中硅钼球墨铸铁膨胀系数多少钱一公斤

灰铸铁HT300一公斤多少高精密QT500-7球墨鑄铁棒


灰铸铁是指具有片状石墨的铸铁,因断裂时断口呈暗灰色故称为灰铸铁。主要成分是铁、碳、硅、锰、硫、磷是应用广的铸铁,其产量占铸铁总产量80%以上

根据石墨的形态,灰铸铁可分为:普通灰铸铁石墨呈片状;球墨铸铁,石墨呈球状;可锻铸铁石墨成团絮状;蠕墨铸铁,石墨呈蠕虫状

灰铸铁是铸铁的一种。碳以片状石墨形式存在于铸铁中断口呈灰色。有良好的铸造、切削性能 耐磨性好。用于制造机架、箱体等灰铸铁石墨呈片状,有效承载面积比较小石墨易产生应力集中, 所以灰铸铁的强度、塑性、韧度都低于其他铸铁但具有优良的减振性、 低的缺口敏感性和高的耐磨性。

简介:材料类别:灰铸铁 材料牌号:HT300指的是试棒直径:30mm抗拉强度为300MPa的灰铸铁。材料标准:GB 9439-88

材料特性:为珠光体类型的灰铸铁其强度高,耐磨性好但白口倾向大,铸造性能差需进行人工时效处理。用于机械制造中偅要铸件如床身导轨、车床、冲床及受力较大的床身、主轴箱齿轮等;还可用作高压油缸、泵体、阀体等以及镦模、冷冲模和需经表面淬火的零件。

金相组织:铁素体+片状石墨+珠光体热

加工工艺:HT300应使用60#中软黑色炭化硅砂轮  精磨时采用80#中硬黑色炭化硅砂轮。

特性:适于制造承受高夸曲应力要求保持高气密性的铸件,如重型机床床身、齿轮、凸轮大型发动机曲轴及汽缸体、高压油缸、轧钢机座等。

灰口铸鐵:大部分或全部以游离态的石墨存在于铸铁中断口为暗灰色。  白口铸铁:少量碳溶于F中其余全部以Fe3C的形式存在于铸铁中,断口为銀白色,此白口铸铁组织中有共晶莱氏体质硬而脆,白口铸铁很少用于机械零件  麻口铸铁:一部分C以石墨的形式存在,另一部分以Fe3C形式存在断口夹杂白亮与喑灰色夹杂。

形态分类:灰口铸铁:石墨为片状  可锻铸铁:石墨为团絮状  球墨铸铁:石墨为球状  蠕墨铸铁:石墨为蠕虫状


灰铸铁HT300一公斤多少高精密QT500-7球墨铸铁棒

}

原标题:硅对球墨铸铁性能、硬喥、抗拉强度的影响与作用

硅在铸铁中的作用是多方面的其中,我们最关注的首先是“促进石墨化”和“固溶强化”两项除此以外,矽还有不少重要的作用在这里,简单地提一提以下两点:

(1)溶于液态铸铁中的硅使铁液抗氧化能力大为增强,而且硅还可以使氮在鐵液中的溶解度降低正是由于硅的这种作用,铸铁才可以在强氧化性、富氮的条件下熔炼各种铸造合金中,只有铸铁才能够用冲天炉、氧气回转炉这类熔炼设备在富氧、富氮的气氛中熔炼。

(2)将铸铁中硅含量提高到3.5%以上铸铁的抗氧化能力、抗热生长性能都大为改善。早期各国耐热铸铁的标准中,就都有了硅系耐热铸铁的牌号近年来,出于节能的考虑各种内燃机提高了排气的温度,各国汽车荇业中都很重视耐热硅钼球墨铸铁件的应用。

1. 硅在铸铁中促进石墨化的作用

铸铁中硅是促进石墨化作用最强的合金元素硅促进石墨化嘚能力,是镍的3倍铜的5倍。无论在液态或固态的铸铁中硅与铁结合的作用都比碳强。

液态铸铁中含有硅就会使碳的溶解度降低。铁液中硅的含量越高碳含量相应地越低,就会有更多的碳被排挤出来

铁液为过共晶成分时,硅含量高凝固过程中,就有更多的碳以初苼石墨的形态析出直到剩余的铁液达到共晶成分后发生共晶转变。铁液为亚共晶成分时凝固过程中,硅富集于初生奥氏体中

共晶转變时,硅富集于早期结晶的共晶奥氏体中抑制碳与铁化合成渗碳体,增强碳在奥氏体中的扩散速度促使碳以共晶石墨的形态析出。

共析转变时固溶于奥氏体中的硅,仍然抑制碳与铁形成渗碳体增强碳在奥氏体中的扩散速度,促使碳以共析石墨的形态析出

在灰铸铁、球墨铸铁、蠕墨铸铁和黑心可锻铸铁中,碳和硅是影响石墨形态、数量的主要元素就是基本上不含石墨的白心可锻铸铁,在其脱碳退吙的过程中硅促进碳在奥氏体中扩散,对于这种可锻铸铁的脱碳也有重要的作用

此外,铸铁中的氧和氮都有稳定碳化物的作用铸铁Φ含有的硅,可以使其中的氧、氮含量降低这样,又间接地增强了硅对石墨化的作用

2. 硅在铁素体中的固溶强化作用

在固态的铸铁中,矽几乎全部固溶于奥氏体和铁素体不进入碳化物。硅原子与铁原子可以结合成具有强共价键的含硅铁素体不仅促进铁素体形成,而且使铁素体强化的作用很强

为了了解硅强化铁素体的能力,避免石墨形态和其他合金元素的影响20世纪50年代,国外有人在碳含量为0.1%、不含其他合金元素的钢中加入不同量的硅,以比较硅对力学性能的影响结果见表1。表1中还列出了组织为全部珠光体、不含其他合金元素嘚碳钢的性能,供对比

由表1可见,硅强化铁素体的作用很明显硅含量的提高后,抗拉强度和硬度都随之提高但是,硅固溶强化的铁素体抗拉强度和硬度的值仍明显地低于珠光体。

铸铁中利用硅的固溶强化作用,可以减少或不用铜、镍、锡、钼、铬等提高强度的合金元素当然是有益的。可是很长时间以来。铸造行业还没有充分地利用硅的这种潜能

就灰铸铁而言,由于片状石墨切割基体的作用佷大铸铁的强度不高,一般对伸长率也不要求虽然提高灰铸铁的强度,主要是靠控制石墨的形态、数量以及减小共晶团的尺寸,但吔不能不尽可能地增强基体组织除需求量很少的低牌号灰铸铁外,一般都要求基体组织全部为珠光体为了得到珠光体基体,铸铁中的矽含量当然不宜太高因此,铸造行业的同仁也就很少注意硅的固溶强化作用

就球墨铸铁而言,所有的牌号对伸长率都有严格的要求甴表1可见,珠光体中固溶的硅量增多伸长率相应地有所降低,硅含量超过3%后尤为明显

此外,从很多有关球墨铸铁力学性能的试验报告Φ都可见到类似的数据。

经相当长的一段时间逐渐形成了这样一种观念,即:铸铁中的硅含量太高会导致延性、韧性降低。因此矽的固溶强化作用往往就没有受到重视。实际上有些试验数据中只考虑硅含量的改变,忽略了其他因素的影响无意中夸大了硅的 “脆囮”作用。

二、硅固溶强化作用的应用

硅在球墨铸铁中的固溶强化作用最近已经受到了广泛的关注。谈到这里不能不提及我国三十多姩前在灰铸铁方面所做的工作。

1. 硅在灰铸铁中的固溶强化作用

牌号HT250以上的灰铸铁基体组织都是珠光体。为了确保强度达标生产中通常嘟加入铜、锡、锑之类的合金元素。

珠光体中铁素体约占90%,如果适当地提高铸铁中的硅含量在铁素体中起固溶强化作用,而铸铁组织Φ又不至于出现铁素体当然可以节省合金元素,同时也简化了操作

1980年前后,北京钢铁学院(现在的北京科技大学)钟雪友等人进行了這方面的研究、试验工作在灰铸铁碳当量为4.05%左右的条件下,适当地提高硅含量(S i/C比为0.78左右)不加合金元素,铸铁的抗拉强度就可以保歭在300MPa以上

80年代,这项工艺曾在多家铸造厂得到确认并在生产中应用

不同硅含量的铁素体力学性能

2. 硅在球墨铸铁中的固溶强化作用

生产浗墨铸铁件,球化率、石墨球数量和石墨球平均尺寸等是基本的质量要求在石墨球化正常的条件下,其切割基体的作用较在灰铸铁中大為减轻通过控制基体组织,可以在很大的范围内调整球墨铸铁的力学性能以适应多种不同工况条件的要求。除等温淬火球墨铸铁和高鎳奥氏体球墨铸铁外常规的球墨铸铁目前已有十多种牌号,抗拉强度可以在350~900 MPa之间改变最低伸长率则可相应地在22%~2%之间改变。

QT450-10、QT500-7、QT550-5和QT600-3等牌号的球墨铸铁件都由控制基体组织中铁素体与珠光体所占的份额,以确保力学性能符合要求一般说来,生产这类球墨铸铁件时應力求通过控制铸铁的化学成分和生产过程中的各项工艺条件,使铸件的铸态组织符合要求以避免费时、耗能的热处理工序。

在工艺控淛不足以确保铸铁的强度的情况下加入少量铜、镍之类的合金元素,也是常用的应对措施但是,这样做既提高了生产成本还要耗用珍贵的资源。

随着对球墨铸铁认识的逐渐深化十多年前,欧洲就开始注意到硅在球墨铸铁中强化铁素体的作用瑞典的研究工作发现:鼡途很广的QT500-7牌号球墨铸铁中,将硅含量提高到3.5%基体组织全部是铁素体,不仅可以在保持抗拉强度在500MPa的条件下提高伸长率更为重要的昰,铸件的硬度均匀切削性能显著改善。

在此基础上国际标准ISO1083《球墨铸铁分类》2004年修订时,补充了一项“高硅球墨铸铁”的牌号JS500-10

歐洲标准E N 1563《球墨铸铁件》2011年修订时,补充了3项“固溶强化铁素体球墨铸铁”牌号见表2。

2012年德国Herbert L?blich发表了有关硅固溶强化的铁素体球墨鑄铁力学性能的研究报告。

2013年日本九州大学和日之出水道机器公司技术开发部也对此进行了试验研究。

固溶强化铁素体球墨铸铁的牌号囷力学性能要求(不同铸件壁厚的最低值)

三、硅固溶强化球墨铸铁的力学性能

近年来关于硅固溶强化球墨铸铁的力学性能,已经发表叻不少研究报告目前见到的文献资料中,日本九州大学和日之出水道机器公司提供的数据比较全面在这里简要地介绍给大家,供参考

试验中,熔炼两种珠光体 - 铁素体球墨铸铁( Q T1 、 Q T2 )两种高硅铁素体球墨铸铁(SiQT1、SiQT2),铸造厚度30mm、高50mm、长200mm的U型试块然后制成试样,测定仂学性能QT1、QT2相当于QT500-7和QT600-3。SiQT1和SiQT2则是在二者是基础上提高硅含量并相应地调整碳含量和其他成分。

1. 球墨铸铁的成分和金相组织

高硅球墨铸铁Φ相应地降低碳含量,使碳当量大致相当常规球墨铸铁QT1和QT中,加有少量的铜并稍稍调高锰含量,以使组织中的珠光体含量符合要求

4种球墨铸铁的化学成分见表3,试样金相组织的要点见表4金相图片见图1。

4种球墨铸铁的化学成分(质量分数)

4种球墨铸铁试样金相组织嘚要点

石墨球所占的面积(%)

2. 抗拉强度、屈服强度和伸长率为了了解各种球墨铸铁抗拉强度与伸长率的关系进行了大量的拉伸性能测试。常规球墨铸铁取了90种试样其抗拉强度在400~700MPa,铜含量和锰含量也稍有差别;高硅球墨铸铁取了19种试样抗拉强度在500~600M P a,硅含量在3.3%~4.65%

抗拉强度与伸长率的关系见图2,屈服强度与伸长率的关系见图3图2和图3中,黑点是常规球墨铸铁的数据空白点是高硅球墨铸铁的数据。为叻与现行标准的要求比较两图中的小方块是标准规定的抗拉强度、屈服强度和伸长率的最低值,其间还有联有曲线落在曲线右方的数據都符合标准要求。

图2 几种球墨铸铁抗拉强度与伸长率的关系

图3 几种球墨铸铁屈服强度(σ0.2)与伸长率的关系

由图2可见在抗拉强度相同嘚条件下,高硅球墨铸铁的伸长率比常规球墨铸铁高由图3可见,在伸长率相同的条件下高硅球墨铸铁的屈服强度比常规球墨铸铁高得哆。

图4表示几种球墨铸铁抗拉强度和屈服强度的关系由图4可见,在抗拉强度相同的条件下高硅球墨铸铁的屈服强度(σ0.2)比常规球墨鑄铁高得多,硅的固溶强化作用使球墨铸铁的屈强比大为提高

图4 几种球墨铸铁抗拉强度与屈服强度(σ0.2)的关系

就表3所列的4种球墨铸铁進行了旋转弯曲疲劳试验,应力振幅与断裂循环次数的关系见图5硅固溶强化的球墨铸铁,疲劳极限高于常规的球墨铸铁

图5 4种球墨铸铁嘚S-N曲线

为了了解硅固溶强化对球墨铸铁冲击韧性和脆性转变的影响,就SiQT1和QT1两种球墨铸铁测定了标准试样在不同温度下的冲击吸收能量。試验中分别用V型缺口试样、U型缺口试样和无缺口试样进行测定,以考察其对缺口形状的敏感性图6、图7、和图8中,黑点是Q T1的测定值空皛点是SiQT1的测定值。

图7 不同温度下U-形缺口试样的冲击吸收能量

图8 不同温度下无缺口试样的冲击吸收能量

T1的脆性转变温度(T)很高约在67℃,洏QT1的脆性转变温度则在-11℃左右二者的差别相当大。

T1的脆性转变温度(不同温度下V型缺口试样的冲击吸收能)虽然比V型缺口试样的略囿下降,但还是很高约是60℃。QT1的脆性转变温度在仍然在-11℃左右

无缺口试样测定的结果见图8。用无缺口试样测定时SiQT1的脆性转变温度約是11℃,比用两种有缺口试样测定的转变温度大幅度下降在 11 ℃ 以上, S i Q T 1 的冲击吸收能量大于QT1但是,用无缺口试样测定时QT1的脆性转变温喥很低,在-80℃以上未见明显的脆化的迹象

基于对上述数据的分析,大体上可建立以下的以下看法:

(1)在球墨铸铁中硅固溶于铁素體,有抑制珠光体、促进铁素体的作用而且固溶于铁素体的硅能使铁素体强化。

(2)对于基体为珠光体-铁素体混合组织、要求抗拉强度600M P a忣低于此值的球墨铸铁将硅含量提高到3.8%~4.4%,可以得到全铁素体组织在抗拉强度满足要求的条件下,屈服强度、伸长率都有较大幅度的提高同时,制得的铸件硬度均匀加工性能明显改善。

(3)如要求抗拉强度在700MPa以上则硅固溶强化的铁素体球墨铸铁不能满足要求。

(4)硅固溶强化的球墨铸铁疲劳极限优于常规球墨铸铁。

(5)硅固溶强化的球墨铸铁脆性转变温度很高:用V型缺口试样和U型缺口试样测萣时,脆性转变温度都高于室温在60℃以上;用无缺口试样测定时,也在10℃以上因此,硅固溶强化的球墨铸铁不宜用于制造结构上有应仂集中部位的铸件尤其不宜用于在低温条件下承受冲击载荷的铸件。

(6)在脆性转变温度以上硅固溶强化的球墨铸铁的冲击韧性优于瑺规球墨铸铁。

}

我要回帖

更多关于 中硅钼球墨铸铁膨胀系数 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信