怎样把红外感应传感器传感器的感应信号传到电脑上想把红外感应传感器传感

扫二维码下载作业帮
1.75亿学生的选择
下载作业帮安装包
扫二维码下载作业帮
1.75亿学生的选择
我想让一个光电传感器(就是一端发射红外线,一端接收的那种)接到单片机上,可以用哪种型号的传感器啊?意思就是光电门被遮挡,感受到了信号,要把这个信号给单片机,应该用哪种型号的传感器,可以直接连单片机的.还有,哪里有这个买啊?
扫二维码下载作业帮
1.75亿学生的选择
很多啊,普通的那种红外对射管就行.淘宝上搜下很多的.有的是发送和就收做在一起的,就是您说的一端发射一端接受,有的是分开的,一个是透明的一个是黑的.但是用起来都是一样的.一般情况下都是要配下电阻的.接收端的电阻要比发射端的电阻大个50倍的样子,具体的我也忘了,是很早前做的了.
你QQ多少啊,能详谈啊
为您推荐:
其他类似问题
扫描下载二维码捷配欢迎您!
微信扫一扫关注我们
当前位置:&>>&&>>&&>>&红外感应器工作原理
&&& 红外智能节电开关是基于红外线技术的自动控制产品,当有人进入感应范围时,专用传感器探测到人体红外光谱的变化,自动接通负载,人不离开感应范围,将持续接通;人离开后,延时自动关闭负载。人到灯亮,人离灯熄,亲切方便,安全节能,更显示出人性化关怀。
  一、红外光谱
  人们肉眼看得见的光线叫可见光,可见光的波长为380~750nm。可见光的波长从短到长依次排序是紫光→蓝光→青光→绿光→黄光→橙光→红光。波长比红光更长的光,叫做红外光,或叫做红外线(红外)。红外光是人们无法用肉眼看见的光线。民部分光线的波长分布如下:
  紫光(O.40~0.43μm);蓝光(0.43~0.47μm);青光(O.47~0.50μm);绿光(0.50~0.56μm);黄光(0.56~0.59μm);橙光(0.59~0.62μm);红光(0.62~0.76μm);红外(0.76~1000μm);红外光又可以分为:
  近红外(760~3000nm);中红外(rim);远红外(nm)。
  自然界中任何有温度的物体都会辐射红外线,只不过辐射的红外线波长不同而已。根据实验表明,人体辐射的红外线(能量)波长主要集中在约10000nm左右。根据人体红外线波长的这个特性,如果用一种探测装置,能够探测到人体辐射的红外线而去除不需要的其他光波。
  就能实现检测人体活动信息的目的。因此,就出现了探测人体红外线的传感器产品。人体红外线传感器是根据热释电原理制作而成的。
  二、热释电原理
  人体红外感应传感器,是利用热释电效应原理制成的一种传感产品,什么是热释电效应呢?就是因温度的变化而产生电荷的一种现象。
  为清楚说明热释电效也现像。以图示意说明。
  图l是温度变化曲线示意图:图2是温度变化引起传感器表面电荷变化状态曲线示意图;图3是由传感器表面电荷变化引起的电压变化输出曲线示意图。
  图l开始的阶段(T),在没有红外线照射下,热释电红外线传感器的温度没有变化,传感器表面的电荷处于中和状态,正负对等(A),此时,传感器没有输出(0)。图l第二阶段(T+△T),有温度变化时。在人体红外线的照射下,热释电红外线传感器的温度如果上升了△T,那么传感器表面的电荷就如图2(B)所示的那样发生相应的变化。如果温度变化为△T,其对应的电荷变化就产生△V的变化,因此,传感器输出△V。随着时间的延长,传感器表面就会重新吸附空气中的离子并相互抵消由此而达到如图2c所示的中和状态。此时,传感器又恢复到没有输出(O)。如图3所示。
 当温度下降时,温度又回到原来的状态(T),其自由极化状态如图2D所示。由于温度的下降变化件(相对而言)过程与温度上升变化相反,所以,传感器表而的电荷变化与上升时变化过程刚好相反,是个反过程。
  因此,传感器的输出信号就是一△V,如图3所示。同理,随着时间的延长,传感器的表面又会重新吸附空气中的离子,而使传感器的输出信号再次为零。
  传感器对人体活动信息的感应全过程输出信号如图3所示。从传感器输出图中不难看出,传感器对人体活动的一个动作所输出的信号是一个完整的波形。在实验中。如果用放大器把该信号放大,再用观察就是一个正脉冲和一个负脉冲。也就是说,传感器输出感应到的一个移动信号近似于一个完整的l Hz脉冲信号。
  三、红外线传感器
  在热释电型传感器中,以前都是使用一元的传感器,由于一元传感器受杂散光等因素的影响比较大,应用效果比较差。所以,现在普遍使用双元传感单元,这种传感器有如下优点:
  1.具有灵敏度高的特点。
  2.两个单反向连接。因此,同时输入的红外线会相互抵消,没有输出。由此增加了对外部杂散光、环境温度变化以及外部震动影响的稳定性(见图5)。
  由于热释电型红外线传感器的输入阻抗极高,非常容易引入噪声。
  因此就需要对传感器进行电磁屏蔽处理,因此采用金属封装,外壳接地(图4、图5的③脚)。这样就可以达到屏蔽杂波噪声的目的。
  在自然界中,所有物体辐射的热能都与自身的温度成正比。物体的温度越高其辐射热能的峰值波长就越短。温度在36~37℃的人体辐射出来的热能峰值约在900~1000nm的红外线,因此,完全可以用热释电型红外线传感器检测到人体的有或无。
  为了在监测人体有或无的过程中避免太阳光和照明灯光等光线的影响,通常对热释电型红外线传感器表面附加上滤光片,同时,由于人体的移动比较缓慢,因此还需要带有高效率,能够聚焦的菲涅尔透镜等配件,才能满足实际的使用需要。
  四、红外线感应模块
  人体红外线感应模块具有体积小、使用方便、工作可靠、检测灵敏、探测角度大、感应距离远等一系列的独特优异功能,已在各个领域里得到了广泛应用。整个红外线感应模块一般包括热释电型传感器、菲涅尔透镜、带通放大器、比较器、光控电路、延时电路、输出电路等,如图6所示。
  1.菲涅尔透镜 &透镜的作用是将人体辐射的红外线聚焦、集中,以提高探测灵敏度。
  2.热释电传感器 &传感器的功能是将人体辐射出来的特定波长的红外线检测到,并产生微弱的信号。在不用菲涅透镜时,探测距离只有1~2米。使用菲涅尔透镜后,探测距离能达到10米以上,因此,菲涅尔透镜的作用是提高探测距离。
  3.带通放大器 &由于热释电传感器输出的电脉冲信号幅度很小(仅1mV左右),其频率约在0.3~l0Hz左右(该频率视人体的移动速度而定),是超低频信号。
  因此。需要高增益低噪声、低频带通放大器进行高增益放大处理后,才能送到下一级电路。放大器的增益约在70~75dB数量级。
  4.比较器 &为了有效地抑制噪声干扰,提高模块的工作可靠性,降低误动作的概率,感应模块内设置了电压比较器。电压比较器一般采用双限窗口比较器,它有一个门限电压(阈值电压),一般设为静态噪声的5倍。此值越大,抗干扰能力越强。但灵敏度随之下降;此值小,易受干扰而产生误动作。当放大器的输出信号到比较器,其幅度达到比较器的门限值时,比较器输出脉冲信号,去触发延时单稳态电路。这种比较器的设置,可有效防止噪声信号及电源网络干扰聒造成的误动作。
  5.光控电路 &光控电路的作用是利用对光敏感的特性。对输入到比较器的信号进行控制。在白天,光敏受到光线的照射。阻值变得很小,如果将该很小的电阻值接在比较器的输入端,比较器的输入信号幅度永远达不到阈值信号所需要的跳变值,所以,比较器就没有输出。相反,在晚间,光敏电阻不受光的照射。阻值变得很大,几乎对比较器的输入信号不起作用。
  这样就起到昼夜的光控作用目的。
  6.延时电路 &延时电路有两种:一种是可重复触发的单稳态延时电路。只要电压比较器有不断的信号输出(其实就是在感应模块感应范围内,有人不断地走动或出现、消失),单稳延时电路被不断地重新触发。输出端保持有效电平,直到最后一个触发脉冲消失后,再延长一个单稳时间。第二种延时电路是用了两个单稳电路,其目的是提高延时电路的工作可靠性。其原理是:当比较器输出脉冲信号时,第一个触发器被触发(单稳时间较短),第一个单稳电路的输出触发第二个单稳态电路。使其进入暂稳态,两个单稳电路的输出一起送下一级电路处理。
  7.输出电路 &根据执行电路的不同。红外线感应模块可以输出高电平延时脉冲,也可以输出低电平延时脉冲:甚至输出标准的脉冲波形。这就需要对比较器电路输出的信号进行整形处理。
  现在市场上,人体感应模块的电路组成形式有多种多样的,既有专用芯片电路,也有用通用型芯片实现的。由于目前的专用芯片性能不一定比通用的运算放大器芯片制作的感应模块好、加之价格也比较高。所以,笔者在今后的文中。以采用通用的运算放大器,作为实现人体红外线感应模块功能的放大器芯片电路。
  五、人体红外线感应模块的电路原理
  图7的电阻R2是探头需要的匹配负载。一般都选用47kΩ。Al、A2组成感应模块的带通滤波和增益放大器。由它们完成带通放大器的输入信号取自R2两端。第一级带通滤波器的下限截止频率由R4、C2决定,R6、C4决定带通滤波器的上限截止频率。感应模块放大器的电压增益由R6、R4和Rl0、R7决定。Al、A2都接成反相输入反馈式放大器:它们的上限截止频率由如下公式计算;fH=1/2×π×R6×C4,将电路中相应的元件数值带入计算公式可以得出大约为7Hz,下限截止频率计算公式:fL=1/2×π×C2×R4,经计算可以得出约为0.3Hz。
  放大器的电压增益可以用反馈电阻R6/R4的比值,然后取分贝对数。A1、A2的总增益约70dB。
  电阻R3、R5、R8、R9组成偏置电路。将两级运算放大器偏置在1/2U(U为电源电压)处。运算放大器的A3、A4及周边元件Rll~R14、VR及D1、D2组成双限比较器电路。比较器的基准电压由Rll~R14分压决定。运放A3的反相输入端基准电压为Vr-=0.55U(U为电源电压),同相输入端电压Vr+=0.45U。
  当传感器没有感应到人体红外线时。放大器A2输出电压为1/2U,这是因为A2的同相输入端电压取自R8、R9组成分压电路的中心点电压,也即l/2U。所以,静态时A2输出电压介于Vr-与Vr+之间。
  因A3同相端电压大于0.5U而小于0.52U(Vr-),所以输出低电平。同样的道理,A4也输出低电平。
  当有人在传感器前面移动时,感应模块检测到人体红外线后。经放大A2输出相对于l/2U正、负脉冲信号。
  此时,若A2输出正脉冲信号,其幅度将大于Vr-(O.52U),Vr+(0.48U),因此,A3输出高电平,A4输出低电平。比较器输出高电平。同理,当A2输山负脉冲信号时,A4输出高电平。A3输出低电平。由此可见,当人体在传感器前面移动时,比较器中的A3、A4交替输出高电平,图7电路图中的二极管D1、D2是隔离二极管。作用是为了防止A3、A4中任一个输出低电平时将另一个输出的高电平短路掉而设置的,所以起到了隔离作用。在后续的电路中,可以外接各种执行电路。
  图8和图9分别是产品的外形图和测试连线图,该红外线感应模块外形尺寸为:×20mm×15mm。电路中采用的是全。感应模块共有三个端子,①脚为输出端;②脚为电源端;③脚为模块地。检测时请按图9(测试图)连接好。模块接上电源时输出端初始状态为高电平,约20秒后模块恢复静态,此时如有人在模块前面移动时,模块能检测到并同时输出与感应信号相一致的电平。
该文章仅供学习参考使用,版权归作者所有。
因本网站内容较多,未能及时联系上的作者,请按本网站显示的方式与我们联系。
【】【】【】【】
上一篇:下一篇:
本文已有(0)篇评论
发表技术资料评论,请使用文明用语
字符数不能超过255
暂且没有评论!
12345678910
12345678910
12345678910
能源成本是工业设施中最重要的费用之一。虽然许多管理者认为能源是一项不可避免的开支,实际上该项开支属于可变成本,可通过监测和管理大幅提高企业利润。 全新Fluke 能够非常快捷地识别能源浪费源头,是工程师电气能耗的基本配置!此新型功率计非常容易设置和使用,以及...[][][][][][][][][][]
IC热门型号
IC现货型号
推荐电子百科推荐这篇日记的豆列
······2016第三届物联网大会
智能后视镜产品方案对接会
中国LED智能照明高峰论坛
第三届·无线通信技术研讨会
第二届·中国IoT大会
ETFo智能安防技术论坛
移入鼠标可放大二维码
红外线传感器的工作原理
来源:www.elecfans.co
作者:本站日 19:42
[导读] 红外线传感器的工作原理
红外线传感器的英文全称是:infrared transducer
红外线传感器的工作原理
红外线传感器的英文全称是:infrared transducer
利用红外线的物理性质来进行测量的。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。 红外线传感器包括光学系统、检测元件和转换电路。光学系统按结构不同可分为透射式和反射式两类。检测元件按工作原理可分为热敏检测元件和光电检测元件。热敏元件应用最多的是热敏电阻。热敏电阻受到辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。 红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗(见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机 的过热情况等。 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。人体热释电红外传感器和应用介绍被动式热释电红外探头的工作原理及特性:一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。
1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。
2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。
3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。
5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。 红外线遥控鼠标器中的器在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚轴转动,X轴方向和Y轴方向滚轴又各带动一个转轴(称为译码轮)转动。
广义地讲,遥感是不直接接触地收集关于某一定对象的某种或某些特定的信息,从而了解这个对象的性质。很早以前,人们就希望从空中来观察地球,当时人们使用的是普通的照相机,后来发展成为专门的航空照相机。航空摄影的技术在世界大战期间获得了长足的发展,基于这种照片的识别技术也得到了提高。随着飞行器技术的提高,尤其是火箭和卫星的出现,遥感技术获得了一个全新的平台。现在,遥感技术也日新月异,成为在国民经济建设中不可取少的一种重要技术,尤其在军事方面的应用也很广泛。遥感中收集到的信息,就是物体发射或者被它反射的电磁波。这些电磁波包括近紫外、红外线、可见光、微波等。收集电磁波信息的装置叫做传感器。装载传感器的地方,称为平台。
遥感就是用装在平台上的传感器来收集(测定)由对象辐射或(和)反射来的电磁波,再通过对这些数据进行分析和处理,获得对象信息的技术。遥感技术的迅速发展,一个重要的因素是它应用于我们所生活的环境。人们越来越需要深刻地了解我们的地球,了解它的资源,了解他的变化,以便合理安排生产和生活活动。遥感主要原理注:传感器装载在平台上 遥感中可以使用可见光和近红外区的电磁波进行遥感,这是利用了对象的反射特性,这种方式是航空摄影发展而来的结果,也是最为广泛应用的一种,在月球上观察地球就是这样的。另外有两类技术也在遥感中大显身手。
其一是使用热红外和热成像技术,主要是利用了物体的辐射特性。热成像是与远距离测量地球表面特征的温度有关的遥感分支。它所研究的问题小到可以探测一间屋子的热能量泄漏,大到可以研究地球表面的洋流。因为温度实质是地球环境中一切物理、化学和生物过程的重要控制因素之一。因此,温度数据在经营管理地球资源的活动中必然占有极其重要的地位。
其二是利用微波遥感器进行遥感。微波遥感分为被动式和主动式。主动式的微波遥感器主要是侧视雷达。它是在50年代为军事侦察目的而发展的。它目前的重要应用主要在于快速取得大片有云地区的地面资源情报数据。被动式微波遥感器感受的是它们视场内的自然可利用的微波能量,其工作方式和热辐射计或热扫描仪非常相似,但是能够接受到的信号也比热红外区微弱得多,同时信号所伴随的噪声也大得多。
因此这种信号的判释问题也要比其他各种遥感器困难得多。但和侧视雷达一样也有全天候的特性。依靠选择适合的工作波长,可以用它或者穿透大气,或者观察大气。通常来说,微波遥感用在大气的各项数据的测量上,在海洋学、油污探测、融雪测定等方面都有应用。遥感在军事科学上的应用是显然的,因为可以远距离地观察目标,而且可以获得相对宏观的分析数据。在军事上,遥感的用途大致有:首先是对目标国家和地区的资源状况的监视。通过有效地监视资源及其变化,可以帮助确定战略的目标。其次,监视对方军事部署和大规模的军事移动。许多军事部署的位置信息可以通过高精度的卫星遥感获得,大规模的军事移动也容易在遥感器上留下痕迹,这些都对于对应国家采取相应的措施提供了快速而有效的信息。
其次,在具体的作战当中,遥感可以帮助分析局部的地形、资源状况,从而帮助己方进行战术行动的方案判断。各种军用卫星的发射,也为全方位地监视目标提供了基础。现代战争作为数字化的战争,信息在战争中是至关重要的,遥感作为一项能够大范围、高精度、快速获得信息的技术,必然能够在未来的战争中获得更多的应用。 可见,传感器在科学技术领域、工农业生产以及日常生活中发挥着越来越重要的作用。人类社会对传感器提出的越来越高的要求是传感器技术发展的强大动力。而现代科学技术突飞猛进则提供了坚强的后盾。二十一世纪,人们一方面通过提高与改善传感器的技术性能;一方面通过寻找新原理、新材料、新工艺及新功能来改善传感器性能,制造出更多的传感器.而红外线传感器作为其中的一部分也必将得到更大的发展.
红外线传感相关文章
红外线传感相关下载
技术交流、积极发言! 发表评请遵守相关规定。
面对智能家居领域产品无线组网互联互通的难题,还有开发费用高启的难题情,找ARM潘劭齐到具备安全和快速开发能力的平台,ARM亚太区市场总监潘劭齐介...
上海声瀚科技的陈虹道认为,语音交互已经成为智能时代的入口。2014年到2017年全球语音设备出货量大幅度攀升,全球出货量从2014年的不足500万台,到201...
创新实用技术专题
版权所有 & 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-}

我要回帖

更多关于 人体红外感应传感器 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信