stray absorption是什么检测水质指标检测标准

All papers
Help pages
Full-text links:
Current browse context:
physics.chem-ph
&| &| Change to browse by:
References & Citations
Bookmark ()
Absolute absorption and fluorescence measurements over a dynamic range
of 10$^6$ with cavity-enhanced laser-induced fluorescence
Abstract: We describe a novel experimental setup that combines the advantages of both
laser-induced fluorescence and cavity ring-down techniques. The simultaneous
and correlated measurement of the ring-down and fluorescence signals yields
absolute absorption coefficients for the fluorescence measurement. The combined
measurement is conducted with the same sample in a single, pulsed laser beam.
The fluorescence measurement extends the dynamic range of a stand-alone cavity
ring-down setup from typically three to at least six orders of magnitude. The
presence of the cavity improves the quality of the signal, in particular the
signal-to-noise ratio. The methodology, dubbed cavity-enhanced laser-induced
fluorescence (CELIF), is developed and rigorously tested against the
spectroscopy of 1,4-bis(phenylethynyl)benzene in a molecular beam and density
measurements in a cell. We outline how the method can be utilised to determine
absolute quantities: absorption cross sections, sample densities and
fluorescence quantum yields.
Chemical Physics (physics.chem-ph); Optics (physics.optics)
[physics.chem-ph]
[physics.chem-ph] for this version)
Submission history
From: Eckart Wrede []
Thu, 8 Aug :17 GMT
[v2] Mon, 14 Oct :07 GMTEffect of Stray Light on Characteristic Mass in Zeeman Graphite Furnace Atomic Absorption Spectrometry
PasswordRemember meSign in via your institutionSign in via your institution
Loading...
You have selected 1 citation for export.
RIS (for EndNote, ReferenceManager, ProCite)
Citation Only
Citation and Abstract
JavaScript is disabled on your browser. Please enable JavaScript to use all the features on this page.
, December 1993, Pages 278-302
Effect of Stray Light on Characteristic Mass in Zeeman Graphite Furnace Atomic Absorption Spectrometry
Opens overlay
Opens overlay
Opens overlay
Opens overlay
Opens overlay
Univ Connecticut, Dept Chem, 215 Glenbrook Rd, Storrs, CT 06269, USA; Perkin Elmer Corp, Norwalk, CT 06859, USA and Bonaire Technol, Ridgefield, CT 06877, USA
Check if you have access through your login credentials or your institution.
Remember me
The characteristic mass (m0), the effective stray light (α), the Zeeman rollover absorbance (Ar), and the Zeeman sensitivity ratio (R) were studied systematically as a function of lamp current and slit width. The effective stray light, α, was considered to be the sum of all effects that either are different sources of stray light or behave like stray light. Mathematical expressions are presented to describe the relationships between m0, R, α, and Ar. The characteristic mass, m0 is directly related to the effective stray light and the Zeeman sensitivity ratio. R. The Zeeman rollover absorbance, Ar, is a quantitative measure of the effective stray light. By taking α and R into account, a stable characteristic mass value, cm0 was obtained for copper, silver, thallium, and chromium for different lamp currents and slit widths. This gave rise to a new concept "the corrected characteristic mass." Without correction for these effects, the relative standard deviations (RSDs) of measured characteristic mass values, m0, were 8% for Cr, 19% for Tl, 20% for Cu, and 26% for Ag, for a wide range of currents and/or slit widths. After correction for the effects of rs and R, the corrected characteristic masses, cm0, were stable with an RSD of only 4% for Cu, Cr, and TI, and 7% for Ag.
Remember meService Unavailable
Service Unavailable
HTTP Error 503. The service is unavailable.紫外-可见光分光光度仪的确认指南--深圳施迈特医药管理咨询有限公司网站
我们的服务
紫外-可见光分光光度仪的确认指南
附件3:紫外-可见光分光光度仪的确认
Full document title and reference
文件全名和索引号
Qualification of Equipment
Annex 3: Qualification of UV-Visible spectrophotometers
PA/PH/OMCL (07) 11 DEF CORR
Document type 文件类型
Guideline 指南
Legislative basis 立法基础
The present document was also accepted by EA as recommendation document to be used in the context of Quality Management System audits of OMCLs
Date of first adoption
首次发行日期
Date of original entry into force
首次执行日期
Date of entry into force of revised document 修订后执行日期
December 2007
Previous titles/other references
原文件名/其它索引号
This document replaces document PA/PH/OMCL (07) 11DEF
Custodian Organisation
The present document was elaborated by the OMCL Network/ EDQM of the Council of Europe
Concerned Network
网络指南“仪器确认”附件
紫外可见光分光光度仪的确认
Introduction
The present document is the third Annex of the core document “Qualification of Equipment”, and it should be used in combination with it when planning, performing and documenting the UV-Visible spectrophotometer qualification process.
本文件是核心文件“仪器的确认”的第三个附件,在计划、实施和记录紫外-可见光分光光度计的确认时应与该核心文件结合使用。
The core document contains the Introduction and general forms for Level I and II of qualification, which are common to all type of instruments.
核心文件包括了对第一级和第二级确认的介绍和一般表格,它们适用于所有类型的仪器。
For UV-Visible spectrometers, an example has been added to give instrument-specific proposals that may be used in combination with the general requirements presented in the core document “Qualification of Equipment”, when drawing up a Level I checklist.
对于紫外-可见光分光光度计,增加了一个例表给出仪器相关的方案,可以在规划第一级检查清单时,与核心文件里的通用要求“仪器的确认”结合使用。
The present annex contains instrument-related recommendations on parameters to be checked at Level III and IV of qualification and the corresponding typical acceptance limits, as well as practical examples on the methodology that can be used to carry out these checks.
本附件包括了仪器相关的推荐,其中有第三级和第四级需要检查的参数和对应的典型可接受限度,以及一些可以实施这些检查项目的实践举例。
TABLE I 表一
Level I. Selection of instruments and suppliers 第一级 仪器和供应商选择
Example of check-list (non-exhaustive) 检查清单举例(非完全清单)
Manufacturer: 生产商
Provider/Distributor: 供应商/分销商
Name of instrument and type: 仪器名称和型号
Attribute 特性
(this list may be adapted if necessary)
(必要时可以采用本清单)
Specifications 标准
(instrument/
suppliers )
(仪器/供应商)
Assessment
Spectrophotometer 光度计
Single beam and double beam model 单光束和双光束模式
Allow both modes
允许双模式
Wavelength range 波长范围
Photometric range 光度计范围
Minimum 2.0 absorbance
(Abs.) unit
Lamp switching 灯开关
Allow both modes manual or automatic 允许双模式:手动和自动
Band width 波段宽
0.2-4.0nm or better with 0.1nm for increments
0.2-4.0nm或更好,以0.1nm为步距变化
Automatic baseline corrections
自动基线校正
Wavelength accuracy
波长准确性
Minimum of ±0.2nm
最小±0.2nm
Wavelength reproducibility
波长重复性
0.05nm or better
0.05nm或更好
Wavelength resolution
波长分辨率
0.2nm or better
0.2nm或更好
Photometric accuracy
光度计准确度
±0.003 Abs. units or better for 1.0Abs. units
Photometric stability
光度计稳定性
After 2 hours should not be more than 0.0005Abs. units/h
Photometric reproducibility
光度计重复性
Should not be more than 0.0005 Abs. units at 0.5 Abs. units
在0.5Abs.单位时应不大于0.0005Abs。
Photometric noise
光度计噪音
Should not be more than 0.0003 Abs. units at 1.0 Abs. units
在1.0Abs.单位时应不大于0.0003Abs.单位
Scan speed
Should be between 0.25nm/sec. and 8nm/sec. or better
应介于0.25nm/秒至8nm/秒之间或更好
Monochromator slew rate
单色器压摆率
Should be 1500nm/min. or better 应为1500nm/分钟或更好
Data acquisition and processing system
数据获得和处理系统
Acquisition at more than one wavelength 在不止一个波长获得数据
Minimum of two
Photometric scaling in Abs. units, %T, log Abs. units and concentration
光度计刻度包括Abs.单位,T%,Abs.单位对数和浓度
Abscise scaling in nm, min., deg, and mm.
切除刻度包括纳米,分钟,度和毫米
Calibration at one or more levels and one or more wavelengths
在一个或多个水平,以及一个或多个波长进行校正
Calculate and give factor for linear regression and other
计算并给出线性回归因子和其它
Build and memorise in file form: data, method and report
创建并保存为文件形式:数据、方法和报告
Accessories 附件
Flow- holder for n cuvette(s)
流动池,比色皿支架可以放置多少比色皿
Thermostated cell holder (temperature range and stability)
可控温比色皿支架(温度范围和稳定性)
Filters for qualification checks
确认检查用滤片
This check-list, containing examples of attributes that can be taken into account in the selection of an instrument and supplier, can be used in combination with the general check-list presented in Level I in the core document “Qualification of Equipment”.
本检查清单,包括了特性举例,这些举例可以在仪器和供应商选择时参考,这份清单可以与核心文件“仪器的确认”中第一级通用检查清单结合使用。
For Table II (Level II of Equipment Qualification: Installation and release for use) please refer to the core document.
对于表二(第二级仪器确认:安装和使用放行),请参见核心文件
Level III. Periodic and motivated instrument checks
Examples of requirements for UV-Visible spectrophotometers
Parameters to be checked
要检查的参数
Typical tolerance limits
典型允许限度
Spectral slit width (if applicable)
光狭缝宽度(如适用)
Wavelength accuracy
波长准确度
±1nm for the UV range
紫外光范围内±1nm
±3nm for the visible range
可见光范围内±1nm
Wavelength precision
波长精密度
See manufacturer’s specifications
见生产商规格
Photometric accuracy (control of absorbance)
光度计准确性(吸光度控制)
See annex I
Photometric linearity
光度计线性
Limit of stray light
杂散光限度
A>2.0 at 198nm
Baseline noise
±0.002 Absorbance units (500nm) or或
±0.01 Absorbance units (200, 300, 400nm)
photometric drift
光度计飘移
±0.001 Absorbance units/h (250 nm) Or或
±0.002 Absorbance units/h (500 nm)
TABLE IV 表四
Level IV. In-use instrument checks 第四级 仪器使用中检查
Examples of requirements for UV-Visible spectrophotometers 紫外-可见分光光度计要求举例
Parameter to be checked
要检查的参数
Typical tolerance limits
典型允许限度
System suitability check of the method
方法系统适用性检查
e.g. Repeatability 例如 重复性
e.g. Resolution (if required for qualitative analysis) 例如 分辨率(如果定量分析需要的话)
According to Ph. Eur. or MAH dossier or validated in-house method
根据欧洲药典或MAH文件或经过验证的内控方法
Absorption cells
Absorbance difference ≤0.005
吸光度差异≤0.005
ANNEX I 附件1
Level III. Periodic and motivated instrument checks
第三级 周期主动性仪器检查
This Annex contains practical examples of tests and their associated tolerance limits for several parameters related to the performance of a UV-Visible spectrophotometer.
本附件包括与紫外-可见光分光光度计性能有关的几个参数的检查实例及其相关的允许限度
These examples can be considered by the OMCLs as possible approaches to perform the Level III of the equipment qualification process: “Periodic and motivated instrument checks”.
这些例子可以认为是OMCL在实施第三级仪器确认“周期主动性仪器检查”的可行性方法
GENERAL CONSIDERATIONS 一般考虑
Measurements made by comparing samples against external standards should be made under conditions during which temperature is held constant. This is particularly relevant where the carrier solvent is organic and measurements may be distorted by expansion or evaporation of the solvent.
如果测量需要将样品与外标进行比较,则检测过程应保证温度恒度。尤其是如果载液是有机溶剂,测量结果可能会因为溶剂的膨胀或汽化而变化时。
It is recommended to perform the qualification within the spectral range corresponding to the region of analytical interest.
推荐根据分析范围所需进行光学范围确认
Ensure that the spectrophotometer has stabilized, according to the manufacturer’s recommendations, before starting the qualification tests.
在进行确认检查前,应根据供应商的建议确保分光光度计稳定。
When references are made to the European Pharmacopoeia, e.g. reagents R, then the reagent quality complies with the EP specifications.
如果引用了欧洲药典,例如试剂纯度的试剂,那么试剂的质量符合EP质量标准。
When using commercial filters as alternative to the proposed tests, a set of filters covering the entire range of interest should be used. They should be calibrated with traceability to national/international standards, preferable through a national metrology laboratory or NIST.
如果使用商业化的滤液作为替代以进行检查,需要使用一套覆盖所需的整个范围的滤液。这些滤液应经过校正,可以追溯到国家的/国际的标准,最好是经过一个国家计量实验室或者NIST。
1. SPECTRAL SLIT WIDTH (if applicable)
光学狭缝宽度(如适用)
When using an instrument on which the slit-width is variable at the selected wavelength, the slit-width must be small compared with the half-width of the absorption band but it must be as large as possible to obtain a high value of I0. Therefore, a slit-width is chosen such that further reduction does not result in a change in absorbance reading.
如果使用的仪器在选择的波长处,其狭缝宽度可调节,则其宽度必须小于吸收波段的半宽,但必须足够大以得到较高的I0值。因此,需要对狭缝宽度进行选择使其进一步降低时不会导致吸光度读数变化。
Method and Limits:方法和限度
1. Switch the system on and start the Scan module.
开机,启动扫描模块
2. Select SETUP and set the following parameters:
X Mode = Nanometres
X模式 = 纳米
Start wavelength = 660.0 nm
起始波长 =
Stop wavelength = 650.0 nm
结束波长 = 650.0 nm
Y Mode = % T
Y模式 = %T
Scan rate = 10 nm/min
扫描速率 = 10 nm/min
Gain = (100) see 4 below
增益 = (100)见下述第4项
3. Select Options tab and set the following parameters:
选择选项条,设定以下参数
SWB = 4 nm
Beam mode = Single front
光束模式 = 单光束在前
Lamps on = Deuterium
Source change = 700.0 nm
光源变化= 700.0 nm
4. Start a scan and examine the trace for a spectral peak around 656.1 nm.
开始扫描,在656.1nm处检查光学峰的痕迹
If no peak is seen or it is less than 50% T, increase the gain.
如果看不到峰或少于50%T,提高增益
If the signal exceeds 100% T, reduce the gain.
如果信号超过100%T,降低增益
5. Measure the width of the peak (in nanometres) at half the height of the peak.
测量峰半峰高的宽度(单位nm)
This represents the spectral bandwidth and should be within ± 10% of that selected via the computer.
这代表光学带宽,且其应该在通过计算机选择的± 10%之内。
6. Check the calibration at a slit width of 0.2 nm. If the measured slits are too small then, for a selected width, the instrument will have more photometric noise than normal. If the slit width is unacceptable, then reset the slit calibration.
检查狭缝0.2nm处的校正。如果对于一个选择的宽度来说,测量的狭缝太窄,仪器会产生比平常更多的光度计噪音。如果狭缝宽度不能接受,应重新设定狭缝校正。
Effect of spectral slit width on absorbance fluctuation (performed with pure solvents).
光学狭缝宽度对吸光度波动的影响(采用纯溶剂测试)
Slit width
Slit width
狭缝宽度2.0nm
Slit width
狭缝宽度1.0nm
Slit width
狭缝宽度0.05nm
Difference in Abs.
吸光度差异
Theoretical Values
Test status
Cyclohexane 环己烷
Passed通过
Ethanol 乙醇
Passed通过
Methanol 甲醇
Passed通过
2. WAVELENGTH ACCURACY 波长准确度
Note: if the determination is performed by using the specific absorbance (), the frequency of this check should be higher.
注:如果采用比吸光值(A)进行检查,本检查的应更频繁。
Materials:材料
Verify the wavelength accuracy using the absorption maxima of holmium perchlorate solution R prepared, for example, with a40 g/l solution of holmium oxide R in a solution of perchloric acid R containing141 g/l of HClO4 (Ph. Eur. Chapter4.1.1, ref 1043101), or the line of a hydrogen or deuterium discharge lamp.
采用氯化钬溶液的最大吸收波长来确认波长准确度,例如,取40 g/l的氧化钬溶液于141 g/l高氯酸溶液中(欧洲药典第4.1.1章,索引号1043101)
If available, the built-in mercury lamp of the instrument may be used for this test.
如果仪器有内置汞灯,可以用于本检查。
Alternatively, use suitable commercial certified filters typically made incorporating rare earth metal oxides. Ideally the calibrant should demonstrate traceability to national or international standards and should carry a statement about the associated uncertainty.
也可以用合适的认证过的商业化滤液代替。典型的是使用稀土金属氧化物。理想的校正应可以追溯到国家或国际标准,随货应有一份关于相关不确定度的认证申明书。
Method:方法
Compare the measured absorbance maxima with the absorbance maxima shown in the table below:
将测得的最大吸光度时波长值与下表中列出的进行比较
241.15nm (Ho)
404.66nm(Hg)
253.7nm (Hg)
435.83nm (Hg)
287.15nm (Ho)
486.0 nm (Dβ)
302.25 nm (Hg)
486.1nm (Hβ)
313.16 nm (Hg)
536.3 nm (Ho)
334.15 nm (Hg)
546.07 nm (Hg)
361.5 nm (Ho)
576.96 nm (Hg)
365.48 nm (Hg)
579.07 nm (Hg)
When using commercial filters, compare the measured absorbance with the certified values given by the manufacturer. The measurement is made against air.
如果使用的是商业化滤液,与供应商提供的认证过的吸光度值进行比较。测量应扣除空气空白。
Limits:限度
± 1 nm in the UV range
紫外光范围± 1 nm
± 3 nm in the Visible range
可见光范围± 3 nm
3. WAVELENGTH PRECISION (for mechanically set wavelengths) 波长精密度(针对机械设定波长)
Materials:材料
For this test, the same materials of the previous test can be used:
对于本检查,前面检查用的相同的材料可以继续使用
Holmium perchlorate solution R prepared, for example, with a40 g/l solution of holmium oxide R in a solution of perchloric acid R containing141 g/l of HClO4 (Ph. Eur. Chapter4.1.1, ref 1043101).
制备的氯化钬溶液,例如,用40 g/l 氧化钬溶液溶于141 g/l高氯酸溶液中。(欧洲药典第4.1.1章,索引号1043101)
If available, the built-in mercury lamp of the instrument may be used for this test.
如果仪器有内置汞灯,可以用于本检查
Alternatively, suitable commercial certified filters may be used1.
可以用合适的认证过的商业化滤液来替代。
Method:方法
Carry out 6 measurements of the absorbance maxima.
对最大吸收波长处进行6次测量
Limits:限度
Repeatability: the relative standard deviation of the absorbance maxima should satisfy the manufacturer’s specifications.
重复性:最大吸收相对标准偏差应满足供应商提供的规格
The difference between the 6 individual peaks should comply with the manufacturer’s specifications (e.g. < 0.5 nm).
6个单独峰之间的差值应符合供应商规格(例如< 0.5 nm)
Where old instruments are involved, the wavelength may be set by turning a wheel until the selected wavelength is reached. Where this is the case, mechanical wear may result in a different wavelength being selected depending on whether starting above or below the target wavelength. Examine the variation by setting a wavelength from above and below and seeing if there is a difference.
如果仪器较陈旧,波长可能是使用手动转轮来旋转至选定的波长。这种情况下,由于机械磨损可能会导致实际波长有差异,这与是从较高波长还是从较低波长开始向目标波长调节有关。如果确实产生差异,检查中应从两种情况向设定波长调节。
4. PHOTOMETRIC ACCURACY (CONTROL OF ABSORBANCE) 光度计准确度(吸收度控制)
Note: if the determination is performed by using the specific absorbance (), the frequency of this check should be higher.
注:如果采用比吸光值(A)进行检查,本检查的应更频繁。
Materials:材料
Solution of potassium dichromate R, previously dried to constant mass at130 °C.
重铬酸钾溶液,在130 °C预先干燥至恒重。
For the control of absorbance at 235 nm, 257 nm, 313 nm and 350 nm, dissolve 57.0-63.0 mg of potassium dichromate R in0.005 Msulphuric acid and dilute to 1000.0 ml with the same acid. For the control of absorbance at 430 nm, dissolve 57.0-63.0 mg of potassium dichromate R in0.005 Msulphuric acid and dilute to 100.0 ml with the same acid.
对于235nm,257nm,313nm和350nm处的吸收度控制,取57.0-63.0mg重铬酸钾溶液于0.005M的硫酸中,并用此硫酸稀释至1000.0ml。对于430nm处吸收度控制,取57.0-63.0mg重铬酸钾溶液于0.005M的硫酸中,并用此硫酸稀释至100.0ml。
Alternatively, suitable commercial certified filters may be used.
也可以适当的经过认证的商业滤液代替
Note: If commercial filters are used, the wavelengths and the exact absorption values with the corresponding tolerance limits will depend on the type of filters. The selection of the filters should be adequate in order to cover the range used in routine work.
注:如果采用商业化滤液,滤长和确切的吸光度值以及对应的允许限度则取决于滤液的类型。滤液的选择应足以覆盖日常使用的波长范围。
Method:方法
Check the absorbance using the solution of potassium dichromate R or the certified filters at the wavelengths indicated in the table below, which gives for each wavelength the exact values and the permitted limits of the specific absorbance.
用重铬酸钾溶液或认证过的滤液在下列表中指定的波长处检测吸光度,表中给出了每个波长的比吸光值确切数值和允许限度。
Limits 限度
Wavelength (nm)波长
Specific absorbance 比吸光度
A1cm1 per cent
Maximum tolerance最大允许限度
122.9 to 126.2
142.8 to 146.2
47.0 to 50.3
15.6 to 109.0
15.7 to 16.1
Example of certified commercial filters: 认证过的过滤溶液的例子
Filter 滤液
Wavelength (nm)波长
Maximum tolerance最大允许限度
Potassium dichromate in sulphuric acid, against sulphuric acid (blank)
重铬酸钾的硫酸溶液,以硫酸为空白
0.750±0.01
0.868±0.01
0.292±0.01
0.644±0.01
Filter 滤液
Wavelength (nm)波长
Maximum tolerance最大允许限度
Sulphuric acid (blank), against air
硫酸空白,对空气
0.043±0.01
0.040±0.01
0.035±0.01
0.034±0.01
Filter 滤液
Wavelength (nm)波长
Maximum tolerance最大允许限度
Potassium dichromate in sulphuric acid, against sulphuric acid (blank)
重铬酸钾硫酸溶液,以硫酸为空白
0.960±0.01
Sulphuric acid (blank), against air
硫酸空白,对空气
0.033±0.01
5. PHOTOMETRIC LINEARITY 光度计线性
Materials:材料
A series of solutions of a suitable absorbing compound (e.g. potassium dichromate) spanning the concentration range of interest. The absorbing solutions need to be stable. The concentrations should be regularly spaced (1, 2, 3, 4, 5) rather than doubling (1, 2, 4, 8, 16) in order to reduce the leverage effects when fitting the line.
某种合适的吸收性化合物(例如重铬酸钾)制成的需要的浓度范围内的一系列溶液。吸光性溶液应稳定,浓度应采用规则性分布(1,2,3,4,5),而不是用倍增浓度(1,2,4,8,16)依序以降低描绘曲线时的杠杆效应。
Method:方法
Measure the net absorbance of the solutions against a blank at 235, 313, 257 and 350 nm.
在235nm, 313nm, 257nm和350nm处测量溶液的吸光度,减去空白。
Make 3 measurements for each solution. Calculate the mean value and the linearity of the concentration of each solution against the measured absorbance at the control wavelengths.
每个溶液测量3次,计算平均值,和浓度对控制的波长的吸光度的线性。
Limits:限度
At each wavelength: r2 ≥ 0.999
每个波长的线性系数r2 ≥ 0.999
Note: It is recommended to use these results to regularly monitor the trend of the instrument (control chart of r2).
注:推荐采用这些结果来对仪器的趋势进行常规监测(线性系数的图表控制)
6. LIMIT OF STRAY LIGHT 杂散光限度
Materials:材料
Stray light may be measured at a given wavelength with suitable certified filters or different solutions. For example, a12 g/l solution of potassium chloride R in water.
杂散光可在指定的波长采用一个认证过的滤片或不同的溶液进行检测。例如,采用一个12 g/l的氯化钾溶水溶液。
Method:方法
The absorbance of a12 g/l solution of potassium chloride R in a1 cmcell increases steeply between 220 nm and 200 nm.
12 g/l的氯化钾水溶液用1cm池检测的吸光度在220nm和200nm之间会急剧增加
When available, use the in-built software of the instrument.
如果可以,使用仪器的内置软件。
Limits:限度
A > 2.0 at 198 nm, when compared with water as compensation liquid.
与水作为补偿液体相比较,在198nm时,A > 2.0
Alternatively: 可用以下检查替代
Method: Check stray light at 220 nm by using a20 g/l NaI solution.
方法:用20g/l碘化钠溶液检查220nm处杂散光
Limits: according to manufacture’s specifications (e.g. Transmittance ≤ 0.1 %).
限度:根据供应商规格(例如 透过率≤ 0.1 %)
A range of tests using other salts are described in the literature to cover different wavelength ranges.
采用其它盐进行检测以覆盖不同的波长范围在相关文献中的描述。
7. BASELINE NOISE 基线噪音
For this test, 2 alternative methods are proposed.
对于此检查,此处给出了两个可以相互替代的方法
TEST 1 检查1
Method:方法
Make 61 absorbance measurements with an integration time of 1 second at a wavelength of 500 nm, with no sample in the sample chamber, and calculate the mean.
不放样品在样品室内,在500nm波长处,积分时间1秒,进行61次吸光度测量,计算平均值。
Limits:限度
Mean ± 0.002 Absorbance units
平均± 0.002 Absorbance units
TEST 2 检查2
Method:方法
Record the absorbance for 60 seconds at 200, 300 and 400 nm with a highly pure, synthetic Quartz block. The measurement is made against air.
用高纯合成石英块,对空气记录200,300和400nm处60分钟的吸光度,
Note: If commercial filters are used, the wavelengths and the exact absorption values with the corresponding tolerance limits will depend on the type of filters.
注:如果使用的时商业滤片,波长和确切的吸光度值与其对应的允许限度将取决于滤片类型。
Example of limits 限度举例
Filter 滤片
Wavelength (nm)波长
Maximum tolerance 最大允许限度
Quartz block (against air)
石英块(对空气)
0.049 ±0.01
0.033±0.01
0.031±0.01
8. PHOTOMETRIC DRIFT 光度计飘移
Photometric drift should be checked at both the Visible and UV region, at appropriate wavelengths.
在可见光和紫外光波段均应在适当的波长检查光度计飘移
The limits are in accordance with the user’s requirements (as defined in Level I) and with manufacturer’s specifications.
限度与用户需求一致(如第一级所界定)并符合供应商的规格
For this test, 2 alternative examples are proposed.
对于这个检查,给出了有两个可以相互替代的方法举例
TEST 1 检查1
Method: 方法
As routine test, the drift is measured at 250 nm over a period of 2 hours by using the Time Scan mode of the instrument, with no sample in the sample chamber.
与日常测试相同,不放置样品在样品室内,在时间扫描模式下,在250nm测量2小时内的漂移。
Limits: ± 0.001 Absorbance units/h
限度:± 0.001 Absorbance units/h
Note: In certain cases, for example when several samples are measured over a long period of time (or when using auto sampler) the drift can also be determined at the wavelength used for the analytical method, in the same way, before the measurement of the samples.
注:在某些情况下,例如几个样品在一个较长的时间进行测试(或使用自动进样器),可以在分析方法所用波长进行漂移检查,同样是在样品测试之前进行。
TEST 2 检查2
Method: 方法
Record the baseline for 60 minutes at 500 nm and compare the absorbance with the initial value.
记录500nm时60分钟的基线噪音,与起始吸光度值进行比较。
Limits: ± 0.002 Absorbance units/h
限度:± 0.002 Absorbance units/h
ANNEX II 附件2
Level IV. In-use instrument checks 第四级 仪器在用检查
This Annex contains practical examples of tests and their associated tolerance limits for several parameters related to the performance of an UV-Visible spectrophotometer.
本附件包括了紫外-可见光分光光度计性能相关的几个参数的检查和相关的允许限度的实践例子,
These examples can be considered by the OMCLs as possible approaches to perform the Level IV of the equipment qualification process: “In-use instrument checks”.
这些例子可以认为是OMCL实施第四级仪器确认“在用仪器检查”的可行方法
SYSTEM SUITABILITY TEST OF THE METHOD 方法的系统适用性检查
REPEATABILITY
(for quantitative analysis) 重复性(对于定量分析)
RESOLUTION 分辨率
Method:方法
Criteria such as repeatability or resolution are usually given when test methods are performed according to Ph. Eur., MAH dossier or a suitably validated in-house method.
重复性或分辨率的标准一般根据欧洲药典,MAH文件或经过验证的内控方法,在进行分析时给出
RESOLUTION (if required for qualitative analysis) 分辨率(如果定性分析需要)
Materials:材料
0.02 per cent V/V solution of toluene R in hexane R.
0.02%(V/V)甲苯在己烷中溶液
Alternatively, suitable certified reference materials may be used.
也可以用适当的认证过的对照材料
Method:方法
When prescribed in a monograph, measure the resolution of the apparatus as follows: record the spectrum of a 0.02 per cent V/V solution of toluene R in hexane R.
如果在各论中有描述,按如下方式测量仪器分辨率:记录0.02% V/V 的甲苯在己烷中溶液的光谱图
Alternatively, record the spectrum of the reference material.
也可以记录对照材料的光谱
Limits:限度
The minimum ratio of the absorbance at the maximum at 269 nm to that at the minimum at 266 nm is stated in the monograph or in the test method description.
在各论中或在检验方法描述中说明的在269nm最大吸收和在266nm最小吸收的最小比值。
2. ABSORPTION CELLS 吸光池
Method:方法
The following method for checking cleanliness and gross differences in thickness or parallelism of the windows of optical cells is described in ASTM E275-01 (American society of Testing and Materials), “Standard Practice for Describing and Measuring Performance of UV, Visible, and Near Infrared Spectrophotometers”:
以下方法用于检查根据ASTM E275-01(美国材料试验协会),“紫外、可见光和近红外分光光度计的性能检测和描述标准操作”中描述的光学池的清洁度、厚度不匀程序、或窗口平行性。
Fill the cell with distilled water and measure its apparent absorbance against air at 240 nm for quartz cells and at 650 nm for glass cells. With recording instruments it is desirable to scan over the optical region of interest. The apparent absorbance should be not greater than 0.093 for1 cmquartz cells (UV region) and 0.035 for1 cmglass cells (Visible region). Rotate the cell in its holder (180°) and measure the apparent absorbance again.
将蒸馏水注入比色池,在240nm用石英池测量其表面吸光度,扣除空气空白,在650nm用玻璃池测量其表面吸光度,扣除空白。如果仪器可以记录,最好对相关的光学区域进行扫描。采用1cm石英池(紫外光范围)表面吸光度差异应不超过0.093,采用1cm玻璃池(可见光范围)的差异不应超过0.035.旋转比色池,重新测量表面吸光度。
Limits:限度
Rotating the cells should give an absorbance difference not greater than 0.005.
旋转比色池,所得的吸光度差异应不大于0.005.
REFERENCES 参考文献
(For all references, the latest version applies 所有参考文献均应以最新版本为准)
1) Ph Eur.2.2.25, Absorption spectrophotometry, Ultraviolet and Visible.
欧洲药典第2.2.25章,吸收光度计,紫外和可见光
2) Guidance on Equipment Qualification of Analytical Instruments: UV-Visible Spectro(photo)meters (UV-Vis). Valid Analytical Measurement (VAM) Programme.
分析仪器确认指南:紫外-可见光光谱仪,有效分析测量(VAM)程序
上一篇:下一篇:
您好,请问有什么可以帮到您?}

我要回帖

更多关于 stray是什么牌子 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信