平面解析几何何求解

解析几何[几何学分支] -
笛卡尔十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。1637年,法国的哲学家和数学家发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。当时的这个“几何学”实际上指的是数学,就像中国古代“算术”和“数学”是一个意思一样。笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。为了实现上述的设想,笛从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。解析几何的产生并不是偶然的。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。这些都对解析几何的创建产生了很大的影响。在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉。费尔马是一个业余从事数学研究的学者,、解析几何、三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已经有了解析几何的思想。只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。
解析几何[几何学分支] -
费尔马是一个业余从事数学研究的学者在解析几何中,首先是建立坐标系。取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy。利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系。除了直角坐标系外,还有、极坐标系、空间直角坐标系等等。在空间坐标系中还有球坐标和柱面坐标。坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。用这种方法研究几何学,通常就叫做解析法。这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。解析几何的创立,引入了一系列新的数学,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了。”
解析几何[几何学分支] -
解析几何解析几何又分作平面解析几何和空间解析几何。在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。、、的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。运用坐标法解决问题的步骤是??何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。坐标法的思想促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。&希腊著名学者梅内克缪斯(公元前4世纪)企图解决当时的著名难题“”(即用直尺和圆规把立方体体积扩大一倍)。他把直角三角形ABC的直角A的平分线AO作为轴。旋转三角形ABC一周,得到曲面ABECE',如图1。用垂直于AC的平面去截此曲面,可得到曲线EDE',梅内克缪斯称之为“直角圆锥曲线”。他想以此在理论上解决“倍立方问题。”未获成功。而后,便撤开“倍立方问题”,把圆锥曲线做为专有概念进行研究:若以直角三角形ABC中的长直角边AC为轴旋转三角形ABC一周,得到曲面CB'EBE',如图2。用垂直于BC的平面去截此曲面,其切口为一曲线,称之为“锐角圆锥曲线”;若以直角三角形ABC中的短直角边AB为轴旋转三角形ABC一周,可得到曲面BC'ECE'。用垂直于BV的平面去截此曲面,其切口曲线EDE'称为“钝角圆锥曲线”。当时,希腊人对平面曲线还缺乏认识,上述三种须以“圆锥曲面为媒介得到,因此,被称为圆锥曲线的“雏形”。
解析几何[几何学分支] -
《解析几何》《解析几何》作者:ISBN:0 页数:312出版社: 北京大学出版社装帧:平装出版年:简介:本书是学习几何学的入门。书中既讲解了空间解析几何的基本内容和方法(向量代数,仿射坐标系,空间的直线和平面,常见曲面等),等讲解了仿射几何学中的基本内容和思想(仿射坐标变换,二次曲线的仿射理论,仿射变换和保距变换等),还介绍了射影几何学中的基本知识,较好地反映了几何学课程的全貌。全书共分五章,每章内都附有一定数量的习题,书末附有习题答案和提示,便于读者深入学习或自学。本书突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;编排上采用“实例-理论-应用”的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。本书表达通顺,说理严谨,阐述深入浅出。因此,本书是一本颇具特色、为广大高校欢迎的解析几何课程教材。本书可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。
解析几何[几何学分支] -
算术、初等代数、高等代数、数论、、非欧几何、微分几何、代数几何学、射影几何学、拓扑学、分形几何、微积分学、实变函数论、概率和数理统计、复变函数论、泛函分析、偏微分方程、常微分方程、数理逻辑、模糊数学、、计算数学、、数学物理学。
为本词条添加和相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
您也可以使用以下网站账号登录:
此词条还可添加&
编辑次数:6次
参与编辑人数:3位
最近更新时间: 08:34:52
贡献光荣榜向量代数与空间解析几何_视频在线观看_百度视频
订阅精彩视频,请
向量代数与空间解析几何相关视频:
大家都在搜:
百度视频搜索结果源于互联网视频网站,系计算机系统根据搜索热度自动排列,不代表百度赞成被搜索网站的内容或立场。高中数学解析几何解题方法_中华文本库
第1页/共8页
高考专题:解析几何常规题型及方法
本章节处理方法建议:
纵观2006年全国各省市18套文、理高考试卷,普遍有一个规律:占解几分值接近一
半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一
半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与
几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向
量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合
能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分”
的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有
时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很
大。有容易题,有中难题。因此在复习中基调为狠抓基础。不能因为高考中的解几解答题
较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻
下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就
能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几
分算几分。
三、高考核心考点
1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)
2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)
3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)
4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算
5、了解线性规划的意义及简单应用
6、熟悉圆锥曲线中基本量的计算
7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)
8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题
四、常规题型及解题的技巧方法
A:常规题型方面
(1)中点弦问题
具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1,y1),(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
?1。过A(2,1)的直线与双曲线交于两点P1
及P2,求线段P1P2的中点P
给定双曲线x?22
的轨迹方程。
2y12y22?1,x2??1。
分析:设P1(x1,y1),P2(x2,y2)代入方程得x?222
两式相减得
(x1?x2)(x1?x2)?1(y1?y2)(y1?y2)?0。 2
第1页/共8页
寻找更多 ""2014高考数学“拿分题”训练(知识整合+方法技巧+例题分析):解析几何、立体几何
2014高考数学“拿分题”训练(知识整合+方法技巧+例题分析):解析几何、立体几何
2014高考数学“拿分题”训练:解析几何问题的题型与方法
一、知识整合
高考中解析几何试题一般共有4题(2个选择题, 1个填空题,
1个解答题),共计30分左右,考查的知识点约为20个左右。其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法,这一点值得强化。[来源:]
能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.
2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.
3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.
4.掌握圆的标准方程:(r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.
5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a、b、c、p、e之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.
二、近几年高考试题知识点分析
2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.
1.选择、填空题
1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主
(1)对直线、圆的基本概念及性质的考查
(04江苏)以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是_________.
(2)对圆锥曲线的定义、性质的考查
例2(04辽宁)已知点、,动点P满足. 当点P的纵坐标是时,点P到坐标原点的距离是
(A) (B) (C) (D)2
1.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查
例3(04天津文)若过定点且斜率为的直线与圆在第一象限内的部分有交点,则的取值范围是
(A) (B)
(C) (D)
解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.
例4(04江苏)已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线与y轴交于点M. 若,求直线l的斜率.
本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高.
解:(I)设所求椭圆方程是
由已知,得
故所求的椭圆方程是
(II)设Q(),直线
当由定比分点坐标公式,得
于是 故直线l的斜率是0,.
例5(04全国文科Ⅰ)设双曲线C:相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且求a的值.
解:(I)由C与t相交于两个不同的点,故知方程组
有两个不同的实数解.消去y并整理得(1-a2)x2+2a2x-2a2=0.
双曲线的离心率
由于x1,x2都是方程①的根,且1-a2≠0,
例6(04全国文科Ⅱ)给定抛物线C:F是C的焦点,过点F的直线与C相交于A、B两点.
(Ⅰ)设的斜率为1,求夹角的大小;
(Ⅱ)设,求在轴上截距的变化范围.
解:(Ⅰ)C的焦点为F(1,0),直线l的斜率为1,所以l的方程为
将代入方程,并整理得
所以夹角的大小为
(Ⅱ)由题设 得
由②得, ∵
联立①、③解得,依题意有
∴又F(1,0),得直线l方程为
[来源:学,科,网Z,X,X,K]
当时,l在方程y轴上的截距为
可知在[4,9]上是递减的,
直线l在y轴上截距的变化范围为
从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的,以江苏为例,01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程(椭圆),04年考的是椭圆.
三、热点分析与2005年高考预测
1.重视与向量的综合
在04年高考文科12个省市新课程卷中,有6个省市的解析几何大题与向量综合,主要涉及到向量的点乘积(以及用向量的点乘积求夹角)和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状依然会持续下去.
例7(02年新课程卷)平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足,其中a、b∈R,且a+b=1,则点C的轨迹方程为
(A)(x-1)2+(y-2)2=5
(B)3x+2y-11=0
(C)2x-y=0 (D)x+2y-5=0
例8(04辽宁)已知点、,动点,则点P的轨迹是
(A)圆 (B)椭圆 (C)双曲线 (D)抛物线
2.考查直线与圆锥曲线的位置关系几率较高
在04年的15个省市文科试题(含新、旧课程卷)中,全都“不约而同”地考查了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考查直线与圆锥曲线的位置关系的概率依然会很大.
3.与数列相综合
在04年的高考试题中,上海、湖北、浙江解析几何大题与数列相综合,此外,03年的江苏卷也曾出现过此类试题,所以,在05年的试题中依然会出现类似的问题.
例9(04年浙江卷)如图,ΔOBC的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn),
(Ⅰ)求及;
(Ⅱ)证明
(Ⅲ)若记证明是等比数列.[来源:学科网ZXXK]
解:(Ⅰ)因为,所以,又由题意可知,
∴== ∴为常数列.∴[来源:学&科&网]
(Ⅱ)将等式两边除以2,得
∴是公比为的等比数列.
4.与导数相综合
近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合.
例10(04年湖南文理科试题)如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m&0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点。
(I)设点P分有向线段所成的比为,证明:
(II)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
解:(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得 ①
设A、B两点的坐标分别是 、、x2是方程①的两根.
由点P(0,m)分有向线段所成的比为,得
又点Q是点P关于原点的对称点,故点Q的坐标是(0,-m),从而.
(Ⅱ)由 得点A、B的坐标分别是(6,9)、(-4,4).
得 所以抛物线 在点A处切线的斜率为
设圆C的方程是则
所以圆C的方程是 即
5.重视应用
在历年的高考试题中,经常出现解析几何的应用题,如01年的天津理科试题、03年的上海文理科试题、03年全国文科旧课程卷试题、03年的广东试题及江苏的线性规划题等,都是有关解析几何的应用题.
例11(04年广东试题)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s.
已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s
:相关各点均在同一平面上)
解:如图,以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(-1020,0),B(1020,0),C(0,1020)
设P(x,y)为巨响为生点,由A、C同时听到巨响声,得|PA|=|PB|,故P在AC的垂直平分线PO上,PO的方程为y=-x,因B点比A点晚4s听到爆炸声,故|PB|- |PA|=340×4=1360
由双曲线定义知P点在以A、B为焦点的双曲线上,
依题意得a=680, c=1020,
[来源:学科网ZXXK]
用y=-x代入上式,得,∵|PB|&|PA|,
答:巨响发生在接报中心的西偏北450距中心处.
(二)05年高考预测
1.难度:解析几何内容是历年来高考数学试题中能够拉开成绩差距的内容之一,该部分试题往往有一定的难度和区分度,预计这一形式仍将在05年的试题中得到体现.此外,从04年分省(市)命题的情况来看,在文科类15份试卷(含文理合用的试卷)中,有9分试卷(占3/5)用解析几何大题作为最后一道压轴题,预计这一现状很有可能在05年试卷中继续重现.
2.命题内容:从今年各地的试题以及前几年的试题来看,解答题所考查的内容基本上是椭圆、双曲线、抛物线交替出现的,所以,今年极有可能考双曲线的解答题.此外,从命题所追求的目标来看,小题所涉及的内容一定会注意到知识的覆盖,兼顾到对能力的要求.
3.命题的热点:
(1)与其他知识进行综合,在知识网络的交汇处设计试题(如与向量综合,与数列综合、与函数、导数及不等式综合等);
(2)直线与圆锥曲线的位置关系,由于该部分内容体现解析几何的基本思想方法——用代数的手段研究几何问题,因此该部分内容一直是考试的热点,相信,在05年的考试中将继续体现;
(3)求轨迹方程.
(4)应用题.
四、二轮复习建议
1.根据学生的实际,有针对性地进行复习,提高复习的有效性
由于解析几何通常有2-3小题和1大题,约占28分左右,而小题以考查基础为主、解答题的第一问也较容易,因此,对于全市的所有不同类型的学校,都要做好该专题的复习,千万不能认为该部分内容较难而放弃对该部分内容的专题复习,并且根据生源状况有针对性地进行复习,提高复习的有效性.
2.重视通性通法,加强解题指导,提高解题能力
在二轮复习中,不能仅仅复习概念和性质,还应该以典型的例题和习题(可以选用04年的各地高考试题和近两年的各地高考模拟试题)为载体,在二轮复习中强化各类问题的常规解法,使学生形成解决各种类型问题的操作范式.数学学习是学生自主学习的过程,解题能力只有通过学生的自主探究才能掌握.所以,在二轮复习中,教师的作用是对学生的解题方法进行引导、点拨和点评,只有这样,才能够实施有效复习.
3.注意强化思维的严谨性,力求规范解题,尽可能少丢分
在解解析几何的大题时,有不少学生常出现因解题不够规范而丢分的现象,因此,要通过平时的讲评对易出现错误的相关步骤作必要的强调,减少或避免无畏的丢分.
例14(04全国文科Ⅰ)设双曲线C:相交于两个不同的点A、B.
(I)求双曲线C的离心率e的取值范围:
(II)设直线l与y轴的交点为P,且求a的值.
解:(I)由C与t相交于两个不同的点,故知方程组
有两个不同的实数解.消去y并整理得
(1-a2)x2+2a2x-2a2=0.
双曲线的离心率
还有,在设直线方程为点斜式时,就应该注意到直线斜率不存在的情形;又如,在求轨迹方程时,还要注意到纯粹性和完备性等.
五、参考例题
例1、若直线mx+y+2=0与线段AB有交点,其中A(-2, 3),B(3,2),求实数m的取值范围。
解:直线mx+y+2=0过一定点C(0,
-2),直线mx+y+2=0实际上表示的是过定点(0,
-2)的直线系,因为直线与线段AB有交点,则直线只能落在∠ABC的内部,设BC、CA这两条直线的斜率分别为k1、k2,则由斜率的定义可知,直线mx+y+2=0的斜率k应满足k≥k1或k≤k2,
∵A(-2, 3) B(3, 2)
∴-m≥或-m≤ 即m≤或m≥
说明:此例是典型的运用数形结合的思想来解题的问题,这里要清楚直线mx+y+2=0的斜率-m应为倾角的正切,而当倾角在(0°,90°)或(90°,180°)内,角的正切函数都是单调递增的,因此当直线在∠ACB内部变化时,k应大于或等于kBC,或者k小于或等于kAC,当A、B两点的坐标变化时,也要能求出m的范围。
例2、已知x、y满足约束条件
x-3y≤-4,
3x+5y≤30,
求目标函数z=2x-y的最大值和最小值.
解:根据x、y满足的约束条件作出可行域,即如图所示的阴影部分(包括边界).
作直线:2x-y=0,再作一组平行于的直线:2x-y=t,t∈R.
可知,当在的右下方时,直线上的点(x,y)满足2x-y>0,即t>0,而且直线往右平移时,t随之增大.当直线平移至的位置时,直线经过可行域上的点B,此时所对应的t最大;当在的左上方时,直线上的点(x,y)满足2x-y<0,即t<0,而且直线往左平移时,t随之减小.当直线平移至的位置时,直线经过可行域上的点C,此时所对应的t最小.
x-3y+4=0,
由 解得点B的坐标为(5,3);
3x+5y-30=0,
由 解得点C的坐标为(1,).
3x+5y-30=0,
所以,=2×5-3=7;=2×1-=.
例3、 已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,(1)如果,求直线MQ的方程;
(2)求动弦AB的中点P的轨迹方程.
解:(1)由,可得由射影定理,得
在Rt△MOQ中,
所以直线AB方程是
(2)连接MB,MQ,设由
点M,P,Q在一直线上,得
由射影定理得
即 把(*)及(**)消去a,
并注意到,可得
说明:适时应用平面几何知识,这是快速解答本题的要害所在。
例4、已知双曲线的离心率,过的直线到原点的距离是(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
解:∵(1)原点到直线AB:的距离.
故所求双曲线方程为
(2)把中消去y,整理得 .
设的中点是,则
故所求k=±.
说明:为了求出的值, 需要通过消元, 想法设法建构的方程.
例5、已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量。
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点, 、分别是左、右焦点,求∠ 的取值范围;
解:(1)∵,∴。
∵是共线向量,∴,∴b=c,故。
当且仅当时,cosθ=0,∴θ。
说明:由于共线向量与解析几何中平行线、三点共线等具有异曲同工的作用,因此,解析几何中与平行线、三点共线等相关的问题均可在向量共线的新情景下设计问题。求解此类问题的关键是:正确理解向量共线与解析几何中平行、三点共线等的关系,把有关向量的问题转化为解析几何问题。
2014高考数学“拿分题”训练:立体几何
高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内.
选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提.
随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看,
以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题.
一、知识整合
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.
2.判定两个平面平行的方法:
(1)根据定义——证明两平面没有公共点;
(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
⑴由定义知:“两平行平面没有公共点”。
⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那
么它们的交线平行”。
⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⑸夹在两个平行平面间的平行线段相等。
⑹经过平面外一点只有一个平面和已知平面平行。
以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。
4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.
空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,],直线与平面所成的角θ∈,二面角的大小,可用它们的平面角来度量,其平面角θ∈0,π.
对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.
如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角a-l-b的平面角(记作q)通常有以下几种方法:
(1) 根据定义;
过棱l上任一点O作棱l的垂面g,设g∩a=OA,g∩b=OB,则∠AOB=q
(3) 利用三垂线定理或逆定理,过一个半平面a内一点A,分别作另一个平面b的垂线AB(垂足为B),或棱l的垂线AC(垂足为C),连结AC,则∠ACB=q
或∠ACB=p-q;[来源:学科网][来源:]
设A为平面a外任一点,AB⊥a,垂足为B,AC⊥b,垂足为C,则∠BAC=q或∠BAC=p-q;[来源:学科网]
利用面积射影定理,设平面a内的平面图形F的面积为S,F在平面b内的射影图形的面积为S¢,则cosq=.
5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.
求距离的一般方法和步骤是:一作——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值.此外,我们还常用体积法求点到平面的距离.
6.棱柱的概念和性质
⑴理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱
直棱柱正棱柱”这一系列中各类几何体的内在联系和区别。
⑵平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体
直平行六面体长方体 正四棱柱 正方体”这一系列中各类几何体的内在联系和区别。
⑶须从棱柱的定义出发,根据第一章的相关定理对棱柱的基本性质进行分析推导,以求更好地理解、掌握并能正确地运用这些性质。
⑷关于平行六面体,在掌握其所具有的棱柱的一般性质外,还须掌握由其定义导出的一些其特有的性质,如长方体的对角线长定理是一个重要定理并能很好地掌握和应用。还须注意,平行六面体具有一些与平面几何中的平行四边形相对应的性质,恰当地运用平行四边形的性质及解题思路去解平行六面体的问题是一常用的解题方法。
⑸多面体与旋转体的问题离不开构成几何体的基本要素点、线、面及其相互关系,因此,很多问题实质上就是在研究点、线、面的位置关系,与《直线、平面、简单几何体》第一部分的问题相比,唯一的差别就是多了一些概念,比如面积与体积的度量等.从这个角度来看,点、线、面及其位置关系仍是我们研究的重点.
7.经纬度及球面距离
⑴根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个线面角的度数,设球O的地轴为NS,圆O是0°纬线,半圆NAS是0°经线,若某地P是在东经120°,北纬40°,我们可以作出过P的经线NPS交赤道于B,过P的纬线圈圆O1交NAS于A,那么则应有:∠AO1P=120°(二面角的平面角)
,∠POB=40°(线面角)。
⑵两点间的球面距离就是连结球面上两点的大圆的劣弧的长,因此,求两点间的球面距离的关键就在于求出过这两点的球半径的夹角。[来源:学。科。网Z。X。X。K]
例如,可以循着如下的程序求A、P两点的球面距离。
线段AP的长 ∠AOP的弧度数 大圆劣弧AP的长
8.球的表面积及体积公式
S球表=4πR2 V球=πR3
⑴球的体积公式可以这样来考虑:我们把球面分成若干个边是曲线的小“曲边三角形”;以球心为顶点,以这些小曲边三角形的顶点为底面三角形的顶点,得到若干个小三棱锥,所有这些小三棱锥的体积和可以看作是球体积的近似值.当小三棱锥的个数无限增加,且所有这些小三棱锥的底面积无限变小时,小三棱锥的体积和就变成球体积,同时小三棱锥底面面积的和就变成球面面积,小三棱锥高变成球半径.由于第n个小三棱锥的体积=Snhn(Sn为该小三棱锥的底面积,hn为小三棱锥高),所以V球=S球面·R=·4πR2·R=πR3.
⑵球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化。
二、注意事项
1. 须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面。
2.三种空间角,即异面直线所成角、直线与平面所成角。平面与平面所成二面角。它们的求法一般化归为求两条相交直线的夹角,通常“线线角抓平移,线面角找射影,面面角作平面角”而达到化归目的,有时二面角大小出通过cos=来求。
3.有七种距离,即点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离,点到平面的距离有时用“体积法”来求。
三、例题分析
例1、⑴已知水平平面内的两条相交直线a, b所成的角为,如果将角的平分线绕着其顶点,在竖直平面内作上下转动, 转动到离开水平位值的处,且与两条直线a,b都成角,则与的大小关系是 ( )
A. 或 B. &或 &&A
href="/middle/001HPFVTzy6Ft6SlILIf6&690"&
C. & D. &&A
href="/middle/001HPFVTzy6Ft6SKpaxe1&690"&
⑵已知异面直线a,b所成的角为70,则过空间一定点O,与两条异面直线a,b都成60角的直线有 ( )条.
A. 1 B. 2 C. 3 D. 4
⑶异面直线a,b所成的角为,空间中有一定点O,过点O有3条直线与a,b所成角都是60,则的取值可能是 ( ).
A. 30 B. 50 C. 60 D. 90
分析与解答:
⑴ 如图1所示,易知直线上点A在平面上的射影是ι上的点B,过点B作BC⊥b,
则AC⊥b. 在Rt△OBC和Rt△OAC中,tg=,tg=.显然,AC&BC,
∴tan& tan,又、(0,,∴ >.故选C.
(2)D(3)C
例2、已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.
(1)求证:MN⊥AB;
(2)设平面PDC与平面ABCD所成的二面角为锐角θ,问能否确定θ使直线MN是异
面直线AB与PC的公垂线?若能,求出相应θ的值;若不能,说明理由.
解:(1)∵PA⊥矩形ABCD,BC⊥AB,∴PB⊥BC,PA⊥AC,即△PBC和△PAC都是
以PC为斜边的直角三角形,,又M为AB的中点,∴MN⊥AB.
(2)∵AD⊥CD,PD⊥CD.∴∠PDA为所求二面角的平面角,即∠PDA=θ.
设AB=a,PA=b,AD=d,则,
设PM=CM则由N为PC的中点,∴MN⊥PC由(1)可知MN⊥AB,
∴MN为PC与AB的公垂线,这时PA=AD,∴θ=45°。
例3、如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=900,AC=1,C点到AB1的距离为CE=,D为AB的中点.
(1)求证:AB1⊥平面CED;
(2)求异面直线AB1与CD之间的距离;
(3)求二面角B1—AC—B的平面角.
解:(1)∵D是AB中点,△ABC为等腰直角三角形,
∠ABC=900,∴CD⊥AB又AA1⊥平面ABC,∴CD⊥AA1.
∴CD⊥平面A1B1BA
∴CD⊥AB1,又CE⊥AB1,
∴AB1⊥平面CDE;
(2)由CD⊥平面A1B1BA ∴CD⊥DE
∵AB1⊥平面CDE ∴DE⊥AB1,
∴DE是异面直线AB1与CD的公垂线段
∵CE=,AC=1 , ∴CD=∴;
(3)连结B1C,易证B1C⊥AC,又BC⊥AC ,
∴∠B1CB是二面角B1—AC—B的平面角.
在Rt△CEA中,CE=,BC=AC=1,∴∠B1AC=600
说明:作出公垂线段和二面角的平面角是正确解题的前提, 当然, 准确地作出应当有严格的逻辑推理作为基石.
例4、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F。
(1)求证:四边形EFCD为直角梯形;
(2)求二面角B-EF-C的平面角的正切值;
(3)设SB的中点为M,当的值是多少时,能使△DMC
为直角三角形?请给出证明.
解:(1)∵ CD∥AB,AB平面SAB
∴CD∥平面SAB
面EFCD∩面SAB=EF,
∴CD∥EF ∵
∴ 平面SAD,∴又
为直角梯形
(2)平面∥平面SAD
即为二面角D—EF—C的平面角
为等腰三角形,
(3)当时,为直角三角形 .
在中,为SB中点,.
平面平面 为直角三角形。
例5.如图,在棱长为1的正方体ABCD—A1B1C1D1中,AC与BD交于点E,CB与CB1交于点F.
(I)求证:A1C⊥平BDC1;
(II)求二面角B—EF—C的大小(结果用反三角函数值表示).
解法一:(Ⅰ)∵A1A⊥底面ABCD,则AC是A1C在底面ABCD的射影.
∵AC⊥BD.∴A1C⊥BD.
同理A1C⊥DC1,又BD∩DC1=D,
∴A1C⊥平面BDC1.
(Ⅱ)取EF的中点H,连结BH、CH,
又E、F分别是AC、B1C的中点,
解法二:(Ⅰ)以点C为坐标原点建立如图所示的空间直角坐标系,则C(0,0,0).[来源:Z§xx§k.Com]
D(1,0,0),B(0,1,0),A1(1,1,1),C1(0,0,1),D1(1,0,1)
(Ⅱ)同(I)可证,BD1⊥平面AB1C.
发表评论:
TA的最新馆藏[转]&[转]&[转]&[转]&[转]&[转]&}

我要回帖

更多关于 解析几何解题技巧 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信