高速信号的电平转换可以通过飞跨电容多电平进行交流耦合吗

利用特殊应用模拟开关改进便携式设计
打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮
1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
随着市场对功能丰富的手机需求越来越强劲,具有特殊应用性能的模拟开关得到了最终设计的持续青睐。此举不仅能降低材料成本(BOM),还有助于提升设计性能并满足对产品上市时间的要求。本文将通过若干实际用例指导系统设计人员如何降低冲击噪声(pop noise)、检测充电器及改进眼图张度。同时,本文还通过比较传统方案与集成方案说明了手机市场向多媒体设计发展过程中采用这种高性能模拟产品所带来的好处。降低冲击噪声由浪涌电流引发的冲击噪声仍是设计人员所面临的艰巨挑战,特别是当最终用户启动音乐和通话功能之间的切换时。只要最终用户开启了音乐功能,这种恼人的噪音就会给人带来不愉快的体验。如图1所示,在音频放大器工作时,通过交流耦合电容器的电源开/关浪涌电流是产生冲击噪声的元凶,此时的音频共模电压会急剧升高。目前市场上已有多种解决方案。其中之一是增加额外的放大器使音频输出具有“0V”偏置,从而最小化紧邻耳机之前的交流耦合电容器的大小。因为大多数耳机放大器被整合进了基带处理器或电源管理单元(PMU),因此增加这种放大器不仅增加了材料成本,还加大了功耗。图1显示了另一种方法,这种方法在音频信号通路中增加了一个独立充电通路,从而允许交流耦合电容器在被切换至耳机或主通路前被完全充电。这可借助基带处理器的通用I/O进行控制,让音频放大器和开关先上电,主信道开关此时处于关闭状态。音频输出的共模电压将开始从0升至VCC/2。一段时间后(以10ms为参考),耦合电容器两端被充电至等电位,这时再开启主信道就完全不会有浪涌电流了,因为此时电容器两极之间的压差为0V。图1:具有低THD和负摆幅功能的音频开关可以消除音频冲击噪声。
这种开关很适合单个USB连接器(D+/D-引脚)被耳机和USB数据线共享的手机和MP3/MP4播放机采用。低的总谐波失真(THD)对音频声道来说非常重要。另外,由于开关被安放在交流耦合电容器之后,因此必须处理低THD下很大的反向信号摆幅。这种开关的超低关断电容允许高速USB信号借助该器件进行“线或”连接。而较低的寄生电容也是高速USB 2.0标准的一致性测试的关键。特殊应用USB开关随着目前的市场趋势向单一USB充电器/数据端口的转变,特殊应用USB开关已经成为带功能的手机设计中的一种常规配置。图2是这种开关应用的一个范例。 图2:带充电器检测功能的USB开关非常适合高速USB应用,其USB电源和数据端口是共享的。基于两个主要原因,这种设计中需要使用低导通电容的开关。首先,由于基带处理器和高速USB控制器输出共享连接器侧的相同D+/D-引脚,因此当手机进入高速USB 2.0模式(诸如音乐下载或闪存功能)时,必须降低基带USB1.1/2.0全速控制器的输出电容。D+/D-线上的任何额外电容都会损害高速USB信号的眼开度。其次,在高速USB模式时,D+/D-线上悬接的额外走线必须截除以有效避免480Mbps USB信号快速的上升/下降沿引起的信号反射。由于单个USB端口要同时给充电器和数据功能使用,因此在目前的设计中充电器检测功能已经非常普及。传统方案是把D+/D-线馈至内部A/D转换器以确定D+/D-线是否短路。如前所述,该方案的主要局限是基带处理器GPIO端口的高输入电容将在数据线上增加额外的容抗,这种新增加的容抗将对高数据速率下信号的有效触发产生极为不利的影响,而该指标是USB 2.0一致性测试的一部分(例如USB 2.0信号的480 Mbps)。当然,这种方法的另外一个缺点是还占用了系统A/D转换器的资源。在这些应用中,为实现充电器检测和全速USB控制器输出电容的隔离,需要带超低内部电容检测电路的USB开关。同时,用来决定选择哪条USB通道作为输出的USB通道选择脚(图2中的S脚)必须能识别1.8 V 和3 V逻辑输入(注意:在基带处理器GPIO输出中1.8 V 和3 V都相当常用)。传统的开关选择脚可以接受高达2.0 V (TTL逻辑)的输入“高”(Vih)电平,当开关电源(VCC)直接取自电池时,该电平可导致严重的漏电流。借助能识别1.8 V输入逻辑电平的能力,还可以省去外接电平转换器件,从而允许设计人员进一步降低材料成本。例如,飞兆的FSUSB45等IC就具有超低导通电容(7pF)和小尺寸(1.4×1.8 mm)以及充电器检测功能和1.8 V控制逻辑识别等特性,能够很好地满足USB数据通路开关设计的需要。本文小结模拟开关应用一直在从单纯的音频开关功能向更先进的产品发展,这些先进产品可以同时提供增值设计特性和强大的I/O到地的ESD能力。随着诸如MP3/MP4播放器和GPS/WiFi功能等多媒体特性在最终应用中的普及,设计人员需要应用性更加特殊的开关,这样不仅可以提供低失真的开关通道,同时能够解决标准一致性测试所面临的设计挑战。另外,这些开关还能降低材料成本,并显著缩短产品上市时间。作者:Jianhong "Jeff" Ju  亚洲区业务发展总监  信号通路部  飞兆半导体公司
您的昵称:
美国的游客
(您将以游客身份发表,请 | )
交流耦合电容器是什么?
交流耦合电容器,交流耦合电容器是什么? 通过电子工程专辑网站专业编辑提供交流耦合电容器的最新相关信息,掌握最新的交流耦合电容器的最新行业动态资讯、技术文萃、电子资料,帮助电子工程师自我提升的电子技术平台.
冲击噪声是什么?
冲击噪声,冲击噪声是什么? 通过电子工程专辑网站专业编辑提供冲击噪声的最新相关信息,掌握最新的冲击噪声的最新行业动态资讯、技术文萃、电子资料,帮助电子工程师自我提升的电子技术平台.
特殊应用模拟开关是什么?
特殊应用模拟开关,特殊应用模拟开关是什么? 通过电子工程专辑网站专业编辑提供特殊应用模拟开关的最新相关信息,掌握最新的特殊应用模拟开关的最新行业动态资讯、技术文萃、电子资料,帮助电子工程师自我提升的电子技术平台.
新添订阅功能,提供全面快捷的资讯服务!
关注电子工程专辑微信
扫描以下二维码或添加微信号“eet-china”
访问电子工程专辑手机网站
随时把握电子产业动态,请扫描以下二维码
5G网络在提供1Gbps至10Gbps吞吐量方面具有很好的前途, 并且功耗要求比今天的网络和手机都要低,同时还能为关键应用提供严格的延时性能。本期封面故事将会与您分享5G的关键技术发展,以及在4G网络上有怎样的进步。
新版社区已上线,旧版论坛、博客将停用
1、为防数据丢失,旧版论坛、博客不再接受发帖;
2、老用户只需重设密码,即可直接登录新平台;
3、新版博客将于8月底完美归来,敬请期待;
4、全新论坛、问答,体验升级、手机阅读更方便。
推荐到论坛,赢取4积分(window.slotbydup=window.slotbydup || []).push({
id: '2014386',
container: s,
size: '234,60',
display: 'inlay-fix'
&&|&&0次下载&&|&&总7页&&|
您的计算机尚未安装Flash,点击安装&
阅读已结束,如需下载到电脑,请使用积分()
下载:5积分
0人评价55页
0人评价10页
0人评价2页
0人评价13页
0人评价3页
所需积分:(友情提示:大部分文档均可免费预览!下载之前请务必先预览阅读,以免误下载造成积分浪费!)
(多个标签用逗号分隔)
文不对题,内容与标题介绍不符
广告内容或内容过于简单
文档乱码或无法正常显示
文档内容侵权
已存在相同文档
不属于经济管理类文档
源文档损坏或加密
若此文档涉嫌侵害了您的权利,请参照说明。
我要评价:
下载:5积分一种实现LVTTL电平到LVPECL电平转换的方法   
一种实现LVTTL电平到LVPECL电平转换的方法   
申请专利号
专利申请日
一种实现LVTTL电平到LVPECL电平转换的方法   
公开(公告)号
公开(公告)日
申请(专利权)
港湾网络有限公司  
100089北京市海淀区西三环北路21号久凌大厦13层 
发明(设计)人
进入国家日期
专利代理机构
北京君尚知识产权代理事务所  
本发明提供了一种实现LVTTL电平到LVPECL电平转换的方法,包括以下步骤:1.将LVTTL电平接口器件输出的3.3V摆幅LVTTL电平信号通过耦合电容C1输出;2.将经C1耦合输出的交流信号利用分压电路进行分压,产生符合LVPECL要求的约0.8V摆幅的交流信号。采用本发明的技术方案,可以使得LVTTL接口电平器件与LVPECL接口电平器件有缝连接,而无须使用接口转换芯片。
1.一种实现LVTTL电平到LVPECL电平转换的方法,包括以下步骤:
(1)将LVTTL电平接口器件输出的3.3V摆幅LVTTL电平信号通过耦合电容
C1耦合输出;
(2)将经C1耦合输出的交流信号利用分压电路进行分压,产生符合LVPECL
要求的约0.8V摆幅的交流信号,输入到LVPECL接口电平器件。您的访问出错了(404错误)
很抱歉,您要访问的页面不存在。
1、请检查您输入的地址是否正确。
进行查找。
3、感谢您使用本站,3秒后自动跳转至网站首页}

我要回帖

更多关于 信号电平耦合 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信