单闭环晶闸管不可逆直流调速系统开环闭环运行时,为什么要逐渐增加给定电压

电力拖动实验报告-海文库
全站搜索:
您现在的位置:&>&&>&调查/报告
电力拖动实验报告
XXXXXXXXXXX
电力拖动实验报告
学 院:核 自 院专 业:电气工程自动化
姓 名:XXX学 号:XXXXXXXXX
指导老师:XXXX
双闭环晶闸管不可逆直流调速系统
一.实验目的1.了解双闭环不可逆直流调速系统的原理,组成及各主要单元部件的原理。2.熟悉电力电子及教学实验台主控制屏的结构及调试方法。3.熟悉MCL-18, MCL-33的结构及调试方法4.掌握双闭环不可逆直流调速系统的调试步骤,方法及参数的整定。二.实验内容1.各控制单元调试2.测定电流反馈系数。3.测定开环机械特性及闭环静特性。4.闭环控制特性的测定。5.观察,记录系统动态波形。三.实验系统组成及工作原理双闭环晶闸管不可逆直流调速系统由电流和转速两个调节器综合调节,由于调速系统调节的主要量为转速,故转速环作为主环放在外面,电流环作为付环放在里面,这样可抑制电网电压波动对转速的影响,实验系统的组成如图6-8所示。系统工作时,先给电动机加励磁,改变给定电压的大小即可方便地改变电机的转速。ASR,ACR均有限幅环节,ASR的输出作为ACR的给定,利用ASR的输出限幅可达到限制起动电流的目的, ACR的输出作为移相触发电路的控制电压,利用ACR的输出限幅可达到限制?min和?min的目的。当加入给定Ug后,ASR即饱和输出,使电动机以限定的最大起动电流加速起动,直到电机转速达到给定转速(即Ug=Ufn),并出现超调后,ASR退出饱和,最后稳定运行在略低于给定转速的数值上。四.实验设备及仪器1.MCL系列教学实验台主控制屏。2.MCL―18组件(适合MCL―Ⅱ)或MCL―31组件(适合MCL―Ⅲ)。3.MCL―33组件或MCL―53组件。4.MEL-11挂箱5.MEL―03三相可调电阻(或自配滑线变阻器)。6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL―13组件。
7.直流电动机M03。8.双踪示波器。
五.注意事项1.三相主电源连线时需注意,不可换错相序。2.电源开关闭合时,过流保护、过压保护的发光二极管可能会亮,只需按下对应的复位开关SB1、SB2即可正常工作。3.系统开环连接时,不允许突加给定信号Ug起动电机4.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。5.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。6.进行闭环调试时,若电机转速达最高速且不可调,注意转速反馈的极性是否接错。7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。六. 实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。(1)用示波器观察双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(2)检查相序,用示波器观察“1”,“2”脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。(3)将控制一组桥触发脉冲通断的六个直键开关弹出,用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V―2V的脉冲。(4)将Ublr接地,可观察反桥晶闸管的触发脉冲。2.双闭环调速系统调试原则(1)先部件,后系统。即先将各单元的特性调好,然后才能组成系统。(2)先开环,后闭环,即使系统能正常开环运行,然后在确定电流和转速均为负反馈时组成闭环系统。(3)先内环,后外环。即先调试电流内环,然后调转速外环。3.开环外特性的测定(1)控制电压Uct由给定器Ug直接接入,测功机加载旋钮应逆时针旋到底(或直流发电机所接负载电阻RG断开)。(2)使Ug=0,调节偏移电压电位器,使α稍大于90°,合上主电路电源,调节调压器旋钮,使Uuv,Uvw,Uwu为200V,逐渐增加给定电压Ug,使电机起动、升速,调节Ug使电机空载转速n0=1500r/min,再调节测功机加载旋钮(或负载电阻RG),改变负载,在直流电机空载至额定负载范围,测取7~8点,读取电机转速n,电机电枢电流Id,即可测出系统的开环外特性n=f (Id)。
注意,若给定电压Ug为0时,电机缓慢转动,则表明α太小,需后移。
5.单元部件调试ASR调试方法与实验二相同。ACR调试:使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使脉冲前移??300,使脉冲后移?=300,反馈电位器RP3逆时针旋到底,使放大倍数最小。4.系统调试将Ublf接地,Ublr悬空,即使用一组桥六个晶闸管。(1)电流环调试电动机不加励磁(a)系统开环,即控制电压Uct由给定器Ug直接接入,开关S拨向左边,主回路接入电阻Rd并调至最大(Rd由MEL―03的两只900Ω电阻并联)。逐渐增加给定电压,用示波器观察晶闸管整流桥两端电压波形。在一个周期内,电压波形应有6个对称波头平滑变化 。(b)增加给定电压,减小主回路串接电阻Rd,直至Id=1.1Ied,再调节MCL-01挂箱上的电流反馈电位器RP,使电流反馈电压Ufi近似等于速度调节器ASR的输出限幅值(ASR的输出限幅可调为±5V)。(c)MCL―18(或实验台主控制屏)的G(给定)输出电压Ug接至ACR的“3”端,ACR的输出“7”端接至Uct,即系统接入已接成PI调节的ACR组成电流单闭环系统。ASR的“9”、“10”端接MEL―11电容器,可预置7μF,同时,反馈电位器RP3逆时针旋到底,使放大倍数最小。逐渐增加给定电压Ug,使之等于ASR输出限幅值(+5V),观察主电路电流是否小于或等于1.1Ied,如Id过大,则应调整电流反馈电位器,使Ufi增加,直至Id&1.1Ied;如Id&Ied,则可将Rd减小直至切除,此时应增加有限,小于过电流保护整定值,这说明系统已具有限流保护功能。测定并计算电流反馈系数(2)速度变换器的调试电动机加额定励磁(a)系统开环,即给定电压Ug直接接至Uct,Ug作为输入给定,逐渐加正给定,当转速n=1500r/min时,调节FBS(速度变换器)中速度反馈电位器RP,使速度反馈电压为+5V左右,计算速度反馈系数。(b)速度反馈极性判断: 系统中接入ASR构成转速单闭环系统,即给定电压Ug接至ASR的第2端,ASR的第3端接至Uct。调节Ug(Ug为负电压),若稍加给定,电机转速即达最高速且调节Ug不可控,则表明单闭环系统速度反馈极性有误。但若接成转速―电流双闭环系统,由于给定极性改变,故速度反馈极性可不变。4.系统特性测试将ASR,ACR均接成PI调节器接入系统,形成双闭环不可逆系统。ASR的调试:(a)反馈电位器RP3逆时针旋到底,使放大倍数最小;(b)“5”、“6”端接入MEL―11电容器,预置5~7μF;(c)调节RP1、RP2使输出限幅为±5V。
(1)机械特性n=f(Id)的测定(a)调节转速给定电压Ug,使电机空载转速至1500 r/min,再调节测功机加载旋钮(或发电机负载电阻Rg),在空载至额定负载范围内分别记录7~8点,可测出系统静特性曲线n=f(
(2)闭环控制特性n=f(Ug)的测定
ggg七 实验结果及分析PWM系统的优点(1)主电路线路简单,需用的功率器件少;(2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小; (3)低速性能好,稳速精度高,调速范围宽,可达1:10000左右;(4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;(5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;(6)直流电源采用不控整流时,电网功率因数比相控整流器高。
PWM变换器的作用:用PWM调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压系列,从而可以改变平均输出电压的大小,以调节电机转速。 PWM变换器电路有多种形式,主要分为不可逆与可逆两大类,下面分别阐述其工作原理。 制动状态的一个周期分为两个工作阶段:在 0 ≤ t ≤ ton
关断,-id
沿回路 4 经 VD1 续流,向电源回馈制动,与此同时, VD1
两端压降钳住 VT1 使它不能导通。在 ton ≤ t ≤ T期间, Ug2 变正,于是VT2导通,反向电流 id 沿回路 3 流通,产生能耗制动作用。 因此,在制动状态中, VT2和VD1轮流导通,而VT1始终是关断的,此时的电压和电流波形示于图1-17c闭环调速系统可以获得比开环调速系统硬得多的稳态特性,从而在保证一定静差率的要求下,能够提高调速范围,为此所需付出的代价是,须增设电压放大器以及检测与反馈装置。 只用比例放大器的反馈控制系统,其被调量是有静差的。反馈控制系统的作用是:抵抗扰动,服从给定。系统的精度依赖于给定和反馈检测的精度。 比例积分控制规律和无静差调速系统前采用比例(P)放大器控制的直流调速系统,可使系统稳定,并有一定的稳定裕度,同时还能满足一定的稳态精度指标。但是,带比例放大器的反馈控制闭环调速系统是有静差的调速系统。本节将讨论,采用积分(I)调节器或比例积分(PI)调节器代替比例放大器,构成无静差调速系统。
不可逆单闭环直流调速系统静特性的研究一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。3.学习反馈控制系统的调试技术。二.预习要求1.了解速度调节器在比例工作与比例―积分工作时的输入―输出特性。2.弄清不可逆单闭环直流调速系统的工作原理。三.实验线路及原理见图6-7。四.实验设备及仪表1.MCL系列教学实验台主控制屏。2.MCL―18组件(适合MCL―Ⅱ)或MCL―31组件(适合MCL―Ⅲ)。3.MCL―33(A)组件或MCL―53组件。4.MEL-11挂箱5.MEL―03三相可调电阻(或自配滑线变阻器)。6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL―13组件)。7.直流电动机M03。8.双踪示波器。五.注意事项1.直流电动机工作前,必须先加上直流激磁。2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。4.三相主电源连线时需注意,不可换错相序。5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1即可正常工作。6.系统开环连接时,不允许突加给定信号Ug起动电机。7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。
六.实验内容1.移相触发电路的调试(主电路未通电)(a)用示波器观察MCL―33(或MCL―53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V的双脉冲。(b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。2.求取调速系统在无转速负反馈时的开环工作机械特性。a.断开ASR的“3”至Uct的连接线,G(给定)直接加至Uct,且Ug调至零,直流电机励磁电源开关闭合。b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使Uuv、Uvw、Uwu=200V。 注:如您选购的产品为MCL―Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压Ug,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压Ud,输出电流id以及被测电动机转速.带转速负反馈有静差工作的系统静特性a.断开G(给定)和Uct的连接线,ASR的输出接至Uct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节Uuv,Uvw,Uwu为200伏。c.调节给定电压Ug至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8点,读取Ud、id、n。4.测取调速系统在带转速负反馈时的无静差闭环工作的静特性a.断开ASR的“5”、“6”短接线,“5”、“6”端接MEL―11电容器,可预置7μF,使ASR成为PI(比例―积分)调节器。b.调节给定电压Ug,使电机空载转速n0=1500转/分。在额定至空载范围内测取7~8个点。
八.实验结果及分析逻辑无环流可逆调速控制系统各种运行状态正向起动到稳定运转当给出正向起动讯号,Un为正,转速调节器ASR的输出Ui为负,转矩极性鉴别器DPT输出UT的状态仍为“0”。在起动电流未建立以前,零电流检测器DPZ输出的状态也不变,仍为“0”,所以逻辑装置输出仍封锁反向组脉冲,正向组开放。在给定电压的作用下,正向组触发器的脉冲控制角?由90?往前移动,正组整流装置VF的平均整流电压逐渐增加,电机开始正向起动,在起动过程中由正组电流调节器ACR1的调节作用使起动电流维持最大允许值,得到恒加速起动。在起动电流作用下,电动机一直加速到给定转速,进入稳定运行。当主回路电流建立后,通过电流检测装置送给零电流检测器DPZ一个信号Ui0为正,这时DPZ的输出UI为“1”,但由于逻辑电路的记忆作用,其输出状态不变,正向组开放,反向组封锁。电动机稳定运行,转速的高低取决于给定电压Un的大小,改变Un的大小,可以在一定范围内任意调速。1.2 正向减速过程正向减速时,则要突减给定电压Un(其极性不变),系统便进入降速过程。本系统降速过程可分为以下四个阶段:①.本桥逆变阶段由于Un极性不变,仅数值突然减小,而转速来不及改变,所以使得转速调节器ASR的******
输入偏差为负,其输出Ui*立即变正,但电枢电流不为零,逻辑装置的输出不发生翻转。此时电流调节器为负的最大值,?min?30?,使正向整流装置进入逆变状态。电枢电流Id减小,主回路电感通过处于逆变状态的正组整流装置将能量回送电网。此过程一直进行到Id衰减到零,本桥逆变结束。②.第一次切换当Id衰减到零,本桥逆变结束,零电流检测器输出UI从1态变为0 态,经封锁延时tdbl,逻辑装置的输出U1从0态变为1态,封锁正组整流装置触发脉冲,再经开放延时tdt,U2由1态变为0态,开放反组晶闸管整流装置脉冲。但是,在tdt延时过程中,逻辑装置输出U1已经变为1态,而U2还没有变为0态仍是1态,但由于推?环节的T型滤波网络的惯性,可以将逆变状态保持一小段时间,避免了换向时电流的冲击。③.他桥逆变阶段经过tdt延时后,逻辑装置的输出U2变为0态。此阶段电流调节器输出退出负限幅值,向正的Uctf变化,?前移(向增大方向移),当反组的逆变电压小于电动机反电势后,建立反向组的逆变电流。在反电势作用下,这个逆变电流上升到(?Idm)后,电动机的转速n直线下降,反组整流装置处于有效逆变状态,电动机处于发电制动状态,通过反组整流装置逆变将电机的机械能回馈到电网,称此过程为它桥回馈制动。待电动机转速下降到新的转速给定电压后,转速调节器的输入偏差为正,转速调节器的输出Ui退出限幅成为负值。由于此时电枢电流不为零,逻辑装置输出不翻转。这时电流调节器输出为负的限幅值Uctf,则?min?30?,反组整流装置输出逆变电压又变为最大值,使反组逆变电流减小,在主回路电感两端产生感应电势,阻碍逆变电流减小。电感释放能量,维持反组继续逆变工作。此过程仍为它桥逆变,其作用迫使逆变电流衰减到零。④.第二次切换当反组逆变电流衰减到零后,逻辑装置经tdbl延时,U2变为1态,封锁反组脉冲,再经tdt延时,U1变为0态,开放正组脉冲。待电流调节器输出Uctf变为正值并且正组整流电压Ud1?E后,建立整流电流Id1,使正组整流装置又重新进入整流状态工作。电枢电流开始上升,待电流上升到负载电流值并略有超调后,经系统调节作用,使系统重新稳定于正向低速度运行状态。1.3 正转制动*当给定停车命令后,Un?0,由于机械惯性,转速负反馈仍存在,在它的作用下,转*速调节器的输出Ui由负变正。因此DPT输出UT由“0”变“1”,如图5-1所示。但是只要电流未衰减到零,DPZ输出UI仍为“1”。或非门HF1、HF2状态不变,逻辑装置总输出*
状态亦不变,仍维持正组整流装置电流导通,只有当DPZ输出变为“0”即电流过零了,或非门HF2输出的状态才改变,由“0”变为“1”,HF4输出的状态由“1”变为“0”,致使HF3的输出由“0”变“1”。经延时电路延时3ms后输出由“0”变“1”,逻辑装置输出至正组触发器的脉冲封锁信号U1由“0”经tdbl延时后变“1”,即当电流过零后正组整流装置的脉冲经tdbl封锁延时后被封锁。在HF4输出的状态由“1”变“0”后,经延时电路,延时10ms后输出由“1”变“0”,故它的输出由“1”变“0”时延时tdt(7ms)逻辑装置输出至反组触发器的脉冲封锁信号U2由“0”经tdt延时后变“1”,即当电流过零后反组整流装置的脉冲经tdt开放延时后开放。从制动过程来看大体可以分为两个阶段。制动的第一阶段是主回路电流过零以前,这是由于转速调节器输出Ui改变了极性,正组触发装置GTF的输入移相控制信 *图5-1 制动时的逻辑电路图号Uctf变负,而正组整流装置仍然是导通的,故处于逆变状态。主回路电感很快衰减,释放能量,通过处于逆变状态的正组整流装置将能量送回电网,这个过程称为“本桥逆变”过程。这个过程是很短的,因为此刻Ldi?Udf?E(E―电机的反电势,Udf―正组整流装置dt的逆变电压),所以电流的衰减是很快的。制动的第二阶段,也就是制动的主要阶段,是在切换到反组整流装置以后。当切换开始,由于转速调节器的输出由负变正。这个极性使U1为正,对正组整流装置是逆变状态(??90?)。而使U2为负,对反组整流装置则是整流状态(??90?)。因此,刚切换过来反组整流装置开放时是处在整流状态,其整流电压与电动机反电势同极性相串联,形成很大的制动电流,这电流通过电流调节器的作用才把反组的触发脉冲推向??90?的逆变状态,而且维持电流为恒值,直到最后电机转速制动到零为止。同理,可分析反向时的各种运行状态。当反向起动的主令信号给出后,由于首先要完成
逻辑切换,解除反向组触发脉冲的封锁,因此反向起动要滞后一个延时时间。1.4 停车状态*?0,停车时,转速给定信号Un转速调节器ASR和电流调节器ACR的输出Ui*和Uct均为零,触发器GT输出的触发脉冲在??90?位置,变流装置输出整流电压为零,电动机处于停止状态。此时,零电流检测器DPZ的输出UI为0态,但转矩极性鉴别器输出UT的状态却有两种可能:一种是Ui*由负变为零,则UT为0态;另一种是Ui*由正变为零,则UT为1态。所以停车状态是正组晶闸管有脉冲,还是反组晶闸管有脉冲,则视接通电源时,UT的状态而定,或者是系统已经工作了一段时间之后,则由停车前一时刻的状态而定。为方便以下分析,先假设停车时,UT为0态,UI为0态,则U1为0态,U2为1态,此时再正向起动,其逻辑装置不必进行切换;若是再反向起动,逻辑装置输出就应切换,且有tdbl?tdt的延时,才能反向起动,比正向起动拖长了约10ms的时间无环流逻辑装置的组成在无环流控制系统中,反并联的两组整流桥需要根据所要求的电枢电流极性来选择其中一组整流桥运行,而另一组整流桥触发脉冲是被封锁的。两组整流桥的切换是在电动机转矩极性需要反向时由逻辑装置控制进行的。其切换顺序可归纳如下:①由于转速给定变化或负载变动,使电动机应产生的转矩极性反向。②由转速调节器输出反映这一转矩的极性,并由逻辑装置对该极性进行判断,然后发出切换开始的指令。③使导通侧的整流桥(例如正组桥)的电流迅速减小到零。④由零电流检测器得到零电流信号后,经3~5ms延时,确认电流实际值为零,封锁原导通侧整流桥的触发脉冲。⑤由零电流检测器得到零电流信号后,经10ms延时,确保原导通侧整流桥晶闸管完全阻断后,开放待工作侧整流桥(例如反组桥)的触发脉冲。⑥电枢内流过与切换前反方向的电流,完成切换过程。根据逻辑装置要完成的任务,它由电平检测、逻辑判断、延时电路和联锁保护电路四个基本环节组成,逻辑装置的功能和输入输出信号.其输入为电流给定或转矩极性鉴别信号Ui和零电流检测信号Ui0,输出是控制正组晶闸管触发脉冲封锁信号U1和反组晶闸管触发脉冲封锁信号U2 *
逻辑无环流可逆直流调速系统一.实验目的1. 了解并熟悉逻辑无环流可逆直流调速系统的原理和组成。2. 掌握各控制单元的原理,作用及调试方法。3. 掌握逻辑无环流可逆调速系统的调试步骤和方法。4. 了解逻辑无环流可逆调速系统的静特性和动态特性。二.实验内容1.控制单元调试。2.系统调试。3.正反转机械特性n=f (Id)的测定。4.正反转闭环控制特性n=f (Ug)的测定。5.系统的动态特性的观察。三.实验系统的组成及工作原理逻辑无环流系统的主回路由二组反并联的三相全控整流桥组成,由于没有环流,两组可控整流桥之间可省去限制环流的均衡电抗器,电枢回路仅串接一个平波电抗器。控制系统主要由速度调节器ASR,电流调节器ACR,反号器AR,转矩极性鉴别器DPT,零电流检测器DPZ,无环流逻辑控制器DLC,触发器,电流变换器FBC,速度变换器FBS等组成。其系统原理图如图6-9所示。正向起动时,给定电压Ug为正电压,无环流逻辑控制器的输出端Ublf为”0”态,Ublr为”1”态,即正桥触发脉冲开通,反桥触发脉冲封锁,主回路正组可控整流桥工作,电机正向运转。减小给定时,Ug&Ufn,使Ugi 反向,整流装置进入本桥逆变状态,而Ublf,Ublr不变,当主回路电流减小并过零后,Ublf,Ublr输出状态转换,Ublf为“1”态,Ublr为“0”态,即进入它桥制动状态,使电机降速至设定的转速后再切换成正向运行;当Ug=0时,则电机停转。反向运行时,Ublf为”1”态,Ublr为”0”态,主电路反组可控整流桥工作。无环流逻辑控制器的输出取决于电机的运行状态,正向运转,正转制动本桥逆变及反转制动它桥逆变状态,Ublf为”0”态,Ublr为”1”态,保证了正桥工作,反桥封锁;反向运转,反转制动本桥逆变,正转制动它桥逆变阶段,则Ublf为”1”态,Ublr为”0”态,正桥被封锁,反桥触发工作。由于逻辑控制器的作用,在逻辑无环流可逆系统中保证了任何情况下两整流桥不会同时触发,一组触发工作时,另一组被封锁,因此系统工作过程中既无直流环流也无脉冲环流。四.实验设备及仪器1.MCL系列教学实验台主控制屏。2.MCL―18组件(适合MCL―Ⅱ)或MCL―31组件(适合MCL―Ⅲ)。3.MCL―33组件或MCL―53组件。4.MEL-11挂箱
5.MEL―03三相可调电阻(或自配滑线变阻器)。6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL―13组件。7.直流电动机M03。8.双踪示波器。9.?CL?34组件五.实验预习1.熟悉系统的接线图,分析逻辑无环流可逆直流调速系统的原理。2.复习逻辑无环流可逆直流调速系统从正转切换到反转过程中,整流电压Ud,电枢电流id,转速n的动态波形图。六.注意事项1.实验时,应保证逻辑控制器工作;逻辑正确后才能使系统正反向切换运行。2.为了防止意外,可在电枢回路串联一定的电阻,如工作正常,则可随Ug的增大逐渐切除电阻。七.实验方法1.按图6-9接线,未上主电源之前,检查晶闸管的脉冲是否正常。(1)用示波器观察双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(2)检查相序,用示波器观察“1”,“2”脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。(3)将控制一组桥触发脉冲通断的六个直键开关弹出,用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V―2V的脉冲。(4)将Ublr接地,可观察反桥晶闸管的触发脉冲。(5)用万用表检查Ublf,Ublr的电压,一为高电平,一为低电平,不能同为低电平。2.控制单元调试(1)按实验四的方法调试FBS,ASR,ACR(2)按实验二的方法调试AR,DPT,DPZ,DLC对电平检测器的输出应有下列要求转矩极性鉴别器DPT:电机正转
输出UM为”1”态电机反转
输出UM为’0”态零电流检测器DPZ:主回路电流接近零
输出UI为”1”态主回路有电流
输出UI为”0”态(3)调节ASR,ACR的串联积分电容,使系统正常,稳定运行。4.机械特性n=f (Id)的测定测出n =1500r/min的正,反转机械特性n =f (Id),方法与实验四相同。n=1500r/min
5.闭环控制特性的测定
g实验心得逻辑无环流系统的主回路由二组反并联的三相全控整流桥组成,由于没有环流,两组可控整流桥之间可省去限制环流的均衡电抗器,电枢回路仅串接一个平波电抗器。控制系统主要由速度调节器ASR,电流调节器ACR,反号器AR,转矩极性鉴别器DPT,零电流检测器DPZ,无环流逻辑控制器DLC,触发器,电流变换器FBC,速度变换器FBS等组成。其系统原理图如图6-9所示。正向起动时,给定电压Ug为正电压,无环流逻辑控制器的输出端Ublf为”0”态,Ublr为”1”态,即正桥触发脉冲开通,反桥触发脉冲封锁,主回路正组可控整流桥工作,电机正向运转。减小给定时,Ug&Ufn,使Ugi 反向,整流装置进入本桥逆变状态,而Ublf,Ublr不变,当主回路电流减小并过零后,Ublf,Ublr输出状态转换,Ublf为“1”态,Ublr为“0”态,即进入它桥制动状态,使电机降速至设定的转速后再切换成正向运行;当Ug=0时,则电机停转。反向运行时,Ublf为”1”态,Ublr为”0”态,主电路反组可控整流桥工作。无环流逻辑控制器的输出取决于电机的运行状态,正向运转,正转制动本桥逆变及反转制动它桥逆变状态,Ublf为”0”态,Ublr为”1”态,保证了正桥工作,反桥封锁;反向运转,反转制动本桥逆变,正转制动它桥逆变阶段,则Ublf为”1”态,Ublr为”0”态,正桥被封锁,反桥触发工作。由于逻辑控制器的作用,在逻辑无环流可逆系统中保证了任何情况下两整流桥不会同时触发,一组触发工作时,另一组被封锁,因此系统工作过程中既无直流环流也无脉冲环流。不可逆单闭环直流调速系统静特性的研究一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。3.学习反馈控制系统的调试技术。二.预习要求1.了解速度调节器在比例工作与比例―积分工作时的输入―输出特性。2.弄清不可逆单闭环直流调速系统的工作原理。三.实验线路及原理见图6-7。四.实验设备及仪表
1.MCL系列教学实验台主控制屏。2.MCL―18组件(适合MCL―Ⅱ)或MCL―31组件(适合MCL―Ⅲ)。3.MCL―33(A)组件或MCL―53组件。4.MEL-11挂箱5.MEL―03三相可调电阻(或自配滑线变阻器)。6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL―13组件)。7.直流电动机M03。8.双踪示波器。五.注意事项1.直流电动机工作前,必须先加上直流激磁。2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。4.三相主电源连线时需注意,不可换错相序。5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1即可正常工作。6.系统开环连接时,不允许突加给定信号Ug起动电机。7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。六.实验内容1.移相触发电路的调试(主电路未通电)(a)用示波器观察MCL―33(或MCL―53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V的双脉冲。(b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。2.求取调速系统在无转速负反馈时的开环工作机械特性。a.断开ASR的“3”至Uct的连接线,G(给定)直接加至Uct,且Ug调至零,直流电机励磁电源开关闭合。b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使Uuv、Uvw、Uwu=200V。 注:如您选购的产品为MCL―Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压Ug,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压Ud,
输出电流id以及被测电动机转速n。3.带转速负反馈有静差工作的系统静特性a.断开G(给定)和Uct的连接线,ASR的输出接至Uct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节Uuv,Uvw,Uwu为200伏。c.调节给定电压Ug至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8点,读取Ud、id、n。4测取调速系统在带转速负反馈时的无静差闭环工作的静特性a.断开ASR的“5”、“6”短接线,“5”、“6”端接MEL―11电容器,可预置7μF,使ASR成为PI(比例―积分)调节器。b.调节给定电压Ug,使电机空载转速n0=1500转/分。在额定至空载范围内测取7~8个点。实验心得直流电动机工作前,必须先加上直流激磁。接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。三相主电源连线时需注意,不可换错相序。电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1即可正常工作。系统开环连接时,不允许突加给定信号Ug起动电机。起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。
单相交直交变频电路的性能研究
一.实验目的熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。二.实验内容1.测量SPWM波形产生过程中的各点波形。2.观察变频电路输出在不同的负载下的波形。
三.实验设备及仪器
1.电力电子及电气传动主控制屏。2.MCL-16组件。3.电阻、电感元件(MEL-03、700mH电感)。4.双踪示波器。5.万用表。
单相交直交变频电路的主电路如图5―13所示。本实验中主电路中间直流电压ud由交流电整流而得,而逆变部分别采用单相桥式PWM逆变电路。逆变电路中功率器件采用600V8A的IGBT单管(含反向二极管,型号为ITH08C06),IGBT的驱动电路采用美国国际整流器公司生产的大规模MOSFET和IGBT专用驱动集成电路1R2110,控制电路如图5―12所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM信号,分别用于控制VT1、VT4和VT2、VT3两对IGBT。ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz。
五.实验方法
的对应关系:(3)观察经过三角波和正弦波比较后得到的SPWM波形(“3”端与“地”端),并比较“3”端和“4”端的相位关系。(4)观察对VT1、VT2进行控制的SPWM信号(“5”端与“地”端)和对VT3、VT4进行控制的SPWM信号(“6”端与“地”端),仔细观察“5”端信号和“6”端防号之间的互锁延迟时间。2.驱动信号观察在主电路不接通电源情况下,S3扭子开关打向“OFF”,分别将“SPWM波形发生”的G1、E1、G2、E2、G3、E3、G4和“单相交直交变频电路”的对应端相连。经检查接线正确后,S3扭子开关打向“ON”,对比VTI和VT2的驱动信号,VT3和VT4的驱动信号,仔细观察同一相上、下两管驱动信号的波形,幅值以及互锁延迟时间。3.S3扭子开关打向“OFF”,分别将“主电源2”的输出端“1”和“单相交直交变频电路”的“1”端相连, “主电源2”的输出端“2”和“单相交直交变频电路”的“2”端相连,将“单相交直交变频电路”的“4”、“5”端分别串联MEL-03电阻箱 (将一组900Ω/0.41A并联,然后顺时针旋转调至阻值最大约450Ω) 和直流安培表(将量程切换到2A挡)。将经检查无误后,S3扭子开关打向“ON”,合上主电源(调节负载电阻阻值使输出负载电压波形达到最佳值,电阻负载阻值在90Ω~360Ω时波形最好)。4.当负载为电阻时,观察负载电压的波形,记录其波形、幅值、频率。在正弦波Ur的频率可调范围内,改变Ur的频率多组,记录相应的负载电压、波形、幅值和频率。
5.当负载为电阻电感时,观察负载电压和负载电流的波形。六.注意事项
1.“输出端”不允许开路,同时最大电流不允许超过“1A”。2.注意电源要使用“主电源2”的“15V”电压其他同“直流斩波”电路相同。 七.
实验心得本实验中主电路中间直流电压ud由交流电整流而得,而逆变部分别采用单相桥式PWM逆变电路。逆变电路中功率器件采用600V8A的IGBT单管(含反向二极管,型号为ITH08C06),IGBT的驱动电路采用美国国际整流器公司生产的大规模MOSFET和IGBT专用驱动集成电路1R2110,控制电路如图5―12所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM信号,分别用于控制VT1、VT4和VT2、VT3两对IGBT。ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz。
异步电动机SPWM与电压空间矢量变频调速系统一.实验目的1.通过实验掌握异步电动机变压变频调速系统的组成及工作原理。2.加深理解用单片机通过软件生成SPWM波形的工作原理与特点。以及不同调制方式对系统性能的影响3.熟悉电压空间矢量控制(磁链跟踪控制)的工作原理与特点。4.掌握异步电动机变压变频调速系统的调试方法。二.实验内容1.连接有关线路,构成一个实用的异步电动机变频调速系统。2.过压保护、过流保护环节测试。3.采用SPWM数字控制时,不同输出频率、不同调制方式(同步、异步、混合调制)时的磁通分量、磁通轨迹、定子电流与电压、IGBT两端电压波形测试。4.采用电压空间矢量控制时,不同输出频率、不同调制方式时的磁通分量、磁通轨迹、定子电流与电压、IGBT两端电压波形测试。5.低频补偿特性测试。三.实验系统组成及工作原理变频调速系统原理框图如图7―3所示。它由交-直-交电压源型变频器,16位单片机80C196MC所构成的数字控制器,控制键盘与运行指示、磁通测量与保护环节等部分组成。逆变器功率器件采用智能功率模块IPM(Intel
Ligent Power Modules),型号为PM10CSJ060(10A/600V)。IPM是一种由六个高速、低功耗的IGBT,优化的门极驱动和各种保护电路集成为一体的混合电路器件。由于采用了能连续监测电流的有传感功能的IGBT芯片,从而实现高效的过流和短路保护,同时IPM还集成了欠压锁定和过流保护电路。该器
件的使用,使变频系统硬件简单紧凑,并提高了系统的可靠性。数字控制器采用Intel公司专为电机高速控制而设计的通用性16位单片机80C196MC。它由一个C196核心、一个三相波形发生器以及其它片内外设构成。其它片内外设中包含有定时器、A/D转换器、脉宽调制单元与事件处理阵列等。在实验系统中80C196MC的硬件资源分配如下:1.P3、P4口:用于构成外部程序存储器的16 bit 数据和地址总线。2.WG1~WG3和WG1~WG3:用于输出三相PWM波形,控制构成逆变器的IPM。3.EXTINT:用于过流、过压保护。4.通过接于A/D转换器输入端ACH2和ACH1设之输入频率和改变u/f(低频补偿)。5.利用P0和P1口的P0.4~P0.7和P1.0~P1.3 ,外接按钮开关,用于起动、停止、故障复位两种调制方法,三种调制模式的选择。6.利用P2、P5、P6口的P2.4~P2.7,P5.4与P6.6,P6.7,外接指示灯,用于指示系统所处状态。7.磁通观测器用于电机气隙磁通测量。其前半部分为3/2变换电路,将三相电压VA、VB、VC从三相静止坐标系A、B、C变换到二相静止坐标系α、β上,成为Vα、Vβ。电路的后半部分则分别对Vα、Vβ积分。在忽略定子漏磁和定子电阻压降的前提下,两个积分器的输出分别是二相静止坐标系中电机气隙磁通在α、β轴上的分量φα与φβ;它们的波形形状相似,相位差90°。将两个积分的输出分别接入示波器的X轴输入和Y轴输入,即可得到电机气隙磁通的圆形轨迹。四.实验设备和仪器1.MCL―ⅠI型电机控制教学实验台2.MCL―09变频调速系统组件3.电机导轨及测速发电机4.慢扫描示波器5.双踪示波器五.实验方法按图7―4连接线路,经检查无误后,合上电源,实验系统缺省设置为SPWM控制,同步调制方式,对应指示灯亮。若指示灯与上述不符,可按复位按钮,使系统处于上述缺省状态,此时系统即可进行实验。若系统采用SPWM控制并工作在同步调制方式,即可按起动按钮,电动机即可起动,起动后可调节频率设定电位器,即可改变电动机转速。在电动机运行中,如按了空间矢量、异步调制,混合调制等按钮,系统将不会响应,必须先按停止按钮,使电动机停止运行,才能转到空间矢量控制以及其它调制方式。低频补偿电位器在电机运行时,可按需要任意调节。系统出现故障停机时,可在拆除故障条件下,按故障复位按钮,使红色故障指示灯灭,系统即可按要求继续运行。1.过压与过流保护环节测试。(这时只需合上控制电源,主回路电源不加。)(1) 断开过压保护检测线,红色故障指示灯发亮,同时微机输出驱动脉冲被封锁,表示过压保护环节工作正常。测试完毕后,按一下故障复位按钮,故障指示灯灭。
(2) 断开过流检测线,红色故障指示灯发亮,同时驱动脉冲被封锁,表示过流保护环节工作正常。测试完毕后,按一下复位按钮,故障指示灯灭。2.采用SPWM控制,分别在输出频率为50Hz、30Hz条件下,测量与描绘不同调制方式时的电机气隙磁通分量、电机气隙磁通轨迹、定子电流、IGBT两端波形(输出U、V、W与N端之间)与定子端电压等波形,以及观察电机运行的平稳与噪声大小。(1) 同步调制:系统设定的载波比N=12。(2) 异步调制:系统设定的载波频率ft=600Hz。(3) 混合调制:分三段执行。第一段0Hz~12.5Hz,载波比N1=100;第二段12.5 Hz~25 Hz,载波比N2=80;第三段,25 Hz~50 Hz,载波比N3=60。当在低频2Hz时,若电机无法转动时,可调节低频补偿电位器(顺时针旋转时,低频补偿电压增大),直到电动机能旋转时止。3.采用电压空间矢量控制实验条件及观察与描绘的波形同方法2。4.低频补偿性能测试低频时定子压降的补偿度可通过电位器连续调节,在输出频率为1~2Hz时,调节补偿度直到电动机能均匀旋转时止,同时观察与记录直流母线电流的变化。结论
上一篇: 下一篇:
All rights reserved Powered by
copyright &copyright 。文档资料库内容来自网络,如有侵犯请联系客服。}

我要回帖

更多关于 开环闭环 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信