为什么CEL-seq单细胞转录组测序流程发有3‘偏差

  报道:北京大学生物动态光学成像中心(Biodynamic Optical Imaging Center, BIOPIC)是北京大学于2010年成立的一个跨学科合作实体研究中心。中心的目标是发展和利用最先进的生物成像与基因测序手段,在分子和细胞水平上进行生命科学与医学基础研究。中心配备了界一流的研究设备和条件,有重点地发展最新的生物成像和测序技术。
2015年七月二十三日,该中心的黄岩谊、汤富酬课题组在国际著名学术杂志《Genome Biology》发表题为“Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos”的论文。该研究开发出一种单细胞通用的、poly(A)-独立的RNA测序(SUPeR-seq)方法,来测定单个细胞的多腺苷酸RNA和非多腺苷酸RNA。这种方法表现出稳健的敏感性和准确性。这项研究工作,为解析哺乳动物早期胚胎发育过程中circRNAs的功能意义和调控机制,奠定了基础。延伸阅读:。
转录组包括一个细胞内转录的全部RNA。即使在同一类型的细胞中,不同个体细胞的转录组之间存在着内在的异质性。为了充分揭示这种复杂性,就需要对单个细胞进行理想的转录组分析,并覆盖每一个细胞内所有的RNA。
在2009年,该课题组首先开发了一种单细胞RNA转录组分析技术(‘Tang2009’ 程序),自那以后,各种各样的单细胞RNA-seq方法也相继开发出来,如Smart-seq、CEL-Seq和Quartz-Seq。这些方法已经迅速成为解析单细胞转录组复杂性的有力工具,特别是在胚胎和神经发育、细胞重编程和癌症进展研究中。
所有已知的真核细胞单细胞RNA-seq程序,仅限于检测具有poly(A)尾巴的mRNA(poly(A)+ RNAs)。然而,有大量的非多聚腺苷酸RNA(poly(A)- RNA)在哺乳动物细胞中表达。标准的方法依赖于Oligo(dT)来启动逆转录(RT)。通过Oligo(dT)启动,可避免无信息核糖体RNA(rRNA)测序读长的优势,否则它们占哺乳动物细胞总RNA的90%。然而,这种方法不可避免地会排除其他没有poly(A)尾巴的RNA的信息。
特别是,最近有研究在真核细胞中发现了一套独特的poly(A)- RNAs――环形RNA(circRNAs)。这些circRNAs多数是由编码基因的外显子组成,而一些研究也报道过内含子circRNAs。circRNAs往往与重要的细胞功能有关,如结合并抑制microRNA(miRNA)作为一个海绵。目前,很有必要开发一种方法,来检测单细胞内完整的转录组,包括poly(A)+和poly(A)- RNAs。
在这项研究中,研究人员开发出一种新型的单细胞转录组分析方法,命名为单细胞通用poly(A)-独立的RNA测序(SUPeR-seq),这种方法用具有锚序列的随机引物,取代常用的oligo(dT)引物,用于cDNA合成。SUPeR-seq能够检测到单细胞内的poly(A)+和poly(A)- RNAs,具有来自rRNAs的最小污染。
与Tang2009程序相比,该方法具有更高的灵敏度,能检测更多的基因。来自基因组DNA和rRNA的污染是可以忽略不计的。使用SUPeR-seq,该研究小组总共发现了来自HEK293T 细胞的141 个circRNA转录本和来自单个小鼠早期胚胎的2891个circRNA转录本。
此外,该研究小组通过对从单个小鼠植入前胚胎产生的SUPeR-seq读长进行从头组装,发现了几百个新的非圆形转录本。通过将来自小鼠卵母细胞的SUPeR-seq 读长与来自2-细胞阶段胚胎的SUPeR-seq读长进行比较,研究人员确定了两个母系和合子基因;通过对用α鹅膏蕈碱(基因转录的强效抑制剂)处理的2-细胞胚胎进行测序,81%的合子基因得以进一步的验证。因此,这些结果指出了SUPeR-seq的高度稳健性和潜在效用。&(:王英)
注:黄岩谊,男,博士后 ,北京大学材料科学与工程系教授、博士生导师。北京大学生物动态光学成像中心研究员,北京大学高通量测序中心;北京大学化学与分子工程学院兼职研究员,北京大学终身正教授。黄岩谊课题组致力于发展应用于集成生物学研究的新技术。课题组当前的研究兴趣集中在基因测序技术、微流控技术及生物成像技术三个方面。我们一直在发展高效、新型的高通量DNA测序技术及其应用方法,特别是测序化学与设备研发、单细胞测序技术应用与器件研发、以及少量细胞的表观基因组学测序方法研发。
汤富酬,男,北京大学生命科学学院生物动态光学成像中心研究员,博士生导师。,英国剑桥大学Gurdon研究所,博士后。2010-现在,北京大学BIOPIC,研究员。其实验室主要围绕哺乳动物早期胚胎发育研究多能性干细胞分化、发育调控的分子机理,特别是表观遗传学调控机理,以及相关的原始生殖细胞(Primordial Germ cells)发育过程中的表观遗传学重编程机理。
推荐原文摘要:Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryosAbstract:Circular RNAs (circRNAs) are a new class of non-polyadenylated non-coding RNAs that may play important roles in many biological processes. Here we develop a single-cell universal poly(A)-independent RNA sequencing (SUPeR-seq) method to sequence both polyadenylated and non-polyadenylated RNAs from individual cells. This method exhibits robust sensitivity, precision and accuracy. We discover 2891 circRNAs and 913 novel linear transcripts in mouse preimplantation embryos and further analyze the abundance of circRNAs along development, the function of enriched genes, and sequence features of circRNAs. Our work is key to deciphering regulation mechanisms of circRNAs during mammalian early embryonic development.(/)版权所有,未经书面许可,不得转载
我来说两句(0)
[Ctrl+Enter]
热搜:|||||||
知名企业招聘
医药/产业</
相关文章:
加载相关文章......
今日文章:
加载今日文章......
版权所有 生物通
Copyright&
, All Rights Reserved
联系信箱:----------友情链接----------
皮肤病远程会诊系统
安徽医科大学
国际皮肤科学会联盟
亚洲皮肤科学会
中华医学会皮肤性病学分会
中国医师协会皮肤科医师分会
美国皮肤科学会
欧洲皮肤性病学
美国梅育医学院
新加坡国立基因研究所
香港大学基因组研究中心
全国皮肤病遗传资源收集协作网
当前位置 >>
>> 单细胞测序技术概览
单细胞测序技术概览
【发布时间: 08:31:47】  阅览:1955次  【关 闭】
2013年,单细胞测序技术(single-cell sequencing)荣膺《自然-方法》年度技术。单细胞测序技术有助于我们剖析细胞的异质性。它可以揭示肿瘤细胞基因组中发生的突变及结构性变异,而这些突变和变异往往有着极高的突变率。有了这些信息,我们就可以描述肿瘤细胞的克隆结构,并追踪疾病的进展及扩散范围。本文将介绍2013年单细胞测序技术在人类早期发育、癌症以及神经科学研究等几个重点领域的最新应用成果。
1. 单细胞测序技术简介
本节将概述如何获得一个单细胞的基因组及转录组。
单细胞基因组及转录组测序所需要的测序样本量要比单细胞中本身所含有的基因组及转录组分子高出好多个数量级,所以这对核酸扩增技术(amplification technology)也是一大考验。面对如此微量的分子,任何降解、样品损失、或者污染都会对测序质量带来非常严重的影响。而且多重扩增又容易带来试验误差,比如基因组或转录组覆盖不均一、背景噪声以及定量不准确等问题。
最近所取得的技术进步有望部分解决上述问题,使单细胞测序技术能够走进更多的实验室,解决更多领域的科学问题。比较罕见的细胞、异质性的样本、与遗传嵌合或突变相关的表型、不能人工培养的微生物,这些都是单细胞测序技术能够一展所长的研究平台。使用单细胞测序技术能够发现克隆突变(clonal mutation)、隐藏的细胞类型,或者在大块组织样品研究工作中被“稀释”或平均掉的转录特征。
1.1 选择恰当的细胞
说到分离单细胞,显微操作(micromanipulation)无疑是一项非常精确的技术,而且利用毛细管(microcapillary)可以直接吸取细胞内容物,但是这项操作也需要耗费大量人力。很多组织解离之后都能够制成单细胞悬液,这种单细胞悬液很容易操作,而且可以用细胞分选器(cellsorter),根据细胞表面表达的特异性分子标志物对细胞进行分类富集操作。这种策略也被用来分离非常微量的循环肿瘤细胞。
1.2 单细胞转录组策略
现在有很多单细胞RNA测序操作流程可供选择,不过不管采用何种策略,首先都需要通过逆转录反应,利用RNA合成出cDNA。然后才会有所区别,比如有一些方法是对整个转录子进行测序,有一些方法只针对转录子的5'和3'端进行测序。不论采用何种方法,目的都只有一个,那就是捕获原始的RNA分子,然后均一的、准确地对其进行扩增。核酸的捕获效率主要受到逆转录反应的影响,不过我们可以使用更小的反应体系,选择更好的逆转录酶来进行改善。另外,采用模板转换技术(template switching)也能够保证被捕获的绝大部分转录子都是全长片段。减少反应循环数也能够改善核酸扩增反应,还可以借助“抑制PCR(suppression PCR)”技术减少引物扩增,或者将取自不同样品的cDNA(这些cDNA都是分别做好标记的)混合到一起,提高起始反应模板浓度,用体外转录技术进行线性扩增(linear amplification)。另外,还可以利用特有的分子识别序列(molecular identifier sequences)对每一个RNA分子进行标记,这样即便在经历了非均一的扩增之后,我们还是能够对原始的RNA分子数量进行绝对定量。
1.3 单细胞基因组策略
全基因组扩增(whol e-genome amplification)的起始反应产物更少,只有一个DNA分子。这样在扩增反应时就难免出现不均一的问题,即可能在基因组中某些位点会扩增多次,而另外一些位点则无法扩增。解决这个问题最常用的办法就是多重置换扩增技术(multiple displacement amplification, MDA),即使用随机引物,让这些引物与基因组广泛结合,同时使用一种特定的聚合酶,这种聚合酶能够置换与它自身附着在同一模板上的DNA链片段,形成一种反复分支结构(iterative branching structure),扩增出大段的DNA。早期循环对整个扩增反应的均一性起到了决定性作用。有一种扩增技术采用了一种独特的引物,这样能够生成闭合环状的扩增子(amplicon),而且这种扩增产物不会再进一步复制,等于是在进行PCR扩增反应之前先进行几轮线性扩增反应。将反应按比例扩大,同时对反应情况进行实时监控都有助于改善基因组扩增成功率低的问题,另外减少扩增次数,准备更少模板的测序文库也是一个比较值得发展的方向。
1.4 一个细胞解决所有问题
在单细胞研究工作中,扩大试验规模是确保采集足够多的生物多样性信息的关键。微流体设备(microfluidics)或微孔板技术(microwell technology)能够提供标准化、高通量的选择,而且由于这种设备的反应体积通常都比较小,所以反应效率也都比较高。不过微流体设备也有一定的限制,只能处理某些特定大小的细胞样品。当然,将待测分子用生物条码(barcoding)标记之后混合起来进行分析也是一条处理通量的途径。单细胞核酸扩增及测序技术正在不断成熟、完善之中。我们相信,随着单细胞试验操作变得越来越容易,成本变得越来越低,会有更多的科研人员选择使用单细胞测序技术,这将会像PCR技术一样成为每个实验室里的常规试验操作,帮助我们以更高的分辨率去研究问题、解决问题。
2. 单细胞测序技术――科研界主流关注的焦点技术
单细胞基因组测序技术及单细胞转录组测序技术又掀起了一波新的科研浪潮,让科研人员们能够以新的视角看待发育、肿瘤及神经科学问题。
对于不孕不育症夫妇而言,孕育一个孩子是非常困难的事情,而且这也会让他们的情感饱受折磨。即便他们怀孕了,也不是高枕无忧的,因为这些家长需要担心另外一个问题,如何生育一个健康的宝宝。对于那些存在遗传风险,需要借助体外受精技术(in vitro fertilization, IVF)辅助的父母而言,胚胎植入前遗传学诊断(preimplantation genetic diagnosis, PGD)技术(即从早期胚胎中取出一个细胞进行遗传学疾病筛查的技术)是孕育出健康下一代的保证,虽然目前PGD技术也只能够对基因组中的一个、或少数几个位点进行筛查和诊断。由于取自早期胚胎的细胞数量都不会太多,所以极其珍贵,临床医生们必须从这些宝贵的细胞中尽可能地获取有价值的信息。
而单细胞全基因组测序技术(single-cell whole genome sequencing method)就有望解决早期胚胎发育及其他科研领域里存在的这些重要的问题。由于单细胞分离技术以及单细胞中痕量的DNA或RNA扩增及测序技术的进步,科研人员们得以对单细胞的整个基因组或转录组(而不是少数几个位点)以前所未有的高分辨率进行扫描和研究。
美国哈佛大学(Harvard University)的Sunney Xie等人就是在IVF工作中进行单细胞基因组测序研究的课题组之一,他们用第一极体和第二极体(所谓极体指的是受精卵分裂时“遗弃”的细胞成分,可以反映染色体的健康状况)验证了他们新开发的全基因组扩增技术。Xie等人最近发表的文章介绍了他们对8位女性供体的研究成果,研究发现极体活检(polar-body biopsy)和单细胞测序都能够准确地反映胚胎染色体非整倍体(aneuploidy)的情况,其中就包括唐氏综合症(Down's syndrome)这种染色体数目过多的情况,也包括染色体丢失,或者遗传自父母的单核酸突变(single-nucleotide variation)等情况(Cell, doi:10.1016/j.cell. 19 December 2013)。Xie发现染色体非整倍体平均只需要在每一百个基因组位点中挑出一个位点进行测序就足够了,所以这要比传统的方法成本更低,而且准确性也会更高。
Xie与这篇论文的合作者――中国北京大学(Peking University)的Fuchou Tang和中国北京大学附属第三医院(Peking University Third Hospital)的Jie Qiao针对这些接受IVF帮助的女性开展了一项临床研究。他们对这些志愿者的胚胎极体进行了基因组扩增和全基因组测序研究,以此来判断胚胎是否健康,是否适于进行移植、受孕。据Xie介绍,如果将时间提前两年,在临床上开展这项研究工作几乎是不可能的,当时有大批没有遗传问题,可是不能受孕的夫妻给他发邮件寻求帮助。目前这次临床研究的第一位婴儿将在年内降生。Xie指出,他并没有想到他们的技术能够这么快地走向临床,给患者们提供切实的帮助。”
2.1 2013年测序技术回顾
单细胞测序技术可谓是科技发展史上的一大创举。一个细胞里的DNA或RNA仅仅处在皮克(picograms)级的水平,这么少的量远远达不到现有测序仪的最低上样需求。因此科学家们必须先对单细胞内的微量核酸分子进行扩增,而且必须保证尽可能少地出现技术误差,以便开展后续的测序及其他研究。直到最近,也还是只有少数几位专家相信能够对单细胞进行可靠的研究。
虽然早在几年前就开始有研究团体在宣传、推广单细胞基因组及转录组测序技术,但是这些技术是最近这两年才开始被大范围接受,其中就包括从事神经科学研究、肿瘤及微生物生态学研究的科研人员。据美国Fluidigm公司的联合创始人,斯坦福大学(Stanford University)的Stephen Quake介绍,几乎从PCR技术诞生的第一天开始,就不断有人尝试用PCR技术进行单细胞基因表达研究及单细胞基因组研究。但是由于种种原因,单细胞测序技术直到现在才算是刚刚起步。
DNA和RNA扩增技术的不断改进,尤其是最近这两年新出现的进步给刚刚涉足这个领域的科研人员在开展试验时提供了非常丰富的选择。工业界也提供了无数种商业化的、而且价格低廉的单细胞核酸扩增试剂盒及读取技术。Fluidigm公司就在2013年推出了世界上第一款单细胞RNA测序自动化准备系统(single-cell automated prep system for RNA-seq)。所有这些技术上的进步极大地降低了科研人员们进入单细胞研究这个领域的技术门槛。瑞典卡罗林斯卡研究院(Karolinska Institutet in Sweden)的Rickard Sandberg在谈到单细胞RNA测序时说道:“大家等这一天已经等了好几十年了。直到今天,由于技术的进步,这些试验才变得足够简单,而且成本也能够让大家接受,所以才能够走进千千万万个实验室。”
进行单细胞研究的核心问题其实是:为什么要进行单细胞研究?这主要是因为如果将成千上万个细胞混在一起进行研究,就会模糊我们对大脑、血液系统、免疫系统,及其组成这些系统的细胞之间异质性(heterogeneity)的认识。美国宾夕法尼亚大学(University of Pennsylvania)的James Eberwine就认为,当你的研究深入到单细胞层面时,你就会失去对整个系统的把控,但是如果你能够从整个系统中挑选多个不同的单细胞进行研究,则可以重建出整个系统,而且这种重建过程能够提供更多更有价值的信息。有大量很难对大块组织进行研究的科研领域也都会从这些最新的单细胞研究技术中获益。这种单细胞测序技术不仅有助于我们认识细胞之间的差异,还可以为我们提供一个新的比较层面,这也是大家期盼已久的,能够重新定义细胞类型的层面。
可与大家这种极高热情相伴的却是各种各样的技术难题,包括单细胞分离、基因组或转录组扩增,以及数据解读等各个方面。试验成本也是需要考虑的一大因素。通常来说,对细胞进行分析时所需要的细胞数量要比对组织进行分析时所需要的组织数量多很多,所以在决定是否应该进行单细胞研究时一定要谨慎,要根据实际情况做出合适的判断。“我们真的需要进行单细胞研究吗?如果答案是否定的,那就不要进行单细胞研究。单细胞研究非常贵,而且你会碰到很多的变数。”美国博大研究院(Broad Institute),同时也在麻省理工学院任职的Paul Blainey这样说道。
2.2 从少数几个RNA分子开始
对细胞的转录组进行测序,关键在于能否利用细胞内的RNA扩增出大量的cDNA。然而,捕获少量的RNA分子制备cDNA,以及大量扩增这些cDNA分子的工作很难做到平等和高效。
1990年,Norman Iscove的课题组首次证实对单细胞进行转录组分析是可行的,他们用 PCR技术实现了对cDNA分子的指数级扩增。在20世纪90年代初期,Eberwine等人发明了一种新技术,能够从单个的活神经元细胞中获得cDNA,并且再以这些cDNA为模板转录生成RNA,实现RNA的线性扩增。随着芯片时代的来临,科学家们用这些线性、和指数级扩增技术对单细胞之间的基因表达差异进行了大量的比较和研究。
2008年时出现了高通量RNA测序技术,不久之后,科研人员们就将这种技术与前面发展起来的核酸扩增技术结合起来,对单细胞转录组进行了更加精细的研究。2009年,当时在英国剑桥大学Gurdon研究所(Gurdon Institute at the University of Cambridge)M. Azim Surani实验室工作的Tang通过对单个小鼠卵裂细胞(blastomere)的研究发现,与芯片技术相比,利用单细胞转录组技术可以多发现数千个基因的表达情况(Nat. Methods 6, 377C382, 2009)。
就在同一年,美国冷泉港实验室(Cold Spring Harbor Laboratory)也召开了第一次单细胞大会,参加大会的有科研人员、技术开发人员,以及涉足单细胞研究领域的先驱们,参会者一共还不到50人。据现在在美国弗吉尼亚大学(University of Virginia)工作的Mike McConnell回忆,每一个人都试过做 RNA测序,也尝试过对测序结果进行分析,想从中找出有价值的、可重复的结论。
不过技术的发展经历了很长一段时间,现在终于有了一整套单细胞测序的操作流程和各种商业化的试剂盒产品。瑞典卡罗林斯卡研究院的Sten Linnarsson认为,纯粹技术上的发展到今年已经达到了顶点,现在是考虑如何将这些技术应用到实际工作当中。有很多课题组瞄准的可不是几百个细胞,他们想要研究上万个细胞。
比如 Kun Zhang课题组承担的、由美国国立卫生研究院公共资金(US National Institutes of Health Common Fund)资助的单细胞研究项目(Single Cell Analysis Program)就打算对取自人类大脑皮质三个不同区域里的10,000多个细胞进行全转录组分析。Zhang等人计划根据转录子对细胞类型进行分类(可能还会对细胞类型进行重新定义),并且将这些转录子重新定位到不同的大脑组织切片里。当然单细胞RNA测序这项技术本身已经不再是障碍了。据Zhang介绍,如果你有好的细胞,如果你想进行转录组研究,那么你会有很多种选择,帮助你达成目标。不过通常而言,如何在人死后提取神经元细胞,并尽可能减少RNA的降解,保持大脑组织正常的空间结构,这也都是需要解决的问题。 Zhang等人也在从事这方面的工作,正在对几种不同的技术进行比较。
2.3 基因组扩增技术
开发一项新的单细胞全基因组扩增技术是需要一定的时间的,这是因为在一个细胞内,通常都只有一至两个DNA的拷贝,所以直到2005年才出现单细胞全基因组扩增技术,这要远远落后于单细胞RNA扩增技术。当时Roger Lasken的团队成为世界上第一个成功完成单细胞DNA扩增及测序的团队,他们当时使用的是自己开发的多重置换扩增技术(multiple displacement amplification, MDA)对大肠杆菌进行试验。这项工作给微生物学家带来了极大的激励,他们利用这项技术对各种不能人工培养的微生物进行了测序研究,获得了大量的参考基因组序列(reference genome)。
MDA作为最常用的技术和策略一直沿用至今,该技术用到了Phi29等聚合酶,能够使经退火、结合到基因组上的任意随机引物不断延伸。每一种聚合酶都能够置换临近的延伸链,形成大量的、覆盖多个小片段的、长达7至10kb的大片段产物,用来进行DNA测序。
到了2011年,科研人员们将单细胞基因组扩增技术与高通量测序技术结合起来开展研究。Nicholas Navin当时就在美国冷泉港实验室的Michael Wigler课题组工作,他在取自两位乳腺癌患者的乳腺癌肿瘤细胞中发现了大段的基因组DNA缺失或重复突变,即拷贝数变异(copy-number variant, CNV),该研究的分辨率达到了50kb(Nature 472, 90C94,2011)。
在单细胞基因组测序工作中最大的困难就是某些DNA片段的扩增效率要远远高过另外一些DNA片段。Xie等人在2012年又发明了一种新的多重退火环状扩增循环技术(multiple annealing and looping-based amplification cycles, MALBAC),该技术首先需要进行5轮MDA预扩增,然后就可以使新获得的扩增产物形成闭合的环状分子(Science 338,, 2012)。由于这些环状分子不能够被进一步扩增,所以整个扩增过程就变成了线性扩增。然后再进行常规的PCR扩增,由于此时采用的模板更加均一,所以在进行PCR扩增时就不易造成较大的差异。Xie等人用这种MALBAC技术获得的人类基因组扩增产物能够达到93%的覆盖度,同时也在单个肿瘤细胞中检出了CNV突变。
很快,科学家们就能够对单细胞的基因组进行更加深入的研究了,他们将能够发现更小的缺失和重复突变,乃至单碱基突变。虽然基因组均一扩增还是一个问题,但是专家们相信,缩小反应体积应该可以带来一定的帮助。
比如美国加州大学圣地亚哥分校(University of California, San Diego)的Zhang等人最近就介绍了一种MIDAS技术,即微孔板置换扩增系统(micro-well displacement amplification system),使用这套系统可以用纳升级的反应体系同时进行数千个MDA反应(Nat. Biotechnol., 31,, 2013)。科研人员们可以手工、或者用机械手取出这些扩增产物,进行测序。借助这套MIDAS系统,Zhang等人课题组只进行了很少的测序工作就在人类神经元细胞中发现了单拷贝变异(single-copy-number change),分辨率达到了1至2MB。
2.4 细胞表达差异
在美国博大研究院(Broad Institute),Aviv Regev与Joshua Levin等人在开始单细胞RNA测序工作之前,先利用质量很差、降解严重的组织样本对多种RNA测序技术进行了比较,最后她们决定采用Smart-Seq技术对骨髓来源的树突状细胞(dendritic cell)进行研究。这些树突状细胞是一种有丝分裂后的免疫细胞,能够对抗原产生非常强烈的转录反应。
Regev等人一共选择了18个细胞,耗时一周分批进行了试验。她们之前尝试了各种方法,最终都失败了。可是这一次却一次就成功了。研究发现,每一个细胞都会统一表达所谓的持家基因(‘housekeeping’genes),但是每一个细胞也都有各自独特的表达谱,与免疫调控功能相关的基因在有些细胞里的表达水平非常高,可是在有些细胞里却压根不表达。之前还从来没有在树突状细胞中发现这种两极分化的现象,因为一直以来都是对一堆细胞进行研究,细胞之间的差异全部被平均掉了。该研究成果于去年6月得以发表,该文章首次报道了一种“隐藏的”细胞类型,即非常罕见的“第一应答者细胞(first responder)”(Nature 498, 236-240, 2013)。从更广义的角度来说,这一发现有助于我们重新认识这些树突状细胞,以及它们的信号通路和功能。
单细胞转录组测序也能够帮助科研人员研究发育早期的基因表达与调控情况,而且借助这项技术还能够以前所未有的精细程度对罕见的样品开展科学研究。比如美国加州大学洛杉矶分校(University of California, Los Angeles)的Guoping Fan与他在中国的合作者们在去年8月发表的一篇文章就对33个单细胞进行了转录组测序研究。这33个细胞全都取自处于发育不同阶段的胚胎,他们根据测序结果确定了发育初期基因的表达顺序,还发现了人类与小鼠胚胎发育过程中基因表达时限上的差异(Nature 500, 593C597, 2013)。
与此同时,Tang的课题组也在从好几个人类早期胚胎中仔细地分离细胞标本,并且对这些细胞挨个进行单细胞转录组测序。据Tang介绍,他们非常紧张,因为这些标本全都来之不易,非常珍贵。不过他们的工作也获得了回报,他们发现了2700多个新的长非编码RNA(long noncoding RNA)分子,这些分子可能都与早期基因调控作用有关(Nat. Struct. Mol. Biol. 20, , 2013)。据Tang介绍,在此之前,所有的单细胞RNA测序工作还都只是针对已知基因进行分析,充其量也仅仅增加了已知基因的可变剪接亚型(alternative splicing isoforms)而已。
2.5 混合的肿瘤细胞
从疾病预后判断到病情监测,肿瘤研究人员都能够从单细胞测序技术那里获得巨大的帮助。我们都知道,肿瘤细胞的突变速率非常快,而且肿瘤组织是一种高度异质性的组织。确定肿瘤组织中存在哪些细胞亚群(或者叫克隆)具备转移能力,哪些克隆对化疗药物是敏感的,这些信息对于临床工作都非常有帮助。尤其针对隐藏在人体循环系统里的循环肿瘤细胞(circulating tumor cell, CTC)进行全基因组或者转录组测序最有帮助,因为这些CTC细胞就是导致肿瘤转移的元凶,有关它们的信息对于疾病的诊断、监测和治疗都至关重要。
比如Navin于2011年在《自然》(Nature)杂志就发表过一篇文章,介绍了他们的单细胞基因组研究成果。他们发现CNV突变与肿瘤的进化模式有关,肿瘤在稳定增长之后会突然发生基因组失稳。据现在在美国得克萨斯大学MD Anderson癌症中心工作的Navin介绍,这一发现让他们非常吃惊,因为他们一直认为肿瘤细胞一直在缓慢地积累突变。这次研究工作也证实,单细胞技术非常强大,至少能够帮助他们发现人体单个肿瘤细胞里的基因拷贝数变异。Navin与他的合作者们还在继续对三阴型乳腺癌患者进行研究,主要想了解CNV方面的情况,同时也希望能够更好地了解肿瘤转移的问题。
除了Navin等人之外,还有其他几个课题组也都在利用单细胞测序技术开展与肿瘤相关的研究工作。比如前面介绍过的Xie就与中国北京大学的Fan Bai,以及美国哈佛大学的Jie Wang一起,在一种肺癌亚型(不包括其它亚型)的CTC细胞中发现了一种特定的CNV突变(Proc. Natl. Acad. Sci. USA, doi:10.1073/pnas., 9 December 2013)。Xie认为,这些最新的进展都有助于我们开发早期诊断产品和技术。
转录组上的差异也有助于我们认识肿瘤的进展情况。比如Sandberg的团队就使用他们自己开发的Smart-Seq技术对单个CTC细胞进行了RNA测序研究,并对他们的这套方法进行了验证。使用最新版的Smart-Seq2技术,他们能够以比以前更低的成本观察更多的细胞。由于观测的细胞数更多,所以让从事CTC研究的科研工作者们头痛不已的试验误差问题也能够得到更好的控制。据Sandberg介绍,他们真的希望拿出一套更加系统的解决方案,帮助大家更好地认识CTC细胞的异质性问题,帮助大家更好地认识CTC细胞进入血液循环系统时的基因表达情况。
比基因组和转录组研究更困难的就是以化学标志物形式附着在基因组上,并对基因的表达实施调控的表观基因组(epigenome)研究了。虽然目前的表观遗传学技术还达不到单细胞研究水平(因为传统的表观遗传学研究技术都会使DNA降解),但是科研人员们还是迫切希望看到单个肿瘤细胞的表观基因组情况。Tang的科研团队开发了一种可以对单细胞全基因组内的DNA甲基化修饰情况进行研究的新技术(Genome Res. 23, , 2013)。Tang认为,表观基因组研究真的也需要单细胞技术,只有这样,科研人员们才能够了解这个肿瘤细胞与它周围的肿瘤细胞有什么差别,而且这种差别是因为甲基化修饰引起的,还是因为其它机制引起的。英国Wellcome基金会Sanger研究所(Wellcome Trust Sanger Institute)的Wolf Reik团队对 50至100个细胞的甲基化组(methylome)情况进行了分析,他表示他真的很想再往前走一步。
2.6 大脑中的“禁区”
神经元细胞是最新一个被用来进行单细胞研究的对象,科学家们其实也不太清楚能够通过这些研究获得怎样的信息和结论。也是直到最近才开始有试验证据表明,神经元细胞之间也具有不同的基因组。虽然有这些研究成果,但是科学家们对神经元细胞的这种多样性也还是一头雾水。早在2001年,当时还在美国加州大学圣地亚哥分校(University of California, San Diego)工作的Jerold Chun就在小鼠的大脑中发现了染色体非整倍体现象,随后又于2005年在人类大脑细胞当中发现了同样的现象。据当时在Chun实验室读研究生的McConnell介绍,拿到这些结果之后,他们也没人知道下一步该怎么办。他们等于是发现了冰山的一角,如果细胞里存在非整倍体现象,那么一定会有很多的基因突变,或者基因组突变。
几乎就在同一时间,另外一帮科研人员发现,在人类基因组当中,平均每一个基因组里都含有80~100个具有潜在活力的L1元件(这是一种可以在整个基因组当中自我复制、自我粘贴的DNA元件),而且在大脑神经元细胞当中,这些L1元件都是有活性的。该研究,以及其它一些研究成果都证明,基因组至少是具备多样性可能的,但是这种变异的程度究竟有多大,没人说得清楚。
据美国国立精神卫生研究院( US National Institute of Mental Health)的 Thomas Insel介绍,他们还只是刚刚开始尝试去了解大脑细胞的分子多样性问题。在这个领域单细胞研究技术起到了关键性的作用,不仅仅是在确定神经元细胞和神经胶质细胞的(分类)类型方面,同时也有利于我们了解体验和发育对大脑某个区域里的基因表达有何作用。
科学家们可以用好几种方法发现单细胞基因组变异情况。美国哈佛大学医学院(Harvard Medical School)的Christopher Walsh团队就对300个取自死者大脑的神经元细胞进行了单细胞L1元件插入研究(Cell 151, 483C496, 2012)。他们只发现了几个 L1插入元件,这说明L1元件应该不是导致基因组多样性的主要原因,但至少在大脑皮质细胞和尾状核(caudate nucleus)细胞里是这样。
2013年,另外几个课题组也对单个人类神经元细胞进行了全基因组扫描研究。比如在2013年11月发表的文章就对3名健康人大脑的110个额皮质(frontal cortex)神经元细胞进行了全基因组测序研究,结果相当令人吃惊,他们发现在神经元细胞里有大量的大段CNV突变(Science 342, 632C637, 2013)。对源自健康人皮肤细胞的神经元细胞进行的研究也发现了同样的情况,而且这些神经元细胞里的CNV要比其来源的皮肤细胞更多,这说明这种源自iPS细胞的神经元细胞是一种非常好的研究材料,适合用于开展细胞多样性方面的研究工作。
实际上,虽然有了这些发现,但是神经科学家们还是很头疼,因为他们不知道这些体细胞突变意味着什么。美国弗吉尼亚大学(University of Virginia)的遗传学家Ira Hall也是去年这篇发表于《科学》上的文章的合作者之一,他认为这些研究意味着大脑对影响和干扰的抵抗力很弱,另外,遗传嵌合现象(genomic mosaicism)也能够影响人们罹患肿瘤和其它疾病的风险。为了明确大脑中哪些部位与其它部位相比更容易受到干扰,以及大脑不同区域间的差异有多大,科研人员们还得研究更多的细胞才能够找到答案。现在就在从事这方面研究的McConnell认为现在还是一无所知。
2.7 概念验证之后的工作
虽然单细胞技术已经有可能解决很多生命科学领域的重大问题,但是技术上的进步还远远没有结束。比如科研人员就必须研究如何将真正的生物学差异与试验技术本身的背景噪音区分开。瑞典KTH皇家理工学院(KTH Royal Institute of Technology in Sweden)的Joakim Lundeberg(他们实验室就曾经开发过组织RNA测序技术)就认为,单细胞RNA和DNA测序技术还远远算不上足够强大,他表示,他们还需要在一次试验中对更多的单细胞进行分析,以便解决背景噪声问题,这至少也能够加深他们对同一个组织里不同细胞之间差异的了解。
由于存在方方面面的问题,比如细胞分离、数据运算、以及用于不同领域时出现的特异性问题等等,所以Blainey希望在未来的几年里单细胞研究技术还能够有更大的进步。
对于新进入这个领域的人而言,光是选择哪一种转录组测序技术可能就够他们头疼半天的了。关于这个问题,应该视研究目的而定,比如是想对多个细胞进行分析,找出同型的转录子,还是想发现低丰度的RNA。“不过有多种方法可供选择总归是件好事。”Quake这样说道。在去年10月,Quake的课题组发现,如果将预处理时的反应体积控制在纳升级(他们使用的是Fluidigm公司提供的C1系统),那么单细胞qPCR技术和单细胞RNA测序技术的检测效果是差不多的(Nat. Methods 11,41C46,2014)。“这对于我们整个试验操作的可信度而言是一个重大的好消息。”Quake补充道。
随着商业化产品的推出,以及各个实验室经过多年实践总结出了自己的“独门秘笈”,基因组扩增技术的选择也在同步改善。不过由于每一个人使用的进行基因组扩增的技术都不一样,所以很难对不同的研究成果进行直接的比较。比如Xie就认为,他们感觉MALBAC技术要比MDA技术更好,但是这也要取决于你是如何进行MDA试验的。不过随着技术的不断进步,这两种技术都将会过时被淘汰,但我们也会继续改进这些技术,MALBAC一定会赢得最终的胜利,我们会让这项技术变得更好。
与此同时,从事肿瘤研究、脑神经科学研究、微生物研究、以及从事药物开发和其他领域研究的科研人员也都会从这些技术进步当中受益。而且这些技术进步也会吸引众多优秀的人才加入单细胞研究领域,比如已经在表观遗传学研究领域颇有建树的Reik等。Reik在去年才第一次参加单细胞学术会议,而在此之前还从来没有接触过单细胞研究,看到这么多新技术,Reik感到非常激动。他指出,最开始人们会因技术本身而激动,过不了多久,人们就会利用这些新技术去解决重要的生命科学问题,那将是更加令人激动的事情。
3. 单细胞分析技术――认识遗传多样性的利器
技术上的新进展已经让单细胞基因组测序技术(single-cell genome sequencing)逐渐成为了一项主流的检测手段,该领域的研究工作已经初步揭示出细胞之间在基因组结构(genetic architecture)与遗传变异性(genetic variability)方面的差异,这也反映出基因组并非一成不变的天然本质。
其实单细胞基因组分析这个项目很早就出现了,早在1882年就有人报告了昆虫唾液腺的单细胞图像,该图展示了多线染色体(polytene chromosomes)的带状结构。到了1935年,Calvin Bridges又发表了一幅类似的果蝇(Drosophila)细胞基因组图片,从这幅图中可以看出个体之间、品系之间,以及种系之间都存在大范围的基因组重排(genomic rearrangements)现象。最近研究人员也开展了大量的单细胞研究工作,使用的主要技术手段包括PCR和其它生化扩增技术。其中比较知名的工作包括在20年前开展的对单个精子细胞(single sperm cell)进行的重组热点(recombination hot-spot)研究,以及现在在人工辅助生殖工作中常规开展的胚胎植入前的胚胎单细胞遗传诊断工作(preimplantationgeneticdiagnoses)。既然单细胞检测技术已经发展了一个多世纪了,为什么现在才突然火起来呢?
我们认为这应该与最近取得突破的单细胞基因组测序工作有关。这主要包括以下三个方面:技术进步使全基因组及转录组扩增的效率大幅度提高;DNA测序技术的跨越式发展使得测序的通量更高,测序的成本更低;微流体技术(microfluidics)和荧光活化细胞分选技术(fluorescence-activated cell sorting)等不断涌现的新型单细胞试验技术。最近这5年,全世界各个实验室里出现了一大批单细胞研究论文,包括单细胞基因表达研究、单细胞基因组分析研究,以及商业化的服务等,这些工作对新技术的推广起到了非常重要的作用。单细胞基因组分析现在就是一个非常有影响力的技术,而且涉及了很多的方面,比如微生物生态学(microbial ecology)、肿瘤、产前诊断以及人类基因组结构及变异等。接下来我们将重点介绍这几个方面的最新进展,以及未来可能的发展方向。
3.1 单细胞生物的单细胞测序
微生物生态学是最适合进行单细胞基因组测序的研究项目,因为据估计,绝大多数(99%的物种)微生物都是无法进行人工培养的。这些不能培养的微生物被科学家们形象地称作生物界的“暗物质(dark matter)”,因为我们只能根据对标志基因(marker-gene)序列的检测来间接地“观察”这些暗物质。虽然元基因组技术(metagenomic approaches)有助于我们了解这种复杂环境里的基因组成情况,但是物种与基因之间的关系还是不得而知,因此只有借助单细胞基因组技术才能够了解单细胞生物(unicellular organism)与自身基因组功能之间的关系。这也说明我们现有的基因组数据库还相当欠缺,有大量的遗传与进化多样性信息都没有被收入在内。
科学家们开展的第一个不能人工培养的单细胞生物基因组测序工作就是针对人类牙菌斑(human tooth plaque)上的细菌开展的。最近几年已经发表了十几篇有关不能人工培养的单细胞生物基因组方面的论文,随着单细胞研究技术与测序技术的进一步发展,我们相信这方面的工作会以指数扩增形式迅速发展起来。随着这些数据的不断积累,我们也会陆续发现更多新的、以前未知的微生物功能和微生物代谢产物(metabolites),发现更多与人类身体健康相关的新物种,甚至有可能彻底改变生命之树的结构,颠覆真核生物、细菌和古细菌之间传统的进化学关系。
微生物在形态学(morphology)、生理学(physiology)和基因型(genotype)方面的多样性也给单细胞分析技术带来了不小的挑战。在我们选择单细胞分析技术、试验反应和化学试剂时,需要考虑每一种样品的特殊性。比如,微生物试验经常需要非常严格的裂解条件,而且不同的微生物往往需要不同的试验条件,这就会增加试验操作的复杂程度。由于在核酸扩增之前并不一定需要进行 DNA纯化操作,所以扩增试剂就需要能够与细胞裂解试剂兼容。复杂的裂解及扩增操作流程比较适合微孔板试验和需要用到整合技术的微流体设备的试验操作,因为这些操作都可以实现自动化。有意思的是,当反应体系缩小到纳升(nanoliters)时,生化扩增仪的表现反而会更好。相对简便的操作规程比较适合反相乳液液滴系统(reverse emulsion liquid-droplet systems)试验,使用这种系统可以快速地进行数万个独立的微反应。到目前为止,几乎所有的单细胞微生物测序结果全都使用了同一个全基因组扩增反应,即多重置换扩增技术(multiple displacement amplification, MDA)。该技术是一种等温的扩增技术(isothermal amplification),使用随机引物,主要依赖的是&#632;29 DNA聚合酶的链置换功能。
3.2 人类单体型(human haplotypes)研究
人类基因组分析工作已经从确定所有人的 “平均”参考序列(reference sequence)快速进入个体基因组测序时代,看起来单细胞技术似乎也帮不上太多的忙。但是我们人类基因组中有一些部分使用传统技术进行分析还是有比较大的难度的。比如人体内的每一个细胞里都含有两套基因组,其中一套来自父亲,另外一套来自母亲,这就叫做单体型现象,而每一个单倍体基因组(haploid genome)中的变异都会对基因的表达、蛋白质的功能,以及疾病造成非常大的影响。
人白细胞抗原( human leukocyte antigen, HLA)编码基因变异就是非常典型的例子, HLA基因单体型信息是骨髓移植工作中非常重要的一项信息,不过这只适用于非常复杂的杂合突变(heterozygous mutation)――在一个基因位点上发生了两个突变。如果这两个突变都位于同一个单体(一条染色体),那么可能是无害的,但是如果分别位于两个不同的单体,那么就极有可能是有害的。现有的技术还无法在基因组的层面上进行这种单体区分(haplotype determination)。传统的、进行单体区分最精确的方法需要对一个家系( family pedigree)进行测序,主要是对父母进行测序。很明显,在临床上大规模开展这种工作是不现实的。
不过单细胞染色体分离技术(Single-cell chromosome isolation)帮了我们的大忙,这是第一种全基因组单体型测量技术(genome-wide haplotype measurement),能够对完整的染色体进行单体鉴定。该技术出现之后很快就与其它技术搭配起来,比如只需要用到少量细胞(不过对于男性精子细胞来说可能需要的细胞数量会多一些)的单细胞测序技术(single-cell sequencing approach)等。我们希望这些技术,以及确定基因组片段单体型的长读长测序技术(long-read sequencing technologies)能够得到更进一步的应用,以促进我们对人类基因组的认识和了解。HLA编码区是我们人类基因组中多态性最明显的一个区域,该区域与人类免疫系统关系密切,也与多种人类疾病有非常直接的联系,所以一直都是研究的热点。不过由于HLA的单体型太过复杂,所以迄今为止也只对少数几个人的HLA区域进行过单体型测序。
单细胞基因组研究工作涉及的另外一个领域就是对各种人的重组方式(recombination pattern)的研究。所谓重组指的是精子细胞和卵子细胞内分别遗传自父系和母系的两条染色体大片段各自断裂,然后相互再连接,形成一个全新的基因组的过程,这也是造成人类遗传多样性的最主要原因。我们知道,整个基因组内的重组几率并不是完全一样的,即存在所谓的“重组热点”,这些位置发生重组的几率要比基因组内其它区域更高。单细胞基因组分析工作的最早成果之一就是发现在不同的个体之间,这些重组热点也会有所差异,这些热点对于某些人而言的确是热点,但是对于另外一部分人来说其实也不是那么热。最近,单细胞研究技术已经被用于分析全基因组重组模式
(genome-wide recombination pattern),以及单个精子细胞的突变率等,世界上也有了第一个针对不同个体的全基因组热点行为研究(genome-wide hot-spot behavior)。我们希望未来的单个精子细胞基因组研究也能够涉及重组突变(recombination mutant),比如对携带罕见PRDM9等位基因的个体开展研究;以及针对与不孕不育疾病(sterility and infertility)相关的、可用于临床诊断的减数分裂功能紊乱(meiotic dysfunction)的研究。
3.3 体细胞突变研究
越来越的人开始慢慢认识到个体基因组测序的意义和价值,不过目前的个体基因组序列指的还是人体内所有细胞基因组的“平均”序列。科学家们在几十年之前就已经发现,人体某些(种)细胞之间是存在基因组差异的,比如属于我们人体免疫系统的B淋巴细胞就是一个很好的例子。每一种B细胞都会严格表达一种特定的抗体,这些B细胞基因组里的基因是绝对不会被重编程(reprogram)的。正如前面已经介绍过的,生殖细胞在减数分裂和遗传重组的过程中也会出现分化和差异。在细胞不断的分裂过程中,以及在可移动的遗传元件(mobile genetic elements)的转移过程中也会慢慢积累各种突变,这些突变都具有非常重要的意义,不过我们目前对此了解得还不是特别清楚。
这些不断积累的突变与衰老,尤其是与肿瘤有非常密切的关系,所以衰老和肿瘤这两个研究领域一定会是单细胞基因组分析技术大显身手的舞台。到目前为止,已经有科研人员利用单细胞研究技术对人体精子细胞和永生化细胞系细胞进行过研究,他们直接检测了这些细胞的自发突变速率(de novo mutation rate)。还有人用这些技术对造血干细胞进行检测,以确定这些造血干细胞的突变程度,判断正常的造血干细胞转化成急性髓性白血病(acute myelogenous leukemia)肿瘤细胞之后的突变程度是不是有了一个大幅度的提升,并借此了解这些白血病肿瘤细胞的演变规律,判断乳腺癌细胞的克隆结构(clonal structure)等。
在成体神经组织里也存在嵌合型突变(Mosaic variation),这些突变与阿尔茨海默病(Alzheimer's disease)等神经退行性病变有关。最近,有科研人员利用单细胞MDA等基因组分析技术在诱导性多潜能干细胞(induced pluripotent stem cell)分化的神经细胞和尸检获得的脑细胞(postmortem brain cell)中发现了大段的(达到 MB级别的)基因拷贝变异(copy number variation)。也有人利用单细胞MDA技术和以PCR为基础的全基因组扩增技术发现了 L1逆转座子(retrotransposition)是促使大脑细胞内出现体细胞嵌合突变的潜在因素,而且还用这种方法发现在不到1/3的脑细胞里存在的突变也同样能够诱发严重的疾病,比如半侧巨脑症(hemimegalencephaly)等。荧光原位杂交技术(&#64258;uorescence in situ hybridization)也被用来研究小鼠大脑中部分非整倍体(aneuploid)的神经元细胞与小鼠衰老之间的关系。这是一个让人着迷的研究领域,有各种证据表明嵌合型体细胞突变与机体发育相关,也具有一定的功能,在正常的成熟神经组织里一样能够发现这些突变。这可能就是“正常的”神经表型之间的差异能够导致神经疾病的原因,这些差异也可能与心理疾病相关,而且突变会随着年龄增长越来越多。
3.4 何时需要单细胞测序
什么时候进入单细胞基因组测序项目才合算呢?肿瘤基因组是一种高度异质性的核酸,而且突变的速度非常快,所以对肿瘤组织进行单细胞基因组测序是最合适的。虽然大批量的肿瘤组织测序并没有让科研人员们清楚地认清肿瘤组织的亚克隆组成情况,可是如果再使用单细胞基因组测序技术,我们就可以获得更详细的信息,明确基因组中核酸序列存在高度异质性情况的基因组位点。这种分阶段的技术极大地降低了测序成本,因而增加了对某个肿瘤组织进行测序时可以进行单细胞测序的细胞数目和测序次数。
虽然目前我们还不能确定,对某个肿瘤组织进行多次、大量的单细胞全基因组测序在经济上是否划算,但是对基因组中的重要部分进行分析,或者用测序深度较浅的方法(shallow sequencing)进行低分辨率测序,了解细胞里的基因拷贝数变异情况,也能够得到同样的结果。其实Bridges在80年前开展果蝇基因组研究时就是这么干的。还有一种办法可以代替这种分阶段策略,而且只需一步,那就是对多个单细胞进行全外显子组测序,这样一方面能够了解到肿瘤组织的“总体”外显子组情况,另外也可以发现肿瘤组织内部的亚克隆组成情况,而且成本要比全肿瘤测序(whole-tumor sequencing)经济得多。
3.5 植入前测序
单细胞测序有时是我们发现罕见、或独特细胞的唯一手段。胚胎植入前遗传诊断(Preimplantation genetic diagnosis, PGD)是接受体外受精(in vitro fertilization)等人工辅助生殖技术帮助的夫妻常用的一项技术,在胚胎被植入母体之前,医生们会从体外培养的胚胎中提取一个细胞,对其进行基因组分析。不过对之前开展的临床试验进行荟萃分析(meta analyses)发现,PGD并不是筛查遗传疾病的有效手段,因为在随机对照实验中发现,许多更先进的技术成功率更高,而且生出孩子的几率几乎会高出一倍。应用微阵列比较基因组杂交(array comparative genomic hybridization)等全基因组分析方法可以在胚胎植入前以更高的分辨率对胚胎的基因组进行检测。我们希望这些更高分辨率的基因组分析技术能够尽快应用到PGD临床实践工作当中,能够对胚胎进行结构异常、甚至是点突变的检测。所得的这些数据就可以帮助临床医生们进行更加精细的判断,以了解哪一些胚胎更加健康,可以生下一个健康可爱的宝宝。
3.6 单细胞技术的未来
<P style="TEXT-ALIGN: PADDING-BOTTOM: 15 TEXT-TRANSFORM: TEXT-INDENT: 0 MARGIN: 0 PADDING-LEFT: 0 PADDING-RIGHT: 0 FONT: 14px/26px A WHIT
Copyrights
版权所有:安徽医科大学皮肤病研究所
地址:安徽省合肥市梅山路81号 电话:6 传真:6 邮编:230032
未经书面允许不得转载信息内容
皖ICP备案号:皖ICP备号
网站制作:}

我要回帖

更多关于 转录组测序价格 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信