盒子,中心电势必为 U =&&U′〖答〗U =&(U1&+ U2&+ U3&+ U4)。☆学员讨论:刚才的这种解题思想是否适用于“物理情形2”?(答:不行,因为三角形各边上电势虽然相等,但中点的电势和边上的并不相等。)〖反馈练习〗电荷q均匀分布在半球面ACB上,球面半径为R ,CD为通过半球顶点C和球心O的轴线,如图7-12所示。P、Q为CD轴线上相对O点对称的两点,已知P点的电势为UP&,试求Q点的电势UQ&。〖解说〗这又是一个填补法的应用。将半球面补成完整球面,并令右边内、外层均匀地带上电量为q的电荷,如图7-12所示。从电量的角度看,右半球面可以看作不存在,故这时P、Q的电势不会有任何改变。而换一个角度看,P、Q的电势可以看成是两者的叠加:①带电量为2q的完整球面;②带电量为-q的半球面。考查P点,UP&= k&+ U半球面其中 U半球面显然和为填补时Q点的电势大小相等、符号相反,即 U半球面= -UQ&以上的两个关系已经足以解题了。〖答〗UQ&= k&- UP&。【物理情形3】如图7-13所示,A、B两点相距2L&,圆弧是以B为圆心、L为半径的半圆。A处放有电量为q的电荷,B处放有电量为-q的点电荷。试问:(1)将单位正电荷从O点沿移到D点,电场力对它做了多少功?(2)将单位负电荷从D点沿AB的延长线移到无穷远处去,电场力对它做多少功?【模型分析】电势叠加和关系WAB&= q(UA&-&UB)= qUAB的基本应用。UO&= k&+ k&= 0UD&= k&+ k&=&-U∞&= 0再用功与电势的关系即可。【答案】(1);(2)。&【相关应用】在不计重力空间,有A、B两个带电小球,电量分别为q1和q2&,质量分别为m1和m2&,被固定在相距L的两点。试问:(1)若解除A球的固定,它能获得的最大动能是多少?(2)若同时解除两球的固定,它们各自的获得的最大动能是多少?(3)未解除固定时,这个系统的静电势能是多少?【解说】第(1)问甚间;第(2)问在能量方面类比反冲装置的能量计算,另启用动量守恒关系;第(3)问是在前两问基础上得出的必然结论…(这里就回到了一个基本的观念斧正:势能是属于场和场中物体的系统,而非单纯属于场中物体——这在过去一直是被忽视的。在两个点电荷的环境中,我们通常说“两个点电荷的势能”是多少。)【答】(1)k;(2)Ek1&=&k&,Ek2&=&k;(3)k&。〖思考〗设三个点电荷的电量分别为q1&、q2和q3&,两两相距为r12&、r23和r31&,则这个点电荷系统的静电势能是多少?〖解〗略。〖答〗k(++)。〖反馈应用〗如图7-14所示,三个带同种电荷的相同金属小球,每个球的质量均为m 、电量均为q ,用长度为L的三根绝缘轻绳连接着,系统放在光滑、绝缘的水平面上。现将其中的一根绳子剪断,三个球将开始运动起来,试求中间这个小球的最大速度。〖解〗设剪断的是1、3之间的绳子,动力学分析易知,2球获得最大动能时,1、2之间的绳子与2、3之间的绳子刚好应该在一条直线上。而且由动量守恒知,三球不可能有沿绳子方向的速度。设2球的速度为v ,1球和3球的速度为v′,则动量关系 mv + 2m v′= 0能量关系 3k&= 2 k&+ k&+&mv2&+&2m解以上两式即可的v值。〖答〗v = q&。三、电场中的导体和电介质【物理情形】两块平行放置的很大的金属薄板A和B,面积都是S&,间距为d(d远小于金属板的线度),已知A板带净电量+Q1&,B板带尽电量+Q2&,且Q2<Q1&,试求:(1)两板内外表面的电量分别是多少;(2)空间各处的场强;(3)两板间的电势差。【模型分析】由于静电感应,A、B两板的四个平面的电量将呈现一定规律的分布(金属板虽然很薄,但内部合场强为零的结论还是存在的);这里应注意金属板“很大”的前提条件,它事实上是指物理无穷大,因此,可以应用无限大平板的场强定式。为方便解题,做图7-15,忽略边缘效应,四个面的电荷分布应是均匀的,设四个面的电荷面密度分别为σ1&、σ2&、σ3和σ4&,显然(σ1&+ σ2)S = Q1&(σ3&+ σ4)S = Q2&A板内部空间场强为零,有 2πk(σ1&?&σ2&?&σ3&?&σ4)= 0A板内部空间场强为零,有 2πk(σ1&+&σ2&+&σ3&?&σ4)= 0解以上}

我要回帖

更多关于 遗传算法求解tsp问题 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信