为什么生产和科研中采用人造而非天然水晶 人造水晶放射性物质

“核雾染”传言又起,科研人员认定雾霾与核辐射无直接关系
作者:新岳阳 微信公众号
最近朋友圈流传两篇题为“中国煤炭工业的崩溃和核污染灾难”和“再谈中国核污染问题的事实和原理”的文章(文章署名为马可安物理博士)。雾霾是大家十分关心的问题,作为长期从事煤中微量元素研究的科研人员,都认为:马可安文章提出的“北方火电厂燃煤引起放射性铀粉尘大量散布,促进雾霾的形成”的论点缺乏科学根据、多处概念混淆、数据引用和解读存在明显谬误、分析结果妄言误判,易造成社会的恐慌。针对这样的言论,环保部组织核安全方面的专家研究后,对此问题做出回应。雾霾与核辐射无直接关系专家们认为,雾霾的成因和形成过程比较复杂,主要涉及化石燃料的燃烧、工业生产的排放、机动车尾气、城市扬尘、地理环境及气候气象条件等方方面面。环保部核与辐射安全中心副总工程师陈晓秋介绍,煤燃烧过程中,铀、钍在原煤中含量的80%以上留在了炉渣中,经除尘过滤后,随烟尘排放的仅占原煤含量的1-2%。根据对24省区563个煤样中天然放射性核素含量测定研究结果估计,我国燃煤电厂每生产1GWa电能,对周围居民造成的附加辐射剂量为天然本底的2.6‰,不会对周围居民造成放射性危害。内蒙古煤矿核素含量正常环保部通过对监测数据进行分析,认为内蒙古煤中天然放射性核素含量与全国其它地区相比处于同一水平。内蒙古露天煤矿根据对各地煤矿中煤样和矸石样的天然放射性核素含量测量结果,内蒙古大营铀矿所在的鄂尔多斯地区,煤样中铀-238的含量为6.3-57.7贝可/千克,煤矸石中铀-238的含量为14.6-87.2贝可/千克,与全国平均值相比处于同一水平。内蒙古大营铀矿与周围的煤矿处于不同深度,煤矿在铀矿下约100多米,这个地区的铀矿目前并没有开采,铀矿下的煤矿也没有开采。中核集团铀矿地质专家赵凤民指出,砂岩型铀矿产在煤层之上,相距一定的距离,它的铀含量本身也很低,它的边界品位只有万分之一,个别地方可能达到万分之三、万分之四,铀含量并不高。我国已设立167个空气放射性水平自动监测站当前我国已在所有省会城市和部分地级市设立了167个空气放射性水平自动监测站,可连续监测γ空气吸收剂量率、连续进行空气气溶胶取样,采集的样品定期送实验室分析。全国空气中放射性水平自动监测点位图“监测结果表明,各监测站的γ空气吸收剂量率均处于正常水平,各种天然放射性核素的含量均处于正常水平,也没有监测到异常人工放射性核素。”环境保护部辐射环境监测技术中心研究员赵顺平表示。这些监测站点均布置在我国大中城市人口较为密集的区域,布点的密度也已接近世界核大国的水平,监测结果定期通过环境保护部(国家核安全局)官方网站和国家核安全局官方微信进行发布。铀在空气中的放射性极其微量天然环境中一直存在辐射现象,但铀的含量极低,几乎可以忽略不计。即便煤炭中混有少量的铀,但由于铀的沸点比煤炭燃烧温度要高很多,绝大部分铀还是以颗粒状态存在于煤渣中,如果仍有放射性铀进入到大气环境中,由于铀的密度较大,为19吨/立方米,铀的颗粒物也会很快沉积在地面,并不会成为悬浮在空中的细微颗粒。环境保护部核与辐射安全专家委员会委员刘森林介绍说,在我国北方的一些燃煤电厂煤渣场周围,过去确实出现过辐射场比当地本底辐射“稍微偏高”的现象,这主要是由于原煤中天然放射性物质含量稍微偏高,以及在燃煤过程中煤中天然放射性核素富集所致,但不能说这样的地区就是“高辐射区”。云南宣威的肺癌高发性与煤中铀无关云南宣威是肺癌高发病区,而当地煤中铀含量仅2.3μg/g[16],和中国煤中铀的背景值相当,当地煤中的铀与肺癌的发病率并无关联。对于该地区肺癌与燃煤的关系,一些前期究认为宣威肺癌是由煤炭不完全燃烧产生的多环芳烃类物质引起的[17-19],香港大学田林玮博士和本文作者之一代世峰等人进行了长期的研究[16,20],认为当地肺癌高发区与煤的燃烧产物(烟尘)中的大量的纳米级石英有紧密联系。马可安将煤中铀和肺癌联系在一起,毫无依据。关于煤中铀的异常值马可安在文中引用黄文辉和唐修义在2002年发表论文中的数据[21],“某地煤炭样品检测到每公斤25660毫克的铀,即2.5%含量的铀”。实际上,该原始数据来自张淑苓等1984年在《沉积学报》上的数据[22],此含量是煤中凝胶化组分中铀的含量,而不是整个煤层中铀的含量(注:希望马可安博士看原始文献)。煤中铀、砷等有害元素的含量出现过异常高的值,这都是在特殊的氧化、淋滤富集等地质背景下形成的,其影响范围也非常小,往往只有几十平方米。火电厂燃煤引起放射性扩散的说法明显夸大其词对内蒙古准格尔燃煤电厂的研究表明,92.2%的铀经燃烧后进入了飞灰和底灰(均为固体燃煤产物,前者被除尘器捕集),而不是释放到空气中;该电厂原煤来自黑岱沟煤矿,其煤中铀含量处于正常水平。关于PM2.5中的铀的丰度问题。在准备此文过程中,发现新疆维吾尔自治区疾病预防控制中心刘飚同志于日就此问题做了回应,现拷贝在此,供参考:“根据相关报道,目前我国雾霾最严重时,空气中PM2.5浓度约1毫克/立方米。煤灰中铀-238浓度低于1贝可/克(国际原子能机构技术报告丛书 No.419,p32),假定PM2.5全是煤灰(实际不可能),雾霾中颗粒物的铀-238活度也小于1毫贝可/立方米。而正常空气中天然放射性氡,过去有,现在有,将来也存在;中国有,世界各国同样有,其活度,联合国原子辐射效应科学委员会(UNSCEAR)2008年报告书报道:世界平均值:室外10贝可/立方米,室内40贝可/立方米(还未计其子体活度),即雾霾颗粒物中的铀-238活度,仅为室外空气中天然氡活度的万分之一,仅为居室内空气中天然氡浓度的四万分之一,雾霾颗粒物中的铀-238活度,低于空气中天然氡活度的万分之一,铀-238怎能成为引起雾霾的主要原因呢?!”
相关微信文章:
相关推荐:
本网站所有内容均采集自网络,如有侵权麻烦邮箱联系删除。研究称氧化石墨烯可快速清除水中放射性物质
核心提示:近日,美国莱斯大学和俄罗斯莫斯科国立罗蒙诺索夫大学的研究人员发现,氧化石墨烯具有非凡的吸附能力,能够快速除去污染水体中的放射性物质。
美国莱斯大学和俄罗斯莫斯科国立罗蒙诺索夫大学的研究人员发现,氧化石墨烯具有非凡的吸附能力,能够快速除去污染水体中的放射性物质。相关研究报告发表在近期出版的英国皇家化学学会《物理化学.化学物理学》杂志上。科学家确定,原子厚度的氧化石墨烯薄片能快速地吸附在天然和人造的放射性核素上,并凝结成固体。这种薄片能够溶于液体之中,也能轻易地大批量生产。氧化石墨烯会在导入模拟核废物的数分钟内凝固,迅速聚集最致命的毒素废物,这一过程也将跨越多个pH值。在此项研究中,研究人员主要致力于去除锕系元素和镧系元素等放射性同位素。也就是从液体中而非固体或气体中除去元素周期表中的30个稀土元素。虽然这些同位素并不亲水,但却可以隐匿于水中。而从人类健康和环境保护角度来看,这可谓是它们最不受欢迎的聚集地。事实上,天然生成的放射性核素也不怎么受欢迎,因为压裂流体会在钻井过程中将它们带到表层。当地下水也从钻井中流出,且放射性元素超过一定水平时,就会因高温而不能再输送回土壤中。此时就需要将受污染的水体运送至其他地方进行储存和处理,随之而来的则是大笔的开销。而使用氧化石墨烯能快速过滤放射性污染物,显著降低水力压裂法等油气回收方式的成本,对清理福岛核电站等区域的污染水源大有裨益。此外,采矿业也将收获潜在的利益。基于对环境的担忧,美国之前基本中断了稀土金属的开采,而其对于手机制造而言十分重要。
虽然氧化石墨烯的较大表面积决定了其吸附毒素的能力很强,但吸收速度之快仍出乎科研人员所料。这一速度具体由污染物的构成所决定。对此,科学家以包含铀和钚的模拟核废物以及钠和钙等可负面影响氧化石墨烯吸收效应的物质进行了测试。即使如此,氧化石墨烯也被证明效用要明显优于膨润土和活性炭等常用的核清理剂。研究人员还强调,捕获放射性核素并不会减弱它们的放射性,而是使其更易被处理。以福岛核电站附近的区域为例,可通过将氧化石墨烯添加到以离子状态存在的放射性物质溶液中,得到固体的核物质,并对其进行焚烧。在此过程中,氧化石墨烯会快速燃烧,仅剩下块状的放射性物质,便于重复利用。而低成本和可生物降解的特质也使氧化石墨烯成为了渗透性反应墙技术的合适之选,这对于原位地下水的修复而言具有相当的意义。(来自:中国科技网 记者 张巍巍)
本文来源:网易探索
关键词阅读
48小时评论排行
评论144942条
评论137745条
评论114923条
评论94300条
评论94049条
文明上网,登录发贴
网友评论仅供其表达个人看法,并不表明网易立场。
热门产品:   
:        
:         
热门影院:查看: 11549|回复: 42
《认识放射性矿物》
本帖最后由 晴朗梦石 于
23:43 编辑
首先非常感谢中国奇石网的晓栋先生!他是国内目前对放射性矿物最有研究的专家之一,对普及放射性矿物知识作了杰出的贡献。下面为大家转载他发表的颇有影响力的论文《认识放射性矿物》,版权所有归晓栋先生。
下图为湖南产的钙铀云母
(76.13 KB, 下载次数: 53)
08:48 上传
& && && && && && && && && && && && && && && && && && && && && && & 认识放射性矿物
& && && && && && && && && && && && && && && && && && && && && && && && && & 作者:晓栋
矿物晶体有放射性吗?很多都会提这个问题。大家对“放射性”的恐惧可以理解,因为有广岛原子弹、切尔诺贝利的现实案例,但对矿物晶体的放射性疑虑来自哪里呢?
& & 我们熟知的钻石、水晶、玉及其它各类宝石都是矿物晶体,难道它们有放射性吗?事实上,绝大部分矿物晶体都没有放射性,只有极少数含铀、钍等放射性元素的矿物有放射性(具体有哪些矿物有放射性,见后文)。通常这些放射性矿物的价格昂贵,普通人很少有机会能接触到。
& & 收集放射性矿物会危害健康吗?你也许会瞪大眼睛:“放射性矿物人们都避之不及,还有人去收藏?”。其实很多放射性矿物非常美丽,在国外的自然博物馆和矿展上经常可以看到它们的身影。这些展出的放射性矿标并未有里三层外三层的特殊保护,也未见观众因恐惧而不敢上前观赏,在老外眼里,接触此类矿物并不可怕。
& & 是我们过于神经质了?原因在于我们一直对“放射性”都只有一个模糊的概念,提到“放射性”,就想到原子弹、核事故,而缺乏一个全面科学的认识。网上有过不少介绍矿物放射性的文章,但阅读下来我发现有不少描述不够科学、甚至夸张的说法,所以我决心重新整理一下资料,帮助大家重新认识放射性矿物收藏的问题。
& & 下面的视频便是华盛顿自然博物馆中的放射性矿标展品,吸引了很多游人驻足观看。
关于放射性的一些常识
放射性元素
& & 有些元素能够自发地从不稳定的原子核内部放出粒子或射线(如 α、β、γ 射线等),同时释放出能量,最终衰变形成稳定元素,这种性质称为放射性,这类元素称为放射性元素。在元素周期表上,原子序数大于 83 的元素都是放射性元素,83 以下的元素中只有锝(Tc,原子序数 43)和钷(Pm,原子序数 61)是放射性元素。
& & 放射性元素可以分为天然放射性元素和人工放射性元素。天然存在的放射性元素只有钋、氡(气体)、钫、镭、锕、钍、镤和铀,其中铀和钍最为常见;人工放射性元素是通过核反应人工合成的元素,如锝、钷和原子序数大于 93 的元素,比较出名的就是锝(用于医疗)和钚(用于核工业)。
放射性同位素
& & 同位素是同一元素的不同种原子,它们具有相同的质子数,但中子数却不同。例如原子序数为 1 的氢就有三种同位素,分别是氕(H)、氘(D)、氚(T),它们的原子内都只有一个质子,但分别有 0、1、2 个中子。在自然界,H 占氢元素的 99.98%,D 占 0.016%,T 主要通过人工合成(自然界里极微量的 T 是宇宙射线与上层大气间作用,通过核反应生成的)。这三种同位素里,T 具有放射性。
& & 碳(C)在自然界有 3 种同位素,它们是 C-12,C-13,C-14,其中 C-14 具有放射性(占碳元素的百万分之一),可以用来测文物年代。
& & 钾(K)在自然界也有 3 种同位素,它们是 K-39,K-40,K-41,其中 K-40 具有放射性(占钾元素的 0.01%,它是岩石和土壤中天然放射性本底的重要来源之一。
& & 铀(U)在自然界同样有 3 种同位素,它们是 U-234(0.005%),U-235(0.720%),U-238(99.275%),它们都具有放射性。
& & 同位素分为稳定同位素和放射性同位素,它们按一定的比例在自然界存在。碳和钾虽然有天然的放射性同位素,但含量极少,所以这两种元素不被认为是放射性元素。更多的放射性同位素是由人工合成,服务于国防、生产、科研、医疗等领域。
原子弹威力不等同于放射性危害
& & 很多人对放射性的过度恐惧来自于原子弹,但放射性危害只是原子弹的第三重影响,原子弹最大的破坏力来自于光热和冲击波,它们是裂变反应(而非放射性)的结果。当较重的原子核发生裂变时会发生质量亏损,损失的质量按照爱因斯坦的质能方程(E=mc2,能量 = 质量 x 光速的平方)转换成了巨大的能量。例如,1945 年在日本广岛上空爆炸的原子弹,裂变反应中仅有 1g 的质量转化成能量,但它的威力却相当于 16 万吨黄色炸药发生爆炸,瞬间摧毁了整个城市,并造成十几万人当场死亡。随之而来的才是漫长的放射性危害,而放射性危害是我们需要深入了解的。
& & 放射性物质具有 α 和 β 衰变形式,分别释放出 α 射线和 β 射线,多余的能量通过 γ 射线释放。一般放射性物质衰变的时候,α、β、γ 三种射线同时产生。
& & α 射线是氦原子核(两个质子,两个中子),带两个正电荷;β 射线的是电子,带一个负电荷;γ 射线是是光子(电磁波),只是波长更短,能量更高。三种射线中以 α 射线的电离能力最强,对人体伤害最大,但其穿透力相当弱,几厘米的空气或纸张就能完全挡住 α 射线,更不用说穿透皮肤了;β 射线电离能力较弱,但具有较好的穿透力,可以被 3mm 的铝板阻挡;γ 射线具有极强的穿透力,超过 X 射线,可以穿透几厘米厚的铅板,但由于它的电离能力最弱,所以对人体造成的伤害最小。
& & α 和 β 射线经过几英寸的空气或者普通玻璃就会被阻隔,γ 射线穿透力虽强,但对人体的伤害也最小,所以放射性物质在体外对人造成的危害是相当有限的。但如果放射性物质进入体内,危害就要大得多,这在后文的“内照射”中将作解释。有一点要记住,α 射线的内照射是各种放射性危害中最大的。
& & 放射性元素的原子在释放 α、β、γ 射线的同时,会衰变成其它元素,这种衰变有一定的速率。当原子中有半数发生衰变时所需要的时间,叫半衰期。
& & 在自然界,只有 4 种主要的放射性元素和地球寿命差不多:
& && &&&铀-238:半衰期是 45 亿年
& && &&&铀-235:半衰期是 7 亿年
& && &&&钍-232:半衰期 140 亿年
& && &&&钾-40:半衰期 12.8 亿年
& & 其它天然放射性元素钋、氡(气体)、钫、镭、锕、镤 都是 铀-238、铀-235、钍-232 衰变链中的产物。很多放射性元素因为半衰期较短,在自然界几乎已无存在其矿物:例如钚最稳定的同位素 钚-244 的半衰期是 8200 万年,对于 46 亿年的地球历史来说,天然存在的钚早就减半减半再减半了不知多少次了,几乎可以说没有了,更不用说聚集成矿了。所以,放射性矿物不是含铀就是含钍(钾-40 只占钾元素的 0.01%,含量太少了)。
& & 通常来说,半衰期越短的放射性核素,其放射性也越强。钍-232 的半衰期是 140 亿年,放射性是 4 种主要放射性元素中最弱的。值得一提的是氡,它是放射性监测的重点对象,因为它是气体,容易通过呼吸道进入人体,形成内照射。让人高兴的是,氡的半衰期只有 4 天,不用多久它就可以大部分衰变成稳定元素,而不再具有放射性。但危险之处也在此,短半衰期意味着它的放射性更强。
& & 利用放射性核素的半衰期,我们可以做很多事情:
& & 例如 C-14 测年法:古代生物在活着的时候,不断从环境摄入 C-14,机体维持着 C-12 和 C-14 的平衡。当生物体死后,新陈代谢停止,体内的 C-14 因为衰变而逐渐减少。由于 C-14 的半衰期是 5730 年,可以根据 C-14 的残留推算出生物的年代。C-14 只能准确测出 5-6 万年以内的出土文物或化石,对于例如生活在五十万年以前的周口店北京猿人,利用 C-14 测年法是无法测定出来的。
& & 在核医学临床应用中使用最广的核素是 锝99m,半衰期只有 6.02 小时,射线能量适中,可利用其杀死癌细胞,但又不至于在体内长留。
天然本底辐射
& & 天然放射性元素是构成自然界的组成部分,在各类岩石、土壤、水体、大气、乃至人体中都有不同数量的放射性元素存在。你知道铀在地球上的含量有多少吗?平均每吨地壳物质中约含 2.5 克铀,这比钨、汞、金、银等元素的含量还高。铀在各种岩石中的含量很不均匀,例如在花岗岩中的含量就要高些,平均每吨含 3.5 克铀。碳和钾是构成人体的必要元素,自然界中含有一定比例的 碳-14(百万分之一)和 钾-40(0.01%),它们在人体中的比例也一样。
& & 这些天然存在的微量放射性辐射就是天然本底辐射,它已是自然平衡体系的一部分,不会危害人类健康,因为人类和其它生命在进化过程中,已经适应了本底辐射环境。地球人平均一年累计所受辐射约为 2.4mSv(毫希沃特,其中宇宙射线 0.4,大地 0.5,氡 1.2,食物摄入 0.3)。
人体能承受多大的辐射
& & 我想这是大家最关心的问题:为何在国外,观众能那么近距离地欣赏放射性矿物?是他们在拿健康开玩笑,还是我们恐惧过了头?
& & 目前通用的辐射剂量是以 Sv(希沃特)来表示,考虑到它是相当大的计量单位,日常使用更多的是 mSv(毫希沃特)和 μSv(微希沃特):1mSv = 0.001Sv,1μSv = 0.001mSv。
那么多少剂量的辐射不会影响人的健康呢?美国环保署(EPA)发布的人均年吸收辐射上限是 1mSv(不包括天然本底辐射和生活中的辐射,如手机、电视等)。下表为辐射对人体的影响以及相应标准(日本):
辐射剂量(mSv) 影响和标准
0.05 核电站工作人员一年累计辐射。
0.1 - 0.3 做一次X射线胸部透视的剂量。
0.2 乘飞机从东京到纽约之间往返一次的剂量(宇宙射线和飞行高度有关)。
1.0 一般公众一年工作所受人工放射剂量(ICRP推荐)
从事辐射相关工作的妇女从被告知怀孕到临产所受人工放射剂量极限。
1.2 与1天平均吸1.5盒(30支)纸烟同居的被动吸烟者一年累计辐射[7]。
1.5 日本人一年累计所受辐射。
2.0 从事辐射相关工作的妇女从被告知怀孕到临产腹部表面所受人工放射剂量极限。
2.4 地球人平均一年累计所受辐射(宇宙射线0.4,大地0.5,氡1.2,食物0.3)
4 一次胃部X射线透视的剂量。
5 从事辐射相关的妇女工作者一年累计所受辐射法定极限。
6.9 1次CT检查
7 - 20 CT全息摄影。
10 日本原子力安全委员会所制定“室内避难”的辐射剂量。
13 - 60 1天平均吸1.5盒(30支)纸烟者一年累计[7][8]。
50 从事辐射相关工作者(非女性)一年累计所受辐射法定极限。
日本原子力安全委员会所制定“避难”的辐射剂量。
自卫队员,消防员,警察(妇女除外)一年累计所受辐射法定极限。
100 已证明对人体健康明显有害的辐射剂量极限
从事辐射相关工作者(非女性)五年累计所受辐射法定极限。
从事辐射相关工作者(非女性)在紧急状况下从事一次作业所受辐射法定极限[9]。
250 福岛第一核电站事故现场人员暂定辐射剂量上限。
白血球减少。
500 淋巴球减少。
国际放射防护委员会规定除人命救援外所能承受的辐射极限。
1,000 出现被辐射症状。恶心,呕吐。水晶体浑浊。
2,000 细胞组织遭破坏,内部出血,脱毛脱发。死亡率5%。
3,000 - 5,000 死亡率50%(局部被辐射时3,000 : 脱毛脱发、4,000 : 失去生育能力、5,000 : 白内障、皮肤出现红斑)[10]。
7,000 - 10,000 死亡率99%。
10,001以上
& & 当短时辐射剂量低于 100mSv 时,医学上观察不到对人体的确定性效应,即明显的组织损伤;当剂量超过 4000mSv,在没有医学监护的情况下,有 50% 的死亡率,而当剂量超过 6000mSv 时,则可致命。
& & 国际辐射防护委员会规定放射性工作人员全身均匀照射的年剂量应该低于 50mSV,普通居民应该低于 1mSv。为防止随机效应,我国放射卫生保护基本标准中规定,放射性工作人员受到全身均匀照射时的年剂量当量不应超过 50mSv,公众应该低于 5mSv(如果长期持续受到放射性照射,则年剂量不应超过 1mSv)。以上限制都不包括天然本底辐射和医疗照射。 另外,公众成员的皮肤和眼晶体的年剂量当量不应超过 50mSv。
& & 对健康产生影响的放射性指标中有短期辐射和长期累积辐射两项,短期辐射的上限是 100mSv,长期累积辐射是每年 1mSv,偶尔的年份可以达到 5mSv。这就好比温度,人可以承受短时的高温,但长时间(24小时以上)能接受的温度就要低得多得多。
& & 核辐射对人和生物的伤害,与核辐射的剂量、人们暴露于核辐射的时间以及核物质的半衰期有关,虽然严重者可立即致死,但具体而言:当短时辐射量低于 100mSv 时,对人体几乎没有危害。下图就是一个很好的例证:国外科学家带着橡胶手套直接捧取纯金属钚块,难道他在拿生命开玩笑?唯一的解释就是短时间钚的体外接触,不足以危害他的健康。无独有偶,英国女王伊莉莎白二世访问哈维尔核子实验室时,就曾受邀触摸了一块以塑料包裹的钚环,以体验其“温暖”的感觉。
22:18 上传下载附件 (6.74 KB)
& & 纯钚或纯铀的放射性到底如何呢?虽然我没有相关资料,不过可以先看下面的视频:
/v_show/id_XMzkxMTc3MzE2.html
& & 这是一个放射性矿物(各种铀矿)的展示(没有特殊保护措施),实测的最高辐射值为 29.9 μSv/h,远低于 100mSv 的短期辐射标准,即使你在这些放射性矿物面前呆一个小时,受到的累积辐射也只有 29.9μSv(0.03mSv)。我见过对一些沥青铀矿(含铀 42-76%)的零距离检测,辐射值大概在 400 μSv/h,由此可以估计一下纯铀的放射水平,你大概就不会对那位科学家的“壮举”感到吃惊了。在那张图片中,金属钚所释放的 α 射线和大部分 β 射线已被阻挡,只能感受到 γ 射线的温暖感觉了。别忘了钚的半衰期是 8200 万年,铀-238 是 45 亿年,它们都是非常缓慢的释放着这些射线,和那些几年、几天乃至几小时就衰变掉的放射性核素的辐射强度相比简直是天壤之别。不要想当然地以为接触到铀,皮肤就会被灼伤、细胞坏死,这也许是电影或者小说中的情节。
& & 内照射是放射性核素进入生物体(常通过呼吸道和消化道),使生物受到来自内部的射线照射。对 γ 射线来说,因其射程长、穿透力强,内照射与外照射并无多大差别;而对于 α 和 β 射线,在体外大部分被阻挡,一旦进入体内,将会引起极高能量的局部吸收,导致特异的生物学效应,引起细胞损伤和癌变。事实上,在体内造成最大伤害的是 α 射线,因其电离作用最强。由于放射性核素只有全部从体内排出或全部衰变完后,对机体的照射作用才停止,其有效累积剂量可能大于 1.0Sv。
& & 内照射的典型案例就是美国使用贫铀弹而导致战斗和非战斗人员的慢性放射性疾病。
贫铀的主要成分是提炼铀-235 后剩下的铀-238,铀-238 的放射性较低,释放 γ 射线的能力较弱,所以不像铀-235 那样危险。但铀-238 释放 α 射线的能力很强,只比铀-235 稍弱。只是 α 射线的穿透力是最差的,在空气中只能前进几厘米,不能穿透人的皮肤,所以如果是外照射,铀-238 的危害不大。一般情况下,用普通的橡皮手套就可以完全杜绝铀-238 的辐射危害。特殊情况下,短时间用手拿起铀-238 也不会造成严重后果。当然,如果长时间直接接触铀-238,也会损伤人的皮肤。
& & 铀是自然界比重最大的物质,所以贫铀被美国以及北约用于制造威力强大的穿甲弹。正常状态下未使用的贫铀弹一般是无害的,只要按照正常的保存和运送方法。但是贫铀弹在被使用后,其严重危害性就会全部暴露出来。穿甲弹的贫铀弹芯在击中目标后的高温中会剧烈燃烧,同时产生大量烟雾和粉尘,随空气流动而四处飘散,通过呼吸道进入人体内,或者沾染到泥土、水源和植物上。我们知道,由于有空气、衣物和皮肤的阻隔,贫铀的射线不会从外部对人造成较大危害。但是如果这些粉尘进入人体就是完全另外一种情况了。铀-238 微粒可以直接作用于脆弱的内脏器官,α 射线会近距离地给细胞造成严重危害,导致癌症和其他症状。由于贫铀粉尘都是从消化道和呼吸道侵入,所以这些部位的器官最容易产生病变,比如鼻癌、肺癌、胃癌等。如果摄入太多粉尘的话,这些有毒微粒还会通过血液进入肝脏、肾脏和骨骼,导致更严重的伤害。这些病都是慢性病,病症在5年之内都不会显现。
& & 最新调查表明,伊拉克战后的的癌症死亡率是战前的十倍。其中受害最重的是儿童,癌症死亡率高达千分之十六。美国自己也尝到了使用贫铀弹的苦果,所谓的“海湾战争综合症”、“科索沃战争综合症”在一定程度上是由使用贫铀弹引起的。主要表现为体质下降,心情烦躁、头痛,肌肉关节痛,睡眠障碍等症状。
& & 由此可见,内照射是最严重的放射性危害,尤其是 α 射线内照射。放射性物质的体外接触并不可怕,但要严格防范产生内照射的各种隐患:
放射性物质衰变会产生放射性气体氡,它很容易通过呼吸进入体内,造成内照射。所以放射性物质(包括矿物标本)必须存放在通风良好的环境中。
任何放射性物质的散落,必须处理干净:未被预警的人们可能会长期和这些散落的放射性物质接触,进而在不知情的状况下让这些物质通过呼吸或消化道进入体内。
接触放射性物质后要洗手,绝对不能在放射性物质附近吃喝东西、抽烟或者睡觉。
放射性矿物
& & 天然的放射性矿物其实放射性不是很强,这是因为能形成矿物的放射性核素都具有很长的寿命(半衰期)– 比地球的年龄还长或至少可以和地球年龄相比较。放射性核素的放射性强弱和它的半衰期有非常大的关系,氚的半衰期只有 11.2 年,具有很强的放射性,但仍然没有放射性药物中使用的核素 锝99m 强,锝99m 的半衰期只有 6 小时,一个单位的 锝99m 每秒释放的射线是氚的 16,000 倍,钚的 7,000,000 倍(当然 锝99m 的用量极微,目的是杀死癌细胞,短半衰期是为了不在体内残留放射性)。
& & 自然界没有钚矿,是因为钚的最稳定同位素 钚-244 半衰期是 8200 万年(放射性也不是很强)。但对于地球 46 亿年的历史来说,天然的钚元素已经减半减半再减半了 50 多次,所以无法成矿。
& & 在自然界,只有四种主要放射性核素的寿命可以和地球年龄比较,它们是:
& && &&&铀-238(占铀总量的 99% 以上,半衰期 45 亿年)
& && &&&铀-235(不到铀总量的 1%,半衰期 7 亿年)
& && &&&钍-232(100%,半衰期 140 亿年)
& && &&&钾-40(占钾总量的 0.01%,半衰期 12.8 亿年)。由于钾-40 占钾总量的比例太小,钾元素不被认为是放射性元素。
& & 这就意味着放射性矿物不是含铀就是含钍。很多稀土矿由于含有痕量的铀或钍(某些稀土元素是铀衰变的产物),也具有少量的放射性。另外,铀和钍的衰变链中会产生很多短寿命的其它放射性核素(当然放射性也更强),不过这些放射性核素只以痕量存在,而且较短的半衰期使得它们也都无法聚集成矿。
& & 还有两种相对常见的放射性核素:镭-226 和 氡-222,它们都是铀衰变的产物。氡被认为是最危险的放射性物质之一,因为它是气体,很容易被吸入肺部造成内照射。幸运的是,氡只有 4 天的半衰期,这样在建筑建造的过程中,天然的氡可以很快衰变为稳定元素,使人们可以放心入住。但 4 天的半衰期也意味着氡有非常强的放射性。
& & 另一种有名的放射性核素是 碳-14,占碳总量的百万分之一,半衰期是 5732 年,可用于年代测定。碳-14 的半衰期虽然很短,但宇宙射线与地球大气的核反应仍然源源不断的提供着新的 碳-14。由于它是碳元素,它会很快散布到所有的生命体中。事实上,我们的身体也是天然的放射源(大部分贡献来自于钾-40,然后是碳-14,最后才是铀及其衰变产物)。
& & 注意我说铀和钍的放射性不是很强并不意味着它们不危险。放射性物质的危害源于其释放的多种粒子:β 射线(高能电子)、γ 射线(高能光子)、中子及 α 粒子(高能氦核),它们的穿透力也各不相同。铀和钍的放射性主要是&&α 射线,在空气中只能前进几厘米,甚至能被纸张阻挡。将放射性矿物放在玻璃或者塑料盒中可以阻挡 99% 以上的放射。α 放射源的危险主要来自于吸入其粉尘(或其衰变产生的放射性氡气)。& &
收集放射性矿物的注意事项
& & 只要有适当的保护措施以及预警得当,即使是非专业人士也可以安全地收藏放射性矿物标本。
将放射性矿物置于透明带盖的盒子里,这样可以避免观赏时放射性矿物碎屑的掉落,也减少了皮肤接触,同时阻挡 α 射线和部分 β 射线。
放射性矿物可以用手直接接触,但不要时间过长。接触放射性矿物后,请用肥皂洗手。勿将放射性矿物放入口袋。
打开放射性矿物的容器时(可能包含放射性气体氡),可以考虑暂时屏住呼吸。不要去吹放射性矿标的灰尘。
绝不要在放射性矿物周围吃喝东西、抽烟或睡觉。
观赏放射性矿物保持适当距离,因为 α 和 β 射线经过几英寸的空气或者普通玻璃就会被阻隔,γ 射线穿透力很强,但其衰减和距离也有很大的关系。
不要收藏超过 4-5 cm 的标本,因为辐射的强弱和放射性物质的多少有关。
再小的放射性矿标,也不要将其放在日常活动的房间内(卧室、起居室、书房),因为再弱的放射性,一年的累积剂量也会超出安全标准。
对放射性矿标做好记号。
注意让小孩和过于好奇的大人远离放射性矿物。
铀和钍衰减过程中会产生放射性的氡气,应将放射性矿物标本放置于通风的地方;如果放于橱内,则应考虑安装一个气泵(水族箱的那种),使橱内的氡气不至于积累到对人造成伤害的程度。
如果你准备收集含铀云母等放射性矿物,那么就去买一个盖革计数器,通过数据了解矿标的放射性强弱 — 既不用过度防护,也不能忽视潜在的风险。
放射性矿物应集中存放,不能和雄黄、蓝铁矿、日光萤石等受光容易发生变化的矿物放在一起,因为 γ 射线比紫外光和 X 射线能量还要高很多,会迅速使这些矿物发生变化。
其它岩石、化石的放射性
& & 有人认为矿物晶体有放射性,所以不如收藏奇石。事实上,岩石都是由各种矿物组成的,如果矿物有放射性,岩石怎么可能没有呢?天然放射性元素中,最常见的是铀和钍,铀在地壳中的含量比钨、汞、金、银等元素还高,其中在花岗岩中的含量更高些,有些花岗岩被检测出放射性超标的原因就是含有痕量的铀和钾-40(颜色较浅的花岗石含有更多的钾,也就含有更多的钾-40,所以有人提出要注意哪些浅色的花岗岩石材)
& & 建筑行业在对石材的检测中提及某些花岗岩和大理石具有“强放射性”,超过标准值的 5-6 倍。由于建筑中的石材用量巨大,而且里面的居住和工作的人们和这些石材朝夕相处,极微量的放射性一年累积下来也完全可能超过 1mSv 的安全指标。所以必须严格限定,以免对人的健康产生任何潜在的损害。但这些石材的“强放射性”与放射性矿物的辐射强度比起来是微不足道的,如果不是在建筑上使用,而只是将这些花岗岩或者大理石作为标本或者奇石收藏,完全可以忽略其放射性,因其含有的放射性物质总量太少了。
& & 有些文章随便对矿物冠以“极强的放射性”这种不科学的说法,我觉得有点危言耸听。也有文章提及某些稀土矿物具有“强放射性”,说法也夸张了。稀土元素本身没有放射性,若其矿石具有放射性也是因为含有痕量的铀或钍,只是具有微量或者少量放射性而已。
放射性矿物的种类含钍矿物
& & 其中有两种含铀矿物
• THORITE 钍矿 (Th, U)SiO4
• THOROGUMMITE 脂铅钍铀矿 (Th, U)2(SiO4)2-X(OH)4X
• MONAZITE 独居石 (Ce, La, Th, Nd, Y)PO4
& & α 射线是铀矿的主要放射形式。含铀云母中的分子水如果失去部分,会转变成相应的偏含铀云母(Meta-)。
• URANINITE 沥青铀矿 UO2
• AUTUNITE 钙铀云母 Ca(UO2)2(PO4)2·10H2O
• URANOPILITE 铀钙矿 (UO2)6SO4(OH)10·12H2O
• ANDERSONITE 碳钠钙铀矿 Na2CaUO2(CO3)3·6H2O
• BETAFITE 贝塔石, 铌钛铀矿 (Ca, Na, U)2(Ti, Nb, Ta)2O6(OH, F)
• CARNOTITE 钒钾铀矿 K2(UO2)2(VO4)2·1-3H2O
• COCONINOITE 硫磷铝铁铀矿 Fe2Al2(UO2)2(PO4)4(SO4)(OH)2·20H2O
• META-ANKOLEITE 偏钾铀云母 KUO2PO4·3H2O
• META-AUTUNITE 偏钙铀云母 Ca(UO2)2(PO4)2·2-6H2O
• META-TORBERNITE 偏铜铀云母 Cu(UO2)2(PO4)2·6-8H2O
• META-URANOCIRCITE 偏钡铀云母 Ba(UO2)2(PO4)2·6-8H2O
• META-ZEUNERITE 偏翠砷铜铀矿 Cu(UO2)2(AsO4)2·8H2O
• PHOSPHURANYLITE 磷铀矿 Ca(UO2)3(PO4)2(OH)2·6H2O
• TORBERNITE 铜铀云母 Cu(UO2)2(PO4)2·10H2O
• TYUYAMUNITE 钙钒铀矿 Ca(UO2)2(VO4)2·5-8H2O
• URANOCIRCITE 钡铀云母 Ba(UO2)2(PO4)2·10-12H2O
• WALPURGITE 砷铀铋矿 (BiO)4UO2(AsO4)2·H2O
• ZEUNERITE 翠砷铜铀矿 Cu(UO2)2(AsO4)2·10-16H2O
• BOLTWOODITE 黄硅钾铀矿 K2(UO2)2(SiO3)2(OH)2·3H2O
• CUPROSKLODOWSKITE 硅铜铀矿 Cu(UO2)2Si2O7·6H2O
• SKLODOWSKITE 硅镁铀矿 Mg(UO2)2Si2O7·6H2O
• URANOPHANE 硅钙铀矿 Ca(UO2)2Si2O7·6H2O
• CLIFFORDITE 铀碲矿 UTe3O9
• MOCTEZUMITE 碲铅铀矿 Pb(UO2)(TeO3)2
• SCHMITTERITE 碲铀矿 (UO2)TeO3
• ZIPPEITE 水铀矾 K4(UO2)6(SO4)3(OH)10·4H2O
& & 稀土矿物和“垃圾矿物”(Trash Can Minerals,成矿后的残留物聚集而成)通常会含有痕量的铀或钍,所以会有少量的放射性。稀土矿物的成分复杂,例如褐帘石,分子式是 (Ca, Ce, La, Y)2(Al, Fe)3(SiO4)3(OH), 应该没有放射性,但其实可能是 (Ca, Ce, Y, La, Th, Na, K)2(Al, Fe, Be, Mn, Mg)3(SiO4)3(OH),其中钍是放射性元素,也是为什么有些褐帘石具有放射性的原因。
• ALLANITE 褐帘石(垃圾矿物)
• EUXENITE 黑稀金矿(垃圾矿物)
• MICROLITE 细晶石,钽烧绿石(稀土矿物)
• PYROCHLORE 烧绿石(稀土矿物)
• SAMARSKITE-(Y) 铌钇矿(稀土矿物)
• XENOTIME 磷钇矿(痕量)
• CHURCHITE 针磷钇铒矿(痕量)
& & 自此,放射性矿物基本介绍完毕,希望大家(特别是准备收集放射性矿物的爱好者)对其有了更全面的认识。文章很长,如有错误,请大家指正。
我写这篇文章,并非弱化放射性的潜在危害,也非建议大家都去收集放射性矿物。如果你天天要接触的东西,放射性指标就要严格,比如建筑中装饰的石材,日常佩戴的珠宝等;但放射性标本不同,你不会天天去接触,只是偶尔看一次,而且绝不放在日常起居的地方。这样短时的接触就不会造成什么危害。另外你如果收集无比巨大的奇石,那么本身质量就非常巨大,里面所含放射性物质的总量也就上去了,而且奇石一般不像标本,能放入盒子或者柜子,奇石都是敞开放置,而且往往会放在人们起居的地方,如果某些奇石有极微量的放射性的话,那才是要注意的呢!我觉得这比一个4-5cm的放在盒子中的小标本危害更大。
行业内的放射性指标是普适性的,目的是为了让没有防护的人在任何情况下都不会造成健康损害,这些标准包括建材、食品、环境监测等。但用这样的放射性指标(以及相应的检测仪器)来看待矿物标本,就常常会得出具有“强放射性”的结论。好比砷是有毒物质,我们有很多严格的限制标准,如果拿这个标准来衡量矿物,那么很多矿物标本都“很毒”。如果有人说,矿物晶体因为常含有砷和各种重金属元素,会对人造成潜在的健康损害,你作为矿物爱好者,并对矿物有所了解,一样会不以为然。只要注意对待就是了,接触好标本就洗手,不要吃下肚子,会有什么危害呢?我觉得“要注意矿物晶体的放射性”和“要注意矿物晶体的毒性”这两个命题是类似的,都有一定的依据,但描述都很不科学。收集矿物的人都是讲求科学的,只要你了解放射性危害产生的原因,然后注意规避,那么收集观赏放射性矿物的人一样可以长命百岁。
所以知道更多并无坏处,大部分人对放射性矿物敬而远之,我赞同;但如果你哪天决定收藏放射性矿物,那么就好好了解它,而不是冠以一个简单的“强放射性”这种不科学的描述,这对收藏者本身没有任何保护意义。收集放射性矿物的注意事项,上文也已经说的很清楚了,如果你要“与狼共舞”,那么就遵循这些注意事项吧,
嘻嘻,写这篇文章的目的并非让全民玩放射性矿物,而是让想收集放射性矿物的爱好者对它有更多的了解。
我觉得放射性标准是针对大众的:目的是为了让不知情的普通人在任何情况下(长期接触,哪怕误食、吸入),都不至于产生健康危害,所以这样的放射性标准会非常严格。但是收藏放射性矿物标本,是是需要收藏者拥有一定知识和保护手段、对放射性矿物有所了解、并知道如何有效保护自己。就好比让一个完全不懂的人去玩弄各种矿物,一样很危险(比如小孩),他也许会摸摸矿物,再舔舔手指。
人类每时每刻都生活在各种辐射中。来自天然辐射的个人年有效剂量全球平均约为2.4毫西弗,其中,来自宇宙射线的为0.4毫西弗,来自地面为0.5毫西弗,吸入(主要是室内氡)产生的为1.2毫西弗,食入为0.3毫西弗。
戴夜光表每年有0.02毫西弗;乘飞机旅行2000公里约0.01毫西弗;每天抽20支烟,一年有0.5至1毫西弗;一次X光检查0.1毫西弗。
当辐射剂量低于100毫西弗时,医学上观察不到对人体的确定性效应,即明显的组织损伤;当剂量超过4000毫西弗,在没有医学监护的情况下,有50%的死亡率,而当剂量超过6000毫西弗时,则可能致命。
国际辐射防护委员会规定工作人员全身均匀照射的年剂量应该低于50毫西弗,广大居民应该低于1毫西弗。为防止随机效应,我国放射卫生保护基本标准中规定,放射性工作人员受到全身均匀照射时的年剂量当量不应超过50毫西弗,公众应该低于5毫西弗,如果长期持续受到放射性照射,则年剂量不应该高于1毫西弗。以上限制都不包括天然本底辐射(上文所述约为2.4毫西弗)和医疗照射。
2.4.2.1 个人受到由可控制的源和实践产生的辐射照射(包括内外照射),不得超过2.4.2.4~2.4.2.8中规定的剂量当量限值。
2.4.2.2 剂量当早限值不包括医疗照射和天然本底照射。
2.4.2.3 剂量当量限值分两类:一类适用于辐射工作人员(见2.4.2.4),另一类适用于公众成员(见2.4.2.8)。
2.4.2.4 为了限制随机效应,辐射工作人员的年有效剂量当量限值为50毫西弗.为了防止非随机效应,眼晶体的年剂量当量限值为150毫西弗;其他单个器官或组织的年剂理当量限值为500毫西弗.
2.4.2.5 辐射工作人员由于事先计划的特殊照射所受的有效剂量当量在一次事件中不得超过100毫西弗,在一生中不得超过250毫西弗;并同时受2.4.2.4中器官或组织的年剂量当量限值的限制。
事先计划的特殊照射必须得到本单位或上级辐射防护部门的批准,并应经过周密的计划安排。对接受这种照射有员,应进行个人剂量监测和医学观察,结果应记入个人剂量和健康档案。
下列人员不得接受事先计划的特殊照射:过去已接受过有效剂量当量超过250毫西弗的异常照射的工作人员;育龄妇女;年龄未满十八岁者。
2.4.2.6 从事辐射工作的育龄妇女接受照射时,应按月大致均匀在加以控制。对已知怀孕的妇女接受的照射,除按均匀的剂量率加以控制外,在一年内接受的有效剂量当量应限制在15毫西弗以下。
2.4.2.7 年龄在16~18周岁的学生和学徒工,由于教学培训需要接受照射时,一年内受到的有效剂量当量不得超过15毫西弗。年龄小于16 周岁按公众成员 控制。
2.4.2.8 公众成员的年有效剂量当量不超过1毫西弗。如果按终生剂量平均的年有效剂量当量不超过1毫西弗,则在某些年份里允许以每年5毫西弗作为剂量限值。公众成员的皮肤和眼晶体的年剂量当量限值为50毫西弗。
如果仔细阅读,你会发现有针对皮肤和眼晶体的单独剂量限值(对公众成员来说,全身年剂量为1毫西弗,皮肤和眼晶体年剂量是50毫西弗)。对于放射性矿物标本,我不会建议你放在口袋里,或者紧贴眼睛观看,而是隔开一定距离观赏(不用非常远,10-20cm),接触部分也仅限于手部的皮肤。这同紧贴胸部进行的X胸透是不一样的,和全身的CT照射也完全不同。
有了上述数据作为参考,然后再加上盖革计数器的检测,你就可以计算自己受到的放射剂量是否超标了。每个放射性标本都不同,我检测的只是我收集的标本,如果你想知道你的标本放射性有多大,怎样的观赏是安全的,那么也请务必去买一个盖革计数器(能读取微西弗数值)。
我的含铀云母标本在5cm开外,盖革计数器的读数就已经在5微西弗(当你看到微西弗的时候,其单位其实是微西弗/小时,1微西弗=0.001毫西弗)以下了,我一年顶多也就看2-3次(每次把几个标本都看一遍,也不需要10分钟吧),平时我把这些标本都放置于远离日常活动的阳台一侧,所以我估摸着还不至于对自己的健康造成什么危害吧。另外盖革计数器还有一个好处,就是它在检测的时候,会有滴滴的声音,速度约急促,就意味着周围的辐射越大,本身就已经是很好的警示作用了。
07:31 上传
下载附件 (48.23 KB)
下表为辐射对人体的影响以及相应标准.
辐射剂量(mSv)影响和标准0.05核电站工作人员一年累计辐射。0.1 - 0.3做一次X射线胸部透视的剂量。0.2乘飞机从东京到纽约之间往返一次的剂量(宇宙射线和飞行高度有关)。1.0一般公众一年工作所受人工放射剂量(X射线透视的剂量。5从事辐射相关的妇女工作者一年累计所受辐射法定极限。6.91次[7][8]。50从事辐射相关工作者(非女性)一年累计所受辐射法定极限。
日本原子力安全委员会所制定“避难”的辐射剂量。
自卫队员,消防员,警察(妇女除外)一年累计所受辐射法定极限。100已证明对人体健康明显有害的辐射剂量极限
从事辐射相关工作者(非女性)五年累计所受辐射法定极限。
从事辐射相关工作者(非女性)在紧急状况下从事一次作业所受辐射法定极限[9]。250福岛第一核电站事故现场人员暂定辐射剂量上限。
白血球减少。500淋巴球减少。
国际放射防护委员会规定除人命救援外所能承受的辐射极限。1,000出现被辐射症状。恶心,呕吐。水晶体浑浊。2,000细胞组织遭破坏,内部出血,脱毛脱发。死亡率5%。3,000 - 5,000死亡率50%(局部被辐射时3,000 : 脱毛脱发、4,000 : 失去生育能力、5,000 : 白内障、皮肤出现红斑)[10]。7,000 - 10,000死亡率99%。10,001以上
有几个观点,我要突出一下:
1)对人健康产生影响的放射性指标中有短期辐射和长期累积辐射两项,短期辐射值的上限是100毫西弗,长期累积辐射是每年1毫西弗(不包括天然本底辐射以及医疗),偶尔的年份可以达到5毫西弗。这好比气温,人可以承受短时60度的气温,但持续24小时能接受的气温就要低得多。放射性矿物标本的接触属于短期辐射,我收集的放射性矿标检测下来辐射值远小于100毫西弗(我的含铀云母大概在5微西弗,沥青铀矿大概在26微西弗),这也是为啥在国外矿展上,观众可以放心观看放射性矿物标本的原因。
2)放射性矿物的放射性是强还是弱?有人看到我的检测结果,就想当然认为放射性很弱,这种理解是错误的!!!以5微西弗(其实是5微西弗/小时)为例,如果你接触24小时,就是5x24=120微西弗,10天就是1200微西弗,或者1.2毫西弗,已经超过了普通人一年的累积辐射量上限(即使每天8小时,一个月也超标了)。这就是为什么绝对不能将放射性矿物放在人们日常起居的地方(卧室、起居室、书房)的原因。我如果一年看6次放射性矿物,每次10分钟,那么累积辐射量也只是5微西弗,远远低于累积辐射量上限,所以对健康是不会产生什么 损害的。但是如果你和放射性矿物天天相处,那就危险了!!!所以特别是经常接触放射性矿物的矿商们,千万要注意自己的长期累积辐射量!!!
有人说你把标本放在阳台上就安全了?安全不安全,我想当然说了不算。这个时候就要靠盖革计数器来测量了。你可以测量1m、2m。。。开外以及房间内的放射性读数,然后换算成一年的累积辐射量。在房间内,我已经检测不到放射性了(只有本底辐射)。当然如果你能把这些标本放在更远的地方,自然更加安全,。
3)收集放射性矿物或者经常接触放射性矿物的矿商,一定要有盖革计数器,来读取各种辐射信息。国外专业的矿商甚至会对每个卖出的放射性矿物标本标注放射值。
4)为什么建筑石材中的放射性指标那么苛刻?原因很简单,如果你用大理石或者花岗石装修家居,那么就是24小时或者至少是每天12小时相处,这样如果正常人每年可以接受的照射量上限是1毫西弗的话,这些建筑石材的放射性不得高于=0.11微西弗(24小时相处),当然其实行业标准要更加严格。
在自然界,只有 4 种主要的放射性元素和地球寿命差不多:
& & 铀-238:占铀总量的 99%,半衰期是 45 亿年
& & 铀-235:占铀总量的 1%,半衰期是 7 亿年
& & 钍-232:半衰期 140 亿年
& & 钾-40:占钾总量的 0.01%,半衰期 12.8 亿年。钾-40 相比稳定的 钾-39 和 钾-41 来说太少了,因此钾并不被看作是放射性元素。
& & 基本上来说,所有的放射性矿物不是含铀就是含钍。
为什么这么说呢?我们知道天然的放射性元素有钋、氡(气体)、钫、镭、锕、钍、镤和铀,但是所有的放射性元素都有半衰期,也就是每经过一定的时间就会有一半的元素衰变成其他稳定元素。比如为啥自然界几乎没有钚(核工业燃料),因为钚最稳定的同位素钚-244的半衰期是8200万年,对于46亿年的地球历史来说,天然存在的钚早就减半减半再减半了不知多少次了,已经几乎可以说没有了,更不用说形成矿物了。
所有放射性元素的始祖都是铀-238、铀-235和钍-232,包括钋、氡、钫、镭、锕、镤,在这3条衰变链中会形成很多半衰期较短的元素(半衰期短,放射性就强),但较短的半衰期使得它们无法聚集成矿,它们属于稀有地球元素。
所以说放射性矿物不是含铀就是含钍。
下面是放射性矿物目录:
含钍矿物(翻译真要命了,狂查google,也不能保证准确,将就看吧):
THORITE 钍矿,硅酸钍矿
THOROGUMMITE 脂铅钍铀矿
MONAZITE 独居石(独居石是含铈和钍的矿物,铈是稀土元素,但不能因此说稀土矿物带有放射性,这样会误导人们以为稀土元素是带放射性的,独居石有放射性是因为含有钍!)
含铀矿物:
URANINITE 沥青铀矿
AUTUNITE 钙铀云母
URANOPILITE 铀钙矿
ANDERSONITE 碳钠钙铀矿
BETAFITE 黑钛钙铀矿
CARNOTITE 钒钾铀矿
COCONINOITE 硫磷铝铁铀矿
META-ANKOLEITE 准钾铀云母
META-AUTUNITE 准钙铀云母
META-TORBERNITE 准铜铀云母
META-URANOCIRCITE 准钡铀云母
META-ZEUNERITE 准翠砷铜铀矿
PHOSPHURANYLITE 磷铀矿
TORBERNITE 铜铀云母
TYUYAMUNITE 钙钒铀矿
URANOCIRCITE 钡铀云母
WALPURGITE 砷铀铋矿
ZEUNERITE 翠砷铜铀矿
BOLTWOODITE 黄硅钾铀矿
CUPROSKLODOWSKITE 硅铜铀矿
SKLODOWSKITE 硅镁铀矿
URANOPHANE 硅钙铀矿
CLIFFORDITE 铀碲矿
MOCTEZUMITE 碲铅铀矿
SCHMITTERITE 碲铀矿
ZIPPEITE 水铀矾
我觉得应该还有。。。
稀有元素氧化物以及Trash Can Mineral(垃圾桶矿物,留有铀或者钍的微量放射性痕迹的矿物,放射性不大)
ALLANITE 褐帘石(垃圾桶矿物)
EUXENITE 黑稀金矿(垃圾桶矿物)
MICROLITE 微晶石(稀有元素氧化物)
PYROCHLORE 烧绿石(稀有元素氧化物)
SAMARSKITE-(Y) 铌钇矿(稀有元素氧化物)
XENOTIME 磷钇矿(垃圾桶矿物)
CHURCHITE 针磷钇铒矿(垃圾桶矿物)
作为大自然的主要放射性矿物,铀和钍的半衰期都很长,这也就意味着它们的放射性其实比其他半衰期短的放射性元素要小得多。但放射性小,并不意味它们不危险,原因在前面帖子里已经说明了。通常的铀矿和钍矿以alpha放射为主,99%的alpha射线可以被几层纸或者塑料盒阻挡,其衰减产物氡气对人的伤害是要注意的。
电磁辐射是电磁波产生的辐射,光波就是电磁波的一种,不同电磁波的区别只是波长不同,波长越短,能量越高。电磁波有红外线,可见光,紫外线,x射线,gamma射线等。微波、手机信号、无线电波也是电磁波。电磁波的粒子其实就是光子(photon)。
而放射性物质除了发射出gamma射线以外,还有alpha和beta射线,alpha射线的粒子是氦原子核,beta射线的粒子是电子。所以同量的射线,alpha射线对人的危害最大,beta其次,gamma最弱。但是alpha射线空气中只能传播几厘米,可以被纸阻挡;beta射线可以被3mm的铝阻挡,gamma射线能穿透几厘米厚的铅板。
α射线是质子流...
α射线一般去挖矿的时候会遇上,主要是镭射气(氡)以及氡的子体核素的α衰变放出的α粒子。
α粒子的电离本领最强,在空气中射程3.8cm,可以用纸挡住。
挖矿的时候戴好口罩,避免α核素以气溶胶的形式进入呼吸道,形成内照射!也不要在有开创性伤口(刀伤、割上、砍伤等)的时候触摸α核素,以免通过体液循环进入人体
α射线是氦核,2p2n2正电&
有对应矿物图 就好了 此外 “淋巴球” 没有这样的称谓 应该是 淋巴细胞
不错,不知道如果突然暴露在死亡率99%的剂量下是什么神奇的感觉
Powered by}

我要回帖

更多关于 天然放射性物质 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信