如图,等要三角形底边长怎么算的底边长为8cm腰长为5cm移动点p在底边上从b向c,以0.25cm/s的速度移动,当p运动多少秒时

  • 科目: 来源: 题型:解答题

  • 科目: 来源: 题型:阅读理解

    阅读下列材料,并解决后面的问题.

    我国是历史上较早发现并运用“勾股定理”的国家之一.我中古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”,“勾股定理”因此而得名.

    勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a

    .即直角三角形两直角边的平方和等于斜边的平方.请运用“勾股定理”解决以下问题:


    (1)如图一,分别以直角三角形的边为边长作正方形,其中s

    (2)如图二,是一个园柱形饮料罐,底面半径=8,高=15,顶面正中有一个小园孔,则一条直达底部的直吸管的最大长度是

    .注:罐壁厚度和顶部园孔直径忽略不计.

    (3)如图三,所示的直角三角形中,AB=6.则s

    A.安培首先发现了电流的磁效应

    B.伽利略认为自由落体运动是速度随位移均匀变化的运动

    C.牛顿发现了万有引力定律,并计算出太阳与地球间引力的大小

    D.法拉第提出了电场的观点,说明处于电场中电荷所受到的力是电场给予的

    2.如图为一种主动式光控报警器原理图,图中R1R2为光敏电阻,R3R4为定值电阻.当射向光敏电阻R1R2的任何一束光线被遮挡时,都会引起警铃发声,则图中虚线框内的电路是

    3.如图所示的交流电路中,理想变压器原线圈输入电压为U1,输入功率为P1,输出功率为P2,各交流电表均为理想电表.当滑动变阻器R的滑动头向下移动时

    B.各个电表读数均变大

    4.竖直平面内光滑圆轨道外侧,一小球以某一水平速度v0A点出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,不计空气阻力.下列说法中不正确的是

    A.在B点时,小球对圆轨道的压力为零

    B.BC过程,小球做匀变速运动

    C.在A点时,小球对圆轨道压力大于其重力

    D.AB过程,小球水平方向的加速度先增加后减小

    5.如图所示,水平面上放置质量为M的三角形斜劈,斜劈顶端安装光滑的定滑轮,细绳跨过定滑轮分别连接质量为m1m2的物块.m1在斜面上运动,三角形斜劈保持静止状态.下列说法中正确的是

    A.若m2向下运动,则斜劈受到水平面向左摩擦力

    B.若m1沿斜面向下加速运动,则斜劈受到水平面向右的摩擦力

    C.若m1沿斜面向下运动,则斜劈受到水平面的支持力大于(m1+ m2+Mg

    D.若m2向上运动,则轻绳的拉力一定大于m2g

    二、多项选择题.本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分.

    6.木星是太阳系中最大的行星,它有众多卫星.观察测出:木星绕太阳作圆周运动的半径为r1、周期为T1;木星的某一卫星绕木星作圆周运动的半径为r2、周期为T2.已知万有引力常量为G,则根据题中给定条件

    B.能求出木星与卫星间的万有引力

    C.能求出太阳与木星间的万有引力

    7.如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是

    B.小球运动至最低点A时速度最大,且沿水平方向

    C.小球在整个运动过程中机械能守恒

    D.小球在A点时受到的洛伦兹力与重力大小相等

    8.如图所示,质量为M、长为L的木板置于光滑的水平面上,一质量为m的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f,用水平的恒定拉力F作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s,滑块速度为v1,木板速度为v2,下列结论中正确的是

    A.上述过程中,F做功大小为            

    B.其他条件不变的情况下,F越大,滑块到达右端所用时间越长

    C.其他条件不变的情况下,M越大,s越小

    D.其他条件不变的情况下,f越大,滑块与木板间产生的热量越多

    9.如图所示,两个固定的相同细环相距一定的距离,同轴放置,O1O2分别为两环的圆心,两环分别带有均匀分布的等量异种电荷.一带正电的粒子从很远处沿轴线飞来并穿过两环.则在带电粒子运动过程中

    A.在O1点粒子加速度方向向左

    B.从O1O2过程粒子电势能一直增加

    C.轴线上O1点右侧存在一点,粒子在该点动能最小

    D.轴线上O1点右侧、O2点左侧都存在场强为零的点,它们关于O1O2连线中点对称

    第Ⅱ卷(非选择题 共89分)

    三、简答题:本题分必做题(第lO、11题)和选做题(第12题)两部分,共计42分.请将解答填写在答题卡相应的位置.

    10.测定木块与长木板之间的动摩擦因数时,采用如图所示的装置,图中长木板水平固定.

    (1)实验过程中,电火花计时器应接在  ▲  (选填“直流”或“交流”)电源上.调整定滑轮高度,使  ▲ 

    (2)已知重力加速度为g,测得木块的质量为M,砝码盘和砝码的总质量为m,木块的加速度为a,则木块与长木板间动摩擦因数μ=  ▲ 

    (3)如图为木块在水平木板上带动纸带运动打出的一条纸带的一部分,0、1、2、3、4、5、6为计数点,相邻两计数点间还有4个打点未画出.从纸带上测出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.则木块加速度大小a= 

    11.为了测量某电池的电动势 E(约为3V)和内阻 r,可供选择的器材如下:

    (1)采用如图甲所示的电路,测定电流表G2的内阻,得到电流表G1的示数I1、电流表G2的示数I2如下表所示:

    根据测量数据,请在图乙坐标中描点作出I1I2图线.由图得到电流表G2的内阻等于

    (2)在现有器材的条件下,测量该电池电动势和内阻,采用如图丙所示的电路,图中滑动变阻器①应该选用给定的器材中  ▲  ,电阻箱②选  ▲  (均填写器材代号).

    (3)根据图丙所示电路,请在丁图中用笔画线代替导线,完成实物电路的连接.

    12.选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)

    A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力

    B.扩散运动就是布朗运动

    C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体

    D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述

    (2)将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是  ▲  m(保留一位有效数字).

    (3)如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g

    ①求活塞停在B点时缸内封闭气体的压强;

    ②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).

    A.照相机、摄影机镜头表面涂有增透膜,利用了光的干涉原理

    B.光照射遮挡物形成的影轮廓模糊,是光的衍射现象

    D.为了有效地发射电磁波,应该采用长波发射

    (2)甲、乙两人站在地面上时身高都是L0, 甲、乙分别乘坐速度为0.6c和0.8cc为光速)的飞船同向运动,如图所示.此时乙观察到甲的身高L  ▲  L0;若甲向乙挥手,动作时间为t0,乙观察到甲动作时间为t1,则t1  ▲  t0(均选填“>”、“ =”

    (3)x=0的质点在t=0时刻开始振动,产生的波沿x轴正方向传播,t1=0.14s时刻波的图象如图所示,质点A刚好开始振动.

    ①求波在介质中的传播速度;

    ②求x=4m的质点在0.14s内运动的路程.

    A.康普顿效应进一步证实了光的波动特性

    B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的

    C.经典物理学不能解释原子的稳定性和原子光谱的分立特征

    D.天然放射性元素衰变的快慢与化学、物理状态有关

    (2)是不稳定的,能自发的发生衰变.

    (3)1919年,卢瑟福用α粒子轰击氮核发现质子.科学研究表明其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核.设α粒子质量为m1,初速度为v0,氮核质量为m2,质子质量为m0, 氧核的质量为m3,不考虑相对论效应.

    α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大?

    ②求此过程中释放的核能.

    四、计算题:本题共3小题,共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.

    13.如图所示,一质量为m的氢气球用细绳拴在地面上,地面上空风速水平且恒为v0,球静止时绳与水平方向夹角为α.某时刻绳突然断裂,氢气球飞走.已知氢气球在空气中运动时所受到的阻力f正比于其相对空气的速度v,可以表示为f=kvk为已知的常数).则

    (1)氢气球受到的浮力为多大?

    (2)绳断裂瞬间,氢气球加速度为多大?

    (3)一段时间后氢气球在空中做匀速直线运动,其水平方向上的速度与风速v0相等,求此时气球速度大小(设空气密度不发生变化,重力加速度为g).

    14.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区.

    (1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时ab两点间的电势差;

    (2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率;

    (3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间Tcd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t

    15.如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心OMN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e

    (1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?

    (2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).

    (3)在(2)的情况下,求金属圆筒的发热功率.


  • 科目: 来源: 题型:阅读理解

  •  叫做超声波,低于20Hz叫做次声波。

    4、弦乐器发出的声音是靠 弦的振动  产生的,音调的高低与弦的粗细 、 长短 、 松紧  有关。弦乐器通常有一个木制的 共鸣箱来使声音更洪亮。

    6、我们听到声音的两种方式是气传导和骨传导。造成耳聋的两种类型:神经性耳聋和非神经性耳聋。

    7、声源到两只耳朵的距离一般不同,声音传到两只耳朵的  时刻、  强弱  及其它特征也就不同。这些差异就是判断  声源方向  的重要基础。这就是双耳效应。正是双耳效应,人们可以准确地判断声音传来的  方位 。

    11、外科医生用超声的振动除去人体内的结石,这是利用了声波传递 能量  的性质。

    光在 同种均匀介质中和真空中是沿直线传播的,真空中光速是宇宙中最大的速度是3×108  m/s = 3 ×105 km/s。在其它介质中,,随介质而不同。

    1. 小孔成像和影子的形成说明了 光是沿直线传播 的。
    2. 光的反射定律内容是 反射光线、入射光线 和法线在同一平面,反射光线和入射光线分居法线两侧,反射光线等于入射光线。光在反射中光路可逆。
    3. 我们能看到本身不发光的物体,是因为光射到物体表面发生了 反射 。我们能从不同角度看到同一物体,是因为光射到物体表面发射了 漫反射 。
    4. 平面镜的作用有 成像 、 改变光的传播方向 。平面镜成像特点有  物体经平面镜成的是虚像,像与物体大小相等,像与物体的连线与镜面垂直,像于物体到镜面的距离相等。(成虚像、物、像相对镜面对称——正立、等大、等远。)
    5. 棱镜可以把太阳光分解成 红、橙、黄、绿、蓝、靛、紫几种不同颜色的光,把它们按这个顺序排列起来就是光谱, 在光谱上红光以外人眼看不见的能量的辐射是红外线,  在光谱的紫端,人眼看不见的光 是紫外线。
    6. 红外线主要作用是 热作用强 ,各种物体吸收红外线后温度 升高  ,红外线穿透云雾的能力强,利用灵敏的红外探测器吸收物体发出的红外线,再利用电子仪器对吸收的信号进行处理,可以显示被测物体的 形状 、 特征 ,这就是红外遥感。
    7. 紫外线主要作用是  化学作用强 ,很容易使照相底片感光,紫外线能 杀菌消毒 。紫外线能使荧光物质发光,可进行防伪,鉴别古画,并可用紫外线摄影。

    (1)影是光在传播过程中遇到不透光的物体时,在物体后面光不能直接照射到区域所形成的跟物体相似的暗区部分称为影。它是由光的直线传播产生的。

    (2)、像分为实像和虚像,像是以物体发出的光线,经光学器具形成的与原物相似的图景。

    ⑴实像是物体发出的光线经光学器具后实际光线相交所成的像,如小孔成像,经凸透镜折射后成的倒立的像,   ⑵虚像是物体发出的光线经光学器具后,实际光线反射或折射的反向延长线会聚的像,如平面镜成像,凸透镜折射成正立的像。

    ⑶实像可在屏上呈现,虚像在屏上不呈现,但实、虚像都可用眼睛观察到。

    1.光从一种介质斜射入另一种介质时,传播方向发生偏折,这种现象 叫光的折射。 折射光线和法线的夹角           叫折射角。光从空气斜射入水或其他透明介质中时,折射光线 靠近 法线,折射角  小于 入射角。光从水或其他透明介质斜射入空气中时,折射光线 远离 法线,折射角 大于 入射角。

    2. 光的折射规律;折射光线、入射光线和法线在同一平面上;折射光线和入射光线分居法线两侧;光从空气斜射入某透明介质时,折射角小于入射角,光从某透明介质斜射入空气中时,折射角大于入射角,当光线垂直射向介质表面时,传播方向不变。

    3.生活中由岸边向水中看,虚像比实际池底位置高,由水中向岸上看虚像比实际物体高等成因都是光的折射现象。例:我们看到水中的鱼,实际是由于光的折射形成的鱼的 虚 象,比鱼的实际位置高。潜水员潜入水中看到岸上的物体,比实际的物体 高 。

    4.凸透镜能使 和主光轴平行的光线会聚于主光轴上一点,这一点叫凸透镜的焦点,焦点到凸透镜光心的距离叫  焦距  。对光有会聚作用,称会聚透镜。

    5.凹透镜能使  和主光轴平行的光线 发散,发散光线的反向延长线交于主光轴上一点,这一点叫凹透镜的虚 焦点。对光有发散作用,称发散透镜。

    应广义地体会“会聚作用”,“发散作用”。

    如从凸透镜焦点射出光线,经折射后平行主光轴,折射光线并没有相交一点,但折射光线的方向与入射光线相比,相互“靠拢”,仍对光起会聚作用。

    可见判断透镜对光线的作用,应当用折射光线与入射光线比较,若相“靠近”,则对光线起会聚作用;若相“远离”,则对光线起发散作用。

    (1)过透镜光心的光线,折射后,方向不变。

    (2)平行于主光轴的光线,经折射后过透镜焦点。

    (3)过透镜焦点的光线,经折射后平行主光轴。

    7.照相机利用了凸透镜成  倒立缩小的实像的性质;投影仪利用了凸透镜成  倒立放大的实像 的性质,投影仪上的平面镜的作用是 改变光的传播方向 ;放大镜利用了凸透镜成  正立放大的虚像 的性质。

    8.在凸透镜的焦点以外,物体经凸透镜成 倒立的实 像,并且物体离凸透镜焦点越近所成的像越  大 ,像到凸透镜的距离越  远 , 到凸透镜的距离等于二倍焦距的点是凸透镜成放大像与缩小的像的分界点,到凸透镜的距离等于一倍焦距  的点是凸透镜成实像与虚像的分界点。 

    9.凸透镜所成实像一定是  倒立的,像与物体在凸透镜的两侧 。

    10.凸透镜所成虚像一定是  正立的,像与物体在凸透镜的同侧。

    1. 实像是由实际光线会聚而成,能用光屏承接,也能用眼睛直接看到;虚像是由实际光线的反向延长线相交而成,不能用光屏承接,能用眼睛直接看到。

    物体到凸透镜的距离大于凸透镜焦距的二倍时,物体经凸透镜成倒立缩小的实像,像到凸透镜的距离大于一倍焦距小于二倍焦距,像和物体在凸透镜的两侧。

    物体到凸透镜的距离等于凸透镜焦距的二倍时,物体经凸透镜成倒立等大的实像,像到凸透镜的距离等于二倍焦距,像和物体在凸透镜的两侧。

    物体到凸透镜的距离大于凸透镜一倍焦距小于二倍焦距时,物体经凸透镜成倒立放大的实像,像到凸透镜的距离大于焦距的二倍,像和物体在凸透镜的两侧。

    物体到凸透镜的距离等于凸透镜的焦距时,物体经凸透镜不成像。

    物体到凸透镜的距离小于凸透镜的焦距时,物体经凸透镜成正立放大的虚像,像和物体在凸透镜的同侧。

    光心的光学性质是通过光心的光线传播方向不改变;焦点的光学性质是平行于主光轴的光束经透镜折射后相交(或者在反方向延长后相交)于该点。

    7、在研究凸透镜成像规律的实验中,在已画好的直线上依次放置蜡烛、凸透镜和光屏,并使三者的中心在同一高度,目的是能在光屏上接受到烛焰的像。

    8、① 焦点是凸透镜成实像和虚像的分界点,时不成像,成实像,成虚像。

    ② 二倍焦距处是像大小的分界点,时,成等大实像,时,成缩小的实像,时,成放大实像或放大虚像。

    成实像时,物、像在镜的两侧且倒立,同时像变小,像变大,物像移动方向一致。

    成虚像时,物、像在镜同侧,且正立、放大,同时,,像变大,像变小,像物移动方向也一致。

    ⑤ 成实像时,物、像距离最小值为4倍焦距(即)。

    9、不管成实像还是成虚像,像距大于物距,像是放大的,像距等于物距像与物体等大,像距小于物距像是缩小的。

    12、近视眼的产生是由于晶状体  太厚 ,它的折光能力 太强 ,或者眼球在前后方向上  太长 ,而造成的。这样的眼睛应配戴 凹透镜透镜的眼镜。

    14、显微镜镜筒的两端各有一组透镜,每组透镜的作用都相当于一个 凸透镜 ,物体经物镜成 倒立放大的实 像,这个像在经过目镜成 正立放大的虚 像。

    15、有一种望远镜是由两组凸透镜组成,物镜的作用是使远处的物体在 目镜 附近成 倒立缩小的像,这个像在经过目镜成 正立放大的像。

    16、一个物体离我们越近,它对眼睛的 视角就越大。经眼睛所成的像就越大。 

    1、物体的 冷热程度叫温度。家庭和实验室常用的温度计内装液体如水银、煤油、酒精等,是利用液体热胀冷缩   性质来测量温度的。

    4、医用温度计也叫做  体温计   ,内装液体是水银,比普通温度计多一个 缩口 ,使温度计离开人体后仍能表示人体的温度,所以用体温计前要把升上去的液体用力 甩回到玻璃泡里再测人体温度。

    7、使用温度计测液体温度时,正确方法为:温度计的玻璃泡要  全部浸没在被测液体中 ,不要碰 到容器底和容器壁。 ;要待示数 稳定后再读数;读数时玻璃泡 不能离开被测液体,视线 要 与温度计液柱的上表面相平。

    10、同一物质的熔点和凝固点 相同 

    12、汽化的两种方式为:蒸发和 沸腾 

    14、蒸发是液体在 任何温度下都能发生的,并且只在液体 表面 发生的 缓慢 的  汽化现象 。沸腾是在一定 温度下发生的,在液体内部和表面 同时发生的剧烈的汽化现象。

    15、液体蒸发时温度要降低,它要从周围物体 吸收 热量,因此蒸发具有 致冷作用。

    16、水沸腾须具备两个条件:温度达到沸点 和 吸收热量。

    3、电源是提供 电能的;用电器是 消耗 电能的;导线是 输送 电能的。开关是控制电路通断的 

    4、 容易导电的物体 叫导体; 不容易导电的物体 叫绝缘体。下列物质:棉线、塑料、食盐水、玻璃、大地、橡胶、碳棒、人体、空气、铅笔芯、钢尺,属于导体的是: 食盐水、大地、碳棒、人体、铅笔芯、钢尺。

    6、并联电路中,干路开关控制 整个电路,支路开关控制 本支路 

    8、串联电路和并联电路

    (1)串联电路:把元件逐个顺次连接起来组成的电路叫串联电路。各元件互相牵连,通则都通,断则都断,电路中只需要一个开关,并且开关的位置对电路没有影响。

    (2)并联电路:把元件并列地接连起来组成的电路叫并联电路。并联电路电流有两条或多条路径,各元件可以独立工作,干路的开关控制整个干路,支路的开关只控制本支路。

    (3)串联电路和并联电路的判别方法。

    这是最重要的方法,就是从电路图中电源的正极出发沿电流的方向“走”一圈,回到负极,如果电流只有一条通路,依次通过了所有的用电器,则该电路是串联电路,如果电流通路有多条,并且每条通路都经过不同的用电器,则该电路是并联电路。电流表相当于导线,电压表相当于开路

        节点法多用于一些不规范的电路分析过程,不论导线有多长,只要其间没有电源,用电器等,此导线两端点,便可看作一点,从而找出各用电器两端的公共点。

    所谓消元法就是假设电路中某一用电器不存在,看电路会发生什么变化,若取消任一个用电器,电流都形不成通路,其余用电器都不能工作,那么此电路为串联,若取消任一支路中的用电器,其余支路都能形成通路,其余用电器均能正常工作的是并联。

    9、电流是表示电流强弱 的物理量。

    10、单位:安培(A),毫安(mA),微安(A),,。

    11、电流用电流表来测量,电流表必须串 联在待测的电路中,使电流从 正 接线柱流入从 负  接线柱流出。被测电流不能  电流表的量程 。绝对不允许不经过用电器直接把电流表接在 电源上 。

    13、并联电路干路的电流等于各支路的电流 之和 。

    14、电能表:测量用户消耗多少 电能 的仪表。

    15、总开关:家庭电路需修理时 断开 总开关

    16、保险盒:电路中 电流 过大时保险丝熔断,切断电路对线路起到 保护 作用。

    18、电灯:照明。6、进户输电线。

    19、用 测电笔 可以判断零线和火线,手指按住金属笔卡或笔尾金属体,用笔尖接触被测的导线,氖管发光是 火 线,不发光是  零 线。

    20、双线触电:人体的两个部分别接触 火 线和 零 线,造成的触电。

    21、单线触电:人体接触火线,同时人体和  大地  相连通,造成的触电。

    22、如果发生了触电事故,要立即 断开电源。

    24、漏电保护器:站在地上的人不小心接触了火线,电流经过人体流入 大地 ,漏电保护器迅速 切断电流,对人体起到保护作用。

    (1)电压的作用:电压使电路中形成了电流,也就是说电压是使自由电荷发生定向移动形成电流的原因。

    (2)单位:伏特(V),千伏(kV),毫伏(mV),微伏(V),,,。

    (3)一些电压值:1节干电池的电压为1.5V,一个蓄电池的电压为2V,家庭电路的电压为220V,对人体的安全电压不高于36V。

    注:某段电路中有电流必有电压,而有电压时不一定有电流。

    ① 必须把电压表和被测电路并联。

    ② 必须让电流从“+”接线柱流入,从“-”接线柱流出。

    ③ 被测电压不得超过电压表的量程。

    (2)电压表的量程和读数方法:

    实验室里使用的电压表通常有两个量程0—3V和0—15V,当使用0—3V量程时,每一大格表示1V,每一小格表示0.1V,当使用0—15V量程时,每一大格表示5V,每小格表示0.5V。

    (3) 电流表和电压表的异同点

    ② 都必须使电流从“+”接线柱流入,从“-”接线柱流出。

    ③ 接线时如不能估算被测量的大小,都应先接较大量程接线柱,试触后再根据指针示数接到相应的接线柱上。

    ① 电流表必须串联在待测电路中,电压表必须并联在待测电路两端。

    ② 电流表不能直接连在电源的两极上,电压表能直接连在电源的两端测电源电压。

    6. 串、并联电池组电压特点

    串联电池组的电压等于各节电池的电压之和。

    并联电池组的电压等于每节干电池的电压。

    7. 串、并联电路电压的特点

    (1)串联电路特点:串联电路两端的总电压等于各部分电路两端的电压之和。

    (2)并联电路特点:并联电路中,各支路两端的电压相等。

    (1)电阻是指导体对电流的阻碍作用,是导体本身的一种性质。

    (2)单位:欧姆,符号,千欧()兆欧()

    (3)决定电阻大小的因素:

    ① 导体的电阻和它的长度成正比,导体越长电阻越大。

    ② 导体的电阻与它的横截面积成反比,导体的横截面积越大其电阻越小。

    ③ 导体的电阻还与导体的材料有关。

    注:由于导体电阻的大小跟长度、材料和横截面积有关,因此在研究电阻和其中一个因素的相互关系时,必须保持其它的因素不变,改变要研究的这一因素,研究它的变化对电阻有什么影响。因此,在常温下,导体的材料、横截面积相同时,导体的电阻跟长度成正比;导体的材料、长度相同时,导体的电阻跟横截面积成反比。

    ④ 导体的电阻和温度有关:

    大多数导体的电阻随温度的升高而增大,但有少数导体的电阻随温度的升高而减小。

    (1)工作原理:根据改变电阻线在电路中的长度来改变电阻的大小。

    (2)作用:改变电阻值,以达到改变电流大小、改变部分电路电压的目的,还可起到保护电路中其他用电器的作用。

    (3)正确使用滑动变阻器:

    ① 要了解所使用的变阻器的阻值范围和最大允许电流,如一个变阻器标有“”字样,表示此滑动变阻器的电阻最大值是50欧,允许通过的最大电流是1.5A,使用时要根据需要对滑动变阻器进行选择,不能使通过的电流超过最大允许值。

    ② 闭合开关前,应将滑片移到变阻器接入电路的电阻最大处。

    ③ 将变阻器连入电路时应采用“一上一下”两个接线柱的接法。

    注:判断滑动变阻器的滑片P移动时接入电路电阻的变化情况,关键是看接入电路中那段电阻线的长度变化,如变长则电阻变大,反之则变小。

    (4)电阻箱:一种能够表示出阻值的变阻器,实验室用的旋盘式电阻箱,是通过调节四个旋盘来改变连入电路的电阻值的,从旋盘上可读出阻值的大小。

    调节旋盘可得到之间的任意整数阻值,但不能像滑动变阻器那样逐渐改变电阻。

    1. 有关串、并联问题的解题步骤:

    (1)分析电路结构、识别电路元件间的串、并联关系。

    (2)弄清电流表的作用,清楚测量哪段电路的电流。

    (3)根据串联、并联电路中电流的特点,根据题目所给的已知条件,求出未知电流值。

    2、. 用电压表来检查电路

    用电压表来逐段测量电压是检查电路故障常用的方法,解答这类问题时应注意:由于电流表内阻较小,电流表只有串联在被测电路中才能测量电路的电流,电压表内阻很大,电压表只有并联在被测电路两端才能测量电压,在电路中,如果电流表指针几乎不动,而电压表有明显偏转。故障的原因就在于电压并接的哪段电路中某处一定发生了断路。

    3、 怎样判断滑动变阻器接入电路的电阻值的变化

    (1)确定滑动变阻器与电路的接法

    (2)根据电流通过滑动变阻器的情况,判断滑动变阻器的哪段连入了电路。

    (3)根据滑片位置的变化,判断通过电流的电阻长度的变化。

    (4)由电阻的长度变化判断接在电路中的滑动变阻器电阻大小的变化。

    1、 电流跟电压、电阻的关系。

    (1)电流跟电压的关系:

    在电阻一定的情况下,导体中的电流跟这段导体两端的电压成正比。

    (2)电流跟电阻的关系:

        在电压不变的情况下,导体中的电流跟导体的电阻成反比。

    (1)欧姆定律的内容:

    通过导体的电流强度跟导体两端的电压成正比,跟这段导体的电阻成反比。

    ① 电流、电压和电阻三个量都是对于同一段导体或同一段电路而言的。

    ② 注意电压、电流的因果关系,电压是原因、电流是结果,因为导体两端加了电压、导体中才有电流,不是因为导体中通了电流才加了电压,因果关系不能颠倒。所以不能说电压与电流成正比。

    ③ 注意电流和电阻的因果关系,不能说导体的电阻与通过它的电流成反比,电阻是导体本身的一种特性,即使导体中不通电流,它的电阻也不会改变,更不会因为导体中电流的增大或减小而使它的电阻发生改变。

    ④ 成“正比”和成“反比”是有前提条件的。

    (2)数学表达式:,变形公式和。

    (1)原理:根据欧姆定律的变形公式,测出待测电阻两端的电压和通过的电流,就可以求出导体的电阻。

    (2)实验器材:电源、开关、电流表、电压表、滑动变阻器、待测电阻和导线。

    (4)滑动变阻器的作用:

    ① 改变电路中电流大小,改变串联电阻两端的电压。

    一、(1)电功:电流所做的功叫电功,用W表示,电流做功的过程就是电能转化为其他形式能的过程,电流做了多少功,就有多少电能转化为其他形式的能量。

    (2)公式:,即电流在某段电路上所做的功,等于这段电路两端的电压,电路中的电流和通电时间的乘积。

    电功公式,是计算电功普遍适用的公式。

    ,这两个公式只适用于纯电阻电路。

    注:① 统一使用国际单位的主单位。

    ② 各物理量必须统一在同一段电路中。

    ③ 统一在同一做功过程中。

    (3)单位:焦耳、千瓦时。

    (4)电能表:是测量电功的仪表,把电能表接在电路中,电能表的计数器上先后两次读数数差,就是这段时间内用电的度数。

    (5)串、并联电路中电功的特点:

    ① 在串联电路中,电流做的总功等于各部分电功之和,各部分电功跟电阻成正比。

    ② 在并联电路中,电流做的总功等于各支路电功之和。各支路电功与电阻成反比:

  • 科目: 来源: 题型:阅读理解

    人教版第十二章   运动和力 复习提纲

      1.定义:为研究物体的运动假定不动的物体叫做参照物。

       2.任何物体都可做参照物,通常选择参照物以研究问题的方便而定。如研究地面上的物体的运动,常选地面或固定于地面上的物体为参照物,在这种情况下参照物可以不提。

       3.选择不同的参照物来观察同一个物体结论可能不同。同一个物体是运动还是静止取决于所选的参照物,这就是运动和静止的相对性。

       4.不能选择所研究的对象本身作为参照物那样研究对象总是静止的。

       ☆诗句“满眼风光多闪烁,看山恰似走来迎,仔细看山山不动,是船行”其中“看山恰似走来迎”和“是船行”所选的参照物分别是船和山。

       ☆坐在向东行驶的甲汽车里的乘客,看到路旁的树木向后退去,同时又看到乙汽车也从甲汽车旁向后退去,试说明乙汽车的运动情况。

       分三种情况:①乙汽车没动;②乙汽车向东运动,但速度没甲快;③乙汽车向西运动。

       ☆解释毛泽东《送瘟神》中的诗句“坐地日行八万里,巡天遥看一千河”。

       第一句:以地心为参照物,地面绕地心转八万里。第二句:以月亮或其他天体为参照物在那可看到地球上许多河流。

       二、机械运动

       定义:物理学里把物体位置变化叫做机械运动。

       特点:机械运动是宇宙中最普遍的现象。

       比较物体运动快慢的方法:

       ⑴比较同时启程的步行人和骑车人的快慢采用:时间相同路程长则运动快。

       ⑵比较百米运动员快慢采用:路程相同时间短则运动快。

       ⑶百米赛跑运动员同万米运动员比较快慢,采用:比较单位时间内通过的路程。实际问题中多用这种方法比较物体运动快慢,物理学中也采用这种方法描述运动快慢。

       练习:体育课上,甲、乙、丙三位同学进行百米赛跑,他们的成绩分别是14.2S,13.7S,13.9S,则获得第一名的是    同学,这里比较三人赛跑快慢最简便的方法是路程相同时间短运动的快。

       分类:(根据运动路线)⑴曲线运动;⑵直线运动。

       定义:快慢不变,沿着直线的运动叫匀速直线运动。

       定义:在匀速直线运动中,速度等于运动物体在单位时间内通过的路程。

       物理意义:速度是表示物体运动快慢的物理量。

       计算公式:变形,。

      速度单位:国际单位制中m/s;运输中单位km/h;两单位中m/s单位大。

       换算:1m/s=3.6km/h。人步行速度约1.1m/s。它表示的物理意义是:人匀速步行时1秒中运动1.1m。

       直接测量工具:速度计。

       速度图象:

       定义:运动速度变化的运动叫变速运动。

      (求某段路程上的平均速度,必须找出该路程及对应的时间)。

       物理意义:表示变速运动的平均快慢。

       平均速度的测量:原理。

       方法:用刻度尺测路程,用停表测时间。从斜面上加速滑下的小车。设上半段,下半段,全程的平均速度为v1.v2.v 则v2>v>v1。

       常识:人步行速度1.1m/s;自行车速度5m/s;大型喷气客机速度900km/h;客运火车速度140km/h;高速小汽车速度108km/h;光速和无线电波3×108m/s。

       设计数据记录表格是初中应具备的基本能力之一。设计表格时,要先弄清实验中直接测量的量和计算的量有哪些,然后再弄清需要记录的数据的组数,分别作为表格的行和列。根据需要就可设计出合理的表格。

      练习:   某次中长跑测验中,小明同学跑1000m,小红同学跑800m,测出他两跑完全程所用的时间分别是4分10秒和三分20秒,请设计记录表格,并将他们跑步的路程、时间和平均速度记录在表格中。

       解:表格设计如下

       1.长度的测量是物理学最基本的测量,也是进行科学探究的基本技能。长度测量的常用的工具是刻度尺。

       2.国际单位制中,长度的主单位是m,常用单位有千米(km),分米(dm),厘米(cm),毫米(mm),微米(μm),纳米(nm)。

       3.主单位与常用单位的换算关系:

       单位换算的过程:口诀:“系数不变,等量代换”。

       4.长度估测:黑板的长度2.5m;课桌高0.7m;篮球直径24cm;指甲宽度1cm;铅笔芯的直径1mm;一只新铅笔长度1.75dm;手掌宽度1dm;墨水瓶高度6cm。

       5.特殊的测量方法:

       A、测量细铜丝的直径、一张纸的厚度等微小量常用累积法(当被测长度较小,测量工具精度不够时可将较小的物体累积起来,用刻度尺测量之后再求得单一长度)

       ☆如何测物理课本中一张纸的厚度?

       答:数出物理课本若干张纸,记下总张数n,用毫米刻度尺测出n张纸的厚度L,则一张纸的厚度为L/n。

       ☆如何测细铜丝的直径?

       答:把细铜丝在铅笔杆上紧密排绕n圈成螺线管,用刻度尺测出螺线管的长度L,则细铜丝直径为L/n。

       ☆两卷细铜丝,其中一卷上有直径为0.3mm,而另一卷上标签已脱落,如果只给你两只相同的新铅笔,你能较为准确地弄清它的直径吗?写出操作过程及细铜丝直径的数学表达式。

       答:将已知直径和未知直径两卷细铜丝分别紧密排绕在两只相同的新铅笔上,且使线圈长度相等,记下排绕圈数N1和N2,则可计算出未知铜丝的直径D2=0.3N1/N2mm

       B、测地图上两点间的距离,圆柱的周长等常用化曲为直法(把不易拉长的软线重合待测曲线上标出起点终点,然后拉直测量)

       ☆给你一段软铜线和一把刻度尺,你能利用地图册估测出北京到广州的铁路长吗?

       答:用细铜线去重合地图册上北京到广州的铁路线,再将细铜线拉直,用刻度尺测出长度L查出比例尺,计算出铁路线的长度。

       C、测操场跑道的长度等常用轮滚法(用已知周长的滚轮沿着待测曲线滚动,记下轮子圈数,可算出曲线长度)

       D、测硬币、球、圆柱的直径圆锥的高等常用辅助法(对于用刻度尺不能直接测出的物体长度可将刻度尺三角板等组合起来进行测量)

       你能想出几种方法测硬币的直径?(简述)

       ①直尺三角板辅助法;②贴折硬币边缘用笔画一圈剪下后对折量出折痕长;③硬币在纸上滚动一周测周长求直径;④将硬币平放直尺上,读取和硬币左右相切的两刻度线之间的长度。

       6.刻度尺的使用规则:

       A、“选”:根据实际需要选择刻度尺。

       B、“观”:使用刻度尺前要观察它的零刻度线、量程、分度值。

       C、“放”用刻度尺测长度时,尺要沿着所测直线(紧贴物体且不歪斜)。不利用磨损的零刻线。(用零刻线磨损的刻度尺测物体时,要从整刻度开始)

       D、“看”:读数时视线要与尺面垂直。

       E、“读”:在精确测量时,要估读到分度值的下一位。

       F、“记”:测量结果由数字和单位组成。(也可表达为:测量结果由准确值、估读值和单位组成)。

       练习:有两位同学测同一只钢笔的长度,甲测得结果12.82cm,乙测得结果为12.8cm。如果这两位同学测量时都没有错误,那么结果不同的原因是:两次刻度尺的分度值不同。如果这两位同学所用的刻度尺分度值都是mm,则乙同学的结果错误。原因是:没有估读值。

       (1)定义:测量值和真实值的差异叫误差。

       (3)减小误差的方法:多次测量求平均值;用更精密的仪器。

       (4)误差只能减小而不能避免,而错误是由于不遵守测量仪器的使用规则和主观粗心造成的,是能够避免的。

       四、时间的测量

       1.单位:秒(S)。

       2.测量工具:古代:日晷、沙漏、滴漏、脉搏等。

       现代:机械钟、石英钟、电子表等。

       五、力的作用效果

       1.力的概念:力是物体对物体的作用。

       2.力产生的条件:①必须有两个或两个以上的物体;②物体间必须有相互作用(可以不接触)。

       3.力的性质:物体间力的作用是相互的(相互作用力在任何情况下都是大小相等,方向相反,作用在不同物体上)。两物体相互作用时,施力物体同时也是受力物体,反之,受力物体同时也是施力物体。

       4.力的作用效果:力可以改变物体的运动状态;力可以改变物体的形状。

       说明:物体的运动状态是否改变一般指:物体的运动快慢是否改变(速度大小的改变)和物体的运动方向是否改变。

       5.力的单位:国际单位制中力的单位是牛顿简称牛,用N表示。

       力的感性认识:拿两个鸡蛋所用的力大约1N。

       6.力的测量:

       ⑴测力计:测量力的大小的工具。

       ⑵分类:弹簧测力计、握力计。

       ⑶弹簧测力计:

       A、原理:在弹性限度内,弹簧的伸长与所受的拉力成正比。

       B、使用方法:“看”:量程、分度值、指针是否指零;“调”:调零;“读”:读数=挂钩受力。

       C、注意事项:加在弹簧测力计上的力不许超过它的最大量程。

       D、物理实验中,有些物理量的大小是不宜直接观察的,但它变化时引起其他物理量的变化却容易观察,用容易观察的量显示不宜观察的量,是制作测量仪器的一种思路。这种科学方法称做“转换法”。利用这种方法制作的仪器:温度计、弹簧测力计、压强计等。

       7.力的三要素:力的大小、方向、和作用点。

       8.力的表示法:力的示意图:用一根带箭头的线段把力的大小、方向、作用点表示出来,如果没有大小,可不表示,在同一个图中,力越大,线段应越长。

       六、惯性和惯性定律

       1.伽利略斜面实验:

       ⑴三次实验小车都从斜面顶端滑下的目的是:保证小车开始沿着平面运动的速度相同。

       ⑵实验得出得结论:在同样条件下,平面越光滑,小车前进地越远。

       ⑶伽利略的推论是:在理想情况下,如果表面绝对光滑,物体将以恒定不变的速度永远运动下去。

       ⑷伽利略斜面实验的卓越之处不是实验本身,而是实验所使用的独特方法──在实验的基础上,进行理想化推理。(也称作理想化实验)它标志着物理学的真正开端。

      2.牛顿第一定律:

       ⑴牛顿总结了伽利略、笛卡儿等人的研究成果,得出了牛顿第一定律,其内容是:一切物体在没有受到力的作用的时候,总保持静止状态或匀速直线运动状态。

       A、牛顿第一定律是在大量经验事实的基础上,通过进一步推理而概括出来的,且经受住了实践的检验所以已成为大家公认的力学基本定律之一。但是,我们周围不受力是不可能的,因此不可能用实验来直接证明牛顿第一定律。

       B、牛顿第一定律的内涵:物体不受力,原来静止的物体将保持静止状态,原来运动的物体,不管原来做什么运动,物体都将做匀速直线运动。

       C、牛顿第一定律告诉我们:物体做匀速直线运动可以不需要力,即力与运动状态无关,所以力不是产生或维持运动的原因。

       ⑴定义:物体保持运动状态不变的性质叫惯性。

       ⑵说明:惯性是物体的一种属性。一切物体在任何情况下都有惯性,惯性大小只与物体的质量有关,与物体是否受力、受力大小、是否运动、运动速度等皆无关。

       4.惯性与惯性定律的区别:

       A、惯性是物体本身的一种属性,而惯性定律是物体不受力时遵循的运动规律。

       B、任何物体在任何情况下都有惯性,(即不管物体受不受力、受平衡力还是非平衡力),物体受非平衡力时,惯性表现为“阻碍”运动状态的变化;惯性定律成立是有条件的。

       ☆人们有时要利用惯性,有时要防止惯性带来的危害,请就以上两点各举两例(不要求解释)。答:利用:跳远运动员的助跑;用力可以将石头甩出很远;骑自行车蹬几下后可以让它滑行。防止:小型客车前排乘客要系安全带;车辆行使要保持距离;包装玻璃制品要垫上很厚的泡沫塑料。

       七、二力平衡

       1.定义:物体在受到两个力的作用时,如果能保持静止状态或匀速直线运动状态称二力平衡。

       2.二力平衡条件:二力作用在同一物体上、大小相等、方向相反、两个力在一条直线上。

       概括:二力平衡条件用四字概括“一、等、反、一”。

       3.平衡力与相互作用力比较:

       相同点:①大小相等;②方向相反;③作用在一条直线上不同点:平衡力作用在一个物体上可以是不同性质的力;相互力作用在不同物体上是相同性质的力。

       4.力和运动状态的关系:

    力不是产生(维持)运动的原因

    力是改变物体运动状态的原因

       5.应用:应用二力平衡条件解题要画出物体受力示意图。

       画图时注意:①先画重力然后看物体与那些物体接触,就可能受到这些物体的作用力;②画图时还要考虑物体运动状态。

  • 科目: 来源: 题型:阅读理解

    1、冲力(F—t图象特征)→ 冲量。冲量定义、物理意义

    冲量在F—t图象中的意义→从定义角度求变力冲量(F对t的平均作用力)

    1、定理的基本形式与表达

    3、定理推论:动量变化率等于物体所受的合外力。即=ΣF 

    c、某个方向上满足a或b,可在此方向应用动量守恒定律

    1、功的定义、标量性,功在F—S图象中的意义

    2、功率,定义求法和推论求法

    3、能的概念、能的转化和守恒定律

    b、变力的功:基本原则——过程分割与代数累积;利用F—S图象(或先寻求F对S的平均作用力)

    c、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点

    b、动能定理的广泛适用性

    a、保守力与耗散力(非保守力)→ 势能(定义:ΔEp = -W

    b、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达

    b、条件与拓展条件(注意系统划分)

    c、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。

    1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类)

    碰撞的基本特征:a、动量守恒;b、位置不超越;c、动能不膨胀。

    a、弹性碰撞:碰撞全程完全没有机械能损失。满足——

    解以上两式(注意技巧和“不合题意”解的舍弃)可得:

    b、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律

    c、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一个整体,故有

    八、“广义碰撞”——物体的相互作用

    1、当物体之间的相互作用时间不是很短,作用不是很强烈,但系统动量仍然守恒时,碰撞的部分规律仍然适用,但已不符合“碰撞的基本特征”(如:位置可能超越、机械能可能膨胀)。此时,碰撞中“不合题意”的解可能已经有意义,如弹性碰撞中v1 = v10 ,v2 =

    2、物体之间有相对滑动时,机械能损失的重要定势:-ΔE = ΔE = f·S ,其中S指相对路程。

    第二讲 重要模型与专题

    一、动量定理还是动能定理?

    物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。

    模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。

    先用动量定理推论解题。

    取一段时间Δt ,在这段时间内,飞船要穿过体积ΔV = S·vΔt的空间,遭遇nΔV颗太空垃圾,使它们获得动量ΔP ,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。

    如果用动能定理,能不能解题呢?

    同样针对上面的物理过程,由于飞船要前进x = vΔt的位移,引擎推力须做功W = x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔEk为零,所以:

    两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I = t ,由此推出的 = 必然是飞船对垃圾的平均推力,再对飞船用平衡条件,的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。

    (学生活动)思考:如图1所示,全长L、总质量为M的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v将绳子拉直。忽略地面阻力,试求手的拉力F 。

    解:解题思路和上面完全相同。

    二、动量定理的分方向应用

    物理情形:三个质点A、B和C ,质量分别为m1 、m2和m3 ,用拉直且不可伸长的绳子AB和BC相连,静止在水平面上,如图2所示,AB和BC之间的夹角为(π-α)。现对质点C施加以冲量I ,方向沿BC ,试求质点A开始运动的速度。

    模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。

    下面具体看解题过程——

    绳拉直瞬间,AB绳对A、B两质点的冲量大小相等(方向相反),设为I1 ,BC绳对B、C两质点的冲量大小相等(方向相反),设为I2 ;设A获得速度v1(由于A受合冲量只有I1 ,方向沿AB ,故v1的反向沿AB),设B获得速度v2(由于B受合冲量为+,矢量和既不沿AB ,也不沿BC方向,可设v2与AB绳夹角为〈π-β〉,如图3所示),设C获得速度v3(合冲量+沿BC方向,故v3沿BC方向)。

    B的动量定理是一个矢量方程:+= m2 ,可化为两个分方向的标量式,即:

    质点C的动量定理方程为:

    六个方程解六个未知量(I1 、I2 、v1 、v2 、v3 、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——

    1、先用⑤⑥式消掉v2 、v3 ,使六个一级式变成四个二级式:

    2、解⑶⑷式消掉β,使四个二级式变成三个三级式:

    3、最后对㈠㈡㈢式消I1 、I2 ,解v1就方便多了。结果为:

    (学生活动:训练解方程的条理和耐心)思考:v2的方位角β等于多少?

    解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I1 ,得I2的表达式,将I2的表达式代入⑶就行了。

    三、动量守恒中的相对运动问题

    物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?

    模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N次抛球和将N个球一次性抛出是完全等效的。

    设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V1 第二过程获得的速度大小为V2 。

    第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N个球动量守恒。

    第二过程,必须逐次考查铅球与车子(人)的作用。

    第一个球与(N–1)个球、人、车系统作用,完毕后,设“系统”速度为u1 。值得注意的是,根据运动合成法则,铅球对地的速度并不是(-v),而是(-v + u1)。它们动量守恒方程为:

    第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u2 。它们动量守恒方程为:

    第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u3 。铅球对地的速度是(-v + u3)。它们动量守恒方程为:

    以此类推(过程注意:先找uN和uN-1关系,再看uN和v的关系,不要急于化简通分)……,uN的通式已经可以找出:

    不难发现,①′式和②式都有N项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V1 > V2 。

    结论:第一过程使车子获得的速度较大。

    (学生活动)思考:质量为M的车上,有n个质量均为m的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v、方向水平向后的初速往车下跳。第一过程,N个人同时跳下;第二过程,N个人依次跳下。试问:哪一次车子获得的速度较大?

    解:第二过程结论和上面的模型完全相同,第一过程结论为V1 =  。

    答:第二过程获得速度大。

    四、反冲运动中的一个重要定式

    物理情形:如图4所示,长度为L、质量为M的船停止在静水中(但未抛锚),船头上有一个质量为m的人,也是静止的。现在令人在船上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?

    (学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L吗?本系统选船为参照,动量守恒吗?

    模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S = t 。为寻求时间t ,则要抓人和船的位移约束关系。

    对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V),令指向船头方向为正向,则矢量关系可以化为代数运算,有:

    由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:

    设全程的时间为t ,乘入①式两边,得:mt = Mt

    解②、③可得:船的移动距离 S =L

    (应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)

    人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x表达。根据力矩平衡知识,得:x = ),又根据,末态的质量分布与初态比较,相对整体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。

    (学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?

    解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。

    (学生活动)思考:如图6所示,

    两个倾角相同的斜面,互相倒扣着放在光滑的水平地面上,小斜面在大斜面的顶端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M和m ,底边长分别为a和b ,试求:小斜面滑到底端时,大斜面后退的距离。

    解:水平方向动量守恒。解题过程从略。

    进阶应用:如图7所示,一个质量为M ,半径为R的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。

    解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。

    为寻求轨迹方程,我们需要建立一个坐标:以半球球心O为原点,沿质点滑下一侧的水平轴为x坐标、竖直轴为y坐标。

    由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O′的方位角θ来表达质点的瞬时位置,如图8所示。

    不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:

    这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R和R的椭圆。

    五、功的定义式中S怎么取值?

    在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体(质心)的位移呢?我们先看下面一些事例。

    1、如图9所示,人用双手压在台面上推讲台,结果双手前进了一段位移而讲台未移动。试问:人是否做了功?

    2、在本“部分”第3页图1的模型中,求拉力做功时,S是否可以取绳子质心的位移?

    3、人登静止的楼梯,从一楼到二楼。楼梯是否做功?

    4、如图10所示,双手用等大反向的力F压固定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?

    在以上四个事例中,S若取作用点位移,只有第1、2、4例是做功的(注意第3例,楼梯支持力的作用点并未移动,而只是在不停地交换作用点),S若取物体(受力者)质心位移,只有第2、3例是做功的,而且,尽管第2例都做了功,数字并不相同。所以,用不同的判据得出的结论出现了本质的分歧。

    面对这些似是而非的“疑难杂症”,我们先回到“做功是物体能量转化的量度”这一根本点。

    第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;

    第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;

    第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;

    第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。

    但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)

    以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。

    而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。

    那么我们在解题中如何处理呢?这里给大家几点建议: 1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。

    当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出能量(生物能)的机构,也是得到能量(机械能)的机构——这里的物理情形更象是一种生物情形。本题所求的功应理解为广义功为宜。

    以上四例有一些共同的特点:要么,受力物体情形比较复杂(形变,不能简单地看成一个质点。如第2、第3、第4例),要么,施力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。

    (学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?

    解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S 。(另解:求货物动能的增加和与皮带摩擦生热的总和。)

    (学生活动)思考:如图12所示,人站在船上,通过拉一根固定在铁桩的缆绳使船靠岸。试问:缆绳是否对船和人的系统做功?

    解:分析同上面的“第3例”}

    如图,在△ABC中,∠C=90°,BC=8cm,5AC-3AB=0,点P从B出发,沿BC方向以2cm/s的速度移动,与此同时点Q从C出发,沿CA方向以1cm/s的速度移动,经过多长时间△ABC和△PQC相似?
    由AC与AB的关系,设出AC=3xcm与AB=5xcm,再由BC的长,在直角三角形ABC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,进而得到AB与AC的长,然后设出动点运动的时间为ts,根据相应的速度分别表示出PC与CQ的长,由△ABC和△PQC相似,根据对应顶点不同分两种情况列出比例式,把各边的长代入即可得到关于t的方程,求出方程的解即可得到t的值,从而得到所有满足题意的时间t的值.
    相似三角形的判定与性质.
    此题考查了相似三角形的判定与性质,由已知的AC与AB的关系,利用勾股定理确定出两条边的长是本题的突破点,本题的关键是根据三角形相似的对应顶点不同,分两种情况△ABC∽△PQC与△ABC∽△QPC分别列出比例式来解决问题.
    }

    根据直线的解析式,可求得点的坐标,由于,都在抛物线的图象上,那么它们都满足该抛物线的解析式,通过联立方程组即可求得待定系数的值;
    根据抛物线的解析式,可求得点的坐标,联立直线的解析式,可求得点坐标;那么四边形的面积即可由,的面积差求得;
    假设存在符合条件的点,连接,,过作轴于,若,则,可设出点的坐标,分别表示出,的长,根据相似三角形所得比例线段即可求得点的坐标;
    假设成立有或,则有,或,判断是否满足即可.






    为直角顶点时,如图:过




    综上所述:满足条件的点





    此题考查了二次函数解析式的确定,函数图象交点坐标及图形面积的求法,直角三角形的判定以及相似三角形的性质等,难度适中.



    }
  • 我要回帖

    更多关于 三角形底边长怎么算 的文章

    更多推荐

    版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

    点击添加站长微信