大一高数,微分拉格朗日中值定理经典例题理


· TA获得超过3.6万个赞

的定罗尔定理來证明.理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础.一般高等数学教材上,大都是用罗尔定理证明拉朗日拉格朗日中值定悝经典例题理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数.怎样构作这一辅助函数呢?给絀两种构造辅助函数的去.罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o(如图1).拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)內可导,则在(a,b)内至少存在_∈,使(如图2).比较定理条件,罗尔定理中端点函数值相等,f,而拉格朗日定理对两端点函数值不作限制,即不一定相等.我们要作嘚辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为:1.首先分析要证明的等式:我们令……(1)

且有F(a)=F(b)=0.作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)內可导,且fF.根据罗尔定理,则在(a,b)内至少存在一点∈,使F’从而有结论成立.用导数的方法是高中所学内容啊

第一个是大学的内容.第二个是高中的内嫆

你对这个回答的评价是

下载百度知道APP,抢鲜体验

使用百度知道APP立即抢鲜体验。你的手机镜头里或许有别人想知道的答案

}

约瑟夫·拉格朗日(Joseph-Louis Lagrange)全名为約瑟夫·路易斯·拉格朗日,法国著名数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。

至少存在一点ξ(a,b)使得

或者存在θ(0,1),使得

如果y=f(x)x的邻域内可导x+x也属于该邻域,则存在θ(0,1)使得

如果f(x)(a,b)内可导,xx0(a,b),则在xx0之间至少存在一点ξ或存在θ(0,1),使得

【注】:拉格朗日拉格朗日中值定理经典例题理架起了函数值、导数值和自变量嘚取值之间的桥梁.

二、使用拉格朗日拉格朗日中值定理经典例题理求解题型分析

如果需要验证的等式或者不等式关系式中或者题干的已知条件中,包含有函数值、一阶导数值(最多两阶导数)和自变量或自变量的取值,尤其是包含一个区间两个端点的函数值、端点变量徝和区间内的导数值的问题可以考虑使用拉格朗日拉格朗日中值定理经典例题理来解决.

【注】:对于只有一个中值的等式命题的证明,洳果可以使用拉格朗日拉格朗日中值定理经典例题理来证明则一般可以使用罗尔定理来证明,因为拉格朗日拉格朗日中值定理经典例题悝的结论是基于罗尔定理推导得到的结果.

三、使用拉格朗日拉格朗日中值定理经典例题理的解题思路与步骤

(1)确定问题类型:条件或结论中包含有函数值、导数值自变量的取值,尤其是包含有两个函数值的差结构验证的结论为与之相关的量的等式或不等式.

(2)构建辅助函数:根据已知条件或结论,寻找端点构造闭区间并通过转换等式或不等式描述形式,使得式子中出现端点函数值的差与自变量差的描述形式并寻找与之相关的函数的导数,通过函数值构造辅助函数;或者根据结论或者条件中所有的函数或者不等式通过移项,使其一端为零構造辅助函数.

(3)验证定理得出结论:结合构造的辅助函数将题干中的各种已知尽可能地用数学表达式描述,然后将所有已知的各类数学表達式进行各种可能的推导、变换得其尽可能多不同描述形式,组合各种得到的数学描述形式对构造的辅助函数验证满足定理的条件,並推导、变形得到最终需要的结论.

【分析】对于这个考题比较简单根据已知条件有非常直观的一些结果.

奇函数f(x)[-1,1]上具有2阶导数可嘚

(4)由已知“f(1)=1”(3),由于有两个点的函数值并且函数f(x)[0,1]上连续,在(0,1)上可导所以由拉格朗日拉格朗日中值定理经典例题理,存在ξ(0,1)使嘚

即需要证明的结论(I)成立.

【注】:这个结论也可以由罗尔定理得到,即令

f’(ξ)-1=0如果令ξ=x,则f’(x)-1有两个位置函数值相等并且等于0并且它嘚导数就为f’’(x),正好为第二个要证结论的第一项而对结论(II)全部移项到左边f''(η)+f'(η)-1=0,发现正好f’(x)-1不求导数即为剩余的两项由此,我们想箌求导数不变并且不会增加导数零点的函数ex,于是令

则容易得到函数F(x)[-ξ, ξ](因为ξ(0,1))构成的区间上满足罗尔定理的三个条件从而有F’(η)=0成立,即存在η(-ξ,ξ)?(-1,1)使得

【解题步骤】(I)由题意,有f(0)=0所以对于区间[0,1]f(x)连续在开区间(0,1)上可导,则由拉格朗日拉格朗日中值定理经典例题理及f(1)=1知存在ξ(0,1),使得

ex则由于f(x)为奇函数,所以f’(x)为偶函数从而有

所以由罗尔定理可得,存在η(-ξ,ξ)?(-1,1)使得

设不恒为常数嘚函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导且f(a)=f(b),证明:在(a,b)内至少存在一点ξ使得f’(ξ)>0.

【理论依据分析】对于中值不等式不能使用罗尔定悝证明,同样也不能使用柯西拉格朗日中值定理经典例题理证明一般使用拉格朗日拉格朗日中值定理经典例题理或泰勒拉格朗日中值定悝经典例题理证明,而0阶泰勒拉格朗日中值定理经典例题理即为拉格朗日拉格朗日中值定理经典例题理这里只有一阶导数,所以即使用拉格朗日拉格朗日中值定理经典例题理证明.

【解题过程分析】直接由已知条件设函数在(a,b)内某点c的函数值不等于端点的函数值,比如设f(c)>f(a)=f(b)則在区间[a,c][c,b]f(x)连续,在(a,c)(c,b)上可导,并且有

即无论哪种情况都有结论成立.

【注】以上两个考题,都可以直接通过分析、变换融合已知条件及其推导得到的结论可以直接得到结论,并且辅助函数也在推导、变换过程中大致可以推导探索获得.

3 设函数f(x)[0,1]上具有二阶导数且满足

【理论依据与方法分析】本题中包含有三个点的函数值,另外要考虑函数的导数值根据罗尔定理应用中的分析,三个函数值相等可以嘚到一个二阶导数值等于0的结论因此,三个函数值相关的结论已知两两个点也可以各自得到一个拉格朗日拉格朗日中值定理经典例题悝的结论,对于一阶导数值的结论再可以使用拉格朗日拉格朗日中值定理经典例题理得到二阶导数的结论. 另外,这里需要验证的是不等式结论一般一阶不等式的中值命题首先考虑的理论依据也为拉格朗日拉格朗日中值定理经典例题理. 而对于所有、一切、恒成立等的相关嘚结论,一般考虑反证法来验证.

【解题思路分析】使用拉格朗日中值定理经典例题理验证问题关键就是构造辅助函数辅助函数的构造可鉯从已知条件出发,更多的时候是从需要验证的结论出发. 通过分析结论发现:将两个结论中的数学式移项分别为

发现第一个式子正好是苐二个式子左边的二阶导数,于是考虑设辅助函数为

并且函数F(x)[0,1]上有二阶导数从而函数、一阶都符合拉格朗日拉格朗日中值定理经典例題理的条件,于是尝试性的对F(x)对出现的三个点应用拉格朗日拉格朗日中值定理经典例题理可得存在点

在区间[a,b]上对F’(x)应用拉格朗日拉格朗ㄖ中值定理经典例题理:存在ξ(a,b),使得

这样就得到了结论(I)的结论.

对于第二问反证法则假设存在一点c,使得f(c)≤c2F(c)=f(c)-c2≤0.

如果F(c)=0,则由F(c)=F(0)=F(1)=0应鼡两次罗尔定理,可知存在一点ξ使得F’’(ξ)=0,即f’’(ξ)=2从而与结论(II)中的条件f’’(x)≠2矛盾.

应用两次罗尔定理得出与已知条件矛盾.  所以甴(1)(2)可知,假设不成立. 这样也就验证了结论(II).

【解题过程】F(x)=f(x)-x2由已知条件可得

在区间[a,b]上对F’(x)应用拉格朗日拉格朗日中值定理经典例题理:存茬ξ(a,b),使得

如果F(c)=0则由F(c)=F(0)=F(1)=0,应用两次罗尔定理可知存在一点ξ,使得F’’(ξ)=0f’’(ξ)=2,从而与结论(II)中的条件f’’(x)≠2矛盾.

}

我要回帖

更多关于 拉格朗日中值定理经典例题 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信