如何在原地制造出重力加速度g的感觉?

& 向心力知识点 & “(2014o南昌模拟)随着地球资源的日益...”习题详情
96位同学学习过此题,做题成功率60.4%
(2014o南昌模拟)随着地球资源的日益匮乏和环境的日益恶劣,人类设想在地球远地轨道上建立一个未来的圆环形太空城.远远看去,好像一个巨大的车轮,圆环形的直径为D,“轮胎”是一个空心的大圆环,其内部直径为d(D>>d),是太空城的生活区.&同时,太空城还绕着自己的中心轴慢慢旋转,利用旋转时产生的离心效应而制造出人造重力,生活在其中的人类就有脚踏实地的感觉.已知地球半径R,表面重力加速度为g,地球自转周期为T,空间站轨道半径r.下列说法中正确的是(  )太空城中的“地面”在图示的下表面当太空城稳定地转动时,若在“生活区”上空某处静止释放一个物体,让太空城里的你来观察,你会观察到物体沿径向垂直太空城外边缘加速下落若太空城的转速刚能提供和地球表面的实际重力加速度效果相同的人造“重力”,那么太空城自转的角速度为√2gD若忽略太空城的自转,则太空城的绕地球转动的周期为√r3T2R3
本题难度:一般
题型:多选题&|&来源:2014-南昌模拟
分析与解答
习题“(2014o南昌模拟)随着地球资源的日益匮乏和环境的日益恶劣,人类设想在地球远地轨道上建立一个未来的圆环形太空城.远远看去,好像一个巨大的车轮,圆环形的直径为D,“轮胎”是一个空心的大圆环,其内部直径为d(D>...”的分析与解答如下所示:
太空城还绕着自己的中心轴慢慢旋转,向心力指向圆心,在“生活区”上空某处静止释放一个物体,运动情况类似于地球上的自由落体运动,根据太空城表面重力提供向心力求解角速度,根据开普勒第三定律求解太空城的绕地球转动的周期.
解:A、太空城还绕着自己的中心轴慢慢旋转,向心力指向圆心,生活在其中的人类就有脚踏实地的感觉,所以太空城中的“地面”在图示的侧表面,故A错误;B、在“生活区”上空某处静止释放一个物体,运动情况类似于地球上的自由落体运动,故B正确;C、根据太空城表面重力提供向心力得:mω2D2=mg,解得:ω=√2gD,故C正确;D、根据题目中的条件无法求解太空城的绕地球转动的周期,故D错误.故选:BC
本题是一道科学探索题,题目新颖,要求同学们能根据题目得出有用信息,能把太空城与地球联系起来,类比研究,难度适中.
找到答案了,赞一个
如发现试题中存在任何错误,请及时纠错告诉我们,谢谢你的支持!
(2014o南昌模拟)随着地球资源的日益匮乏和环境的日益恶劣,人类设想在地球远地轨道上建立一个未来的圆环形太空城.远远看去,好像一个巨大的车轮,圆环形的直径为D,“轮胎”是一个空心的大圆环,其内部直径...
错误类型:
习题内容残缺不全
习题有文字标点错误
习题内容结构混乱
习题对应知识点不正确
分析解答残缺不全
分析解答有文字标点错误
分析解答结构混乱
习题类型错误
错误详情:
我的名号(最多30个字):
看完解答,记得给个难度评级哦!
经过分析,习题“(2014o南昌模拟)随着地球资源的日益匮乏和环境的日益恶劣,人类设想在地球远地轨道上建立一个未来的圆环形太空城.远远看去,好像一个巨大的车轮,圆环形的直径为D,“轮胎”是一个空心的大圆环,其内部直径为d(D>...”主要考察你对“向心力”
等考点的理解。
因为篇幅有限,只列出部分考点,详细请访问。
与“(2014o南昌模拟)随着地球资源的日益匮乏和环境的日益恶劣,人类设想在地球远地轨道上建立一个未来的圆环形太空城.远远看去,好像一个巨大的车轮,圆环形的直径为D,“轮胎”是一个空心的大圆环,其内部直径为d(D>...”相似的题目:
火车转弯时实际在做圆周运动,因而具有向心加速度,也就需要其他力来充当向心力,在火车转弯处需要设置一定的坡度,使外侧轨道高于内侧轨道,以减小对轨道的压力,当坡度的倾角为时,转弯半径为,关于火车转弯问题下列说法正确的是(  )火车速度小于√grsinθ时,车轮轮缘对内侧轨道有压力火车速度等于√grtanθ时,车轮轮缘对内外轨道均没有压力火车速度大于√grtanθ时,车轮轮缘对外侧轨道有压力火车速度大于√grsinθ时,车轮轮缘对外侧轨道没有压力
如图所示,长为L&的轻杆一端固定质量为m的小球,另一端有固定转轴O.现使小球在竖直平面内做圆周运动,b为圆周运动的最高点.若小球通过圆周轨道最低点时的速度大小为√6gL,则以下判断正确的是(  )小球恰能到达b&点小球到达b&点的速度大于√gL小球能到达b点,且在b点受到轻杆向上的弹力小球能到达b点,且在b点受到轻杆向下的弹力
如图所示,一圆盘可绕通过圆盘中心O且垂直于盘面的竖直轴转动,在圆盘上放置一小木块A,它随圆盘一起做匀速圆周运动.则关于木块A的受力,下列说法正确的是(  )木块A受重力、支持力和向心力木块A受重力、支持力和静摩擦力和向心力木块A受重力、支持力和静摩擦力,静摩擦力方向与木块运动方向相反木块A受重力、支持力和静摩擦力,静摩擦力的方向指向圆心
“(2014o南昌模拟)随着地球资源的日益...”的最新评论
该知识点好题
1(2014o盐城二模)一物体悬挂在细绳下端,由静止开始沿竖直方向运动,运动过程中物体的机械能E与物体位移s关系的图象如图所示,其中0~s1过程的图线为曲线,s1~s2过程的图线为直线.由此可以判断(  )
2某游乐场开发了一个名为“翻天滚地”的游乐项目.原理图如图所示:一个34圆弧形光滑圆管轨道ABC,放置在竖直平面内,轨道半径为R,在A&点与水平地面AD相接,B点为圆轨道最低点,地面与圆心O等高,MN&是放在水平地面上长为3R、厚度不计的减振垫,左端M正好位于A点.让游客进入一个中空的透明弹性球,人和球的总质量为m,球的直径略小于圆管直径.将球(内装有参与者)从A处管口正上方某处由静止释放后,游客将经历一个“翻天滚地”的刺激过程,不考虑空气阻力,球视为质点.那么以下说法中正确的是(  )
3(2014o渭南一模)如图所示,长度为l的细线,一端固定于O点,另一端拴一小球,先将线拉直呈水平,使小球位于P点,然后无初速释放小球,当小球运动到最低点时,悬线遇到在O点正下方水平固定着的钉子K,不计任何阻力,若要求小球能绕钉子在竖直面内做完整圆周运动,则K与O点的距离可以是(  )
该知识点易错题
1如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O.现给球一初速度,使球和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对小球的作用力,则F(  )
2(2012o海南)如图,在竖直平面内有一固定光滑轨道,其中AB是长为R的水平直轨道,BCD是圆心为O、半径为R的34圆弧轨道,两轨道相切于B点.在外力作用下,一小球从A点由静止开始做匀加速直线运动,到达B点时撤除外力.已知小球刚好能沿圆轨道经过最高点C,重力加速度大小为g.求:(1)小球从在AB段运动的加速度的大小;(2)小球从D点运动到A点所用的时间.
3(2014o石家庄一模)如图所示,A是半径为r的圆形光滑轨道,固定在木板B上,竖直放置;B的左右两侧各有一光滑挡板固定在地面上,使其不能左右运动,小球C静止放在轨道最低点,A,B,C质量相等.现给小球一水平向右的初速度v0,使小球在圆型轨道的内侧做圆周运动,为保证小球能通过轨道的最高点,且不会使B离开地面,初速度v0必须满足(  )(重力加速度为g)
欢迎来到乐乐题库,查看习题“(2014o南昌模拟)随着地球资源的日益匮乏和环境的日益恶劣,人类设想在地球远地轨道上建立一个未来的圆环形太空城.远远看去,好像一个巨大的车轮,圆环形的直径为D,“轮胎”是一个空心的大圆环,其内部直径为d(D>>d),是太空城的生活区.同时,太空城还绕着自己的中心轴慢慢旋转,利用旋转时产生的离心效应而制造出人造重力,生活在其中的人类就有脚踏实地的感觉.已知地球半径R,表面重力加速度为g,地球自转周期为T,空间站轨道半径r.下列说法中正确的是(  )”的答案、考点梳理,并查找与习题“(2014o南昌模拟)随着地球资源的日益匮乏和环境的日益恶劣,人类设想在地球远地轨道上建立一个未来的圆环形太空城.远远看去,好像一个巨大的车轮,圆环形的直径为D,“轮胎”是一个空心的大圆环,其内部直径为d(D>>d),是太空城的生活区.同时,太空城还绕着自己的中心轴慢慢旋转,利用旋转时产生的离心效应而制造出人造重力,生活在其中的人类就有脚踏实地的感觉.已知地球半径R,表面重力加速度为g,地球自转周期为T,空间站轨道半径r.下列说法中正确的是(  )”相似的习题。推论/重力加速度
重力加速度(Gravitational&acceleration)是一个物体受重力作用的情实验况下所具有的加速度。&假设一个质量为m的质点与一质量为M的均匀球体的距离为r时,质量所受的重力大小为:
其中G为引力常数。&根据
可得重力加速度
证明/重力加速度
自由落体运动时,a=g。
证明:&(m1为惯性质量,m2为引力质量,经单位制统一后,两者数值上相等)
所以m1a=m2g
自由落体/重力加速度
⒈初速度V0=0
⒉末速度V=gt
⒊下落高度h=(1/2)gt^2(从V0位置向下计算)
⒋推论:vt^2=2gh
注:⑴自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
⑵a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
⑶竖直上抛运动
⒈位移s=V0t-gt2/2
⒉末速度Vt=gt&(g=9.8m/s2≈10m/s2)
⒊有用推论Vt^2-V0^2=-2gs
⒋上升最大高度Hm=V0^2/2g(抛出点算起)
⒌往返时间t=2Vo/g&(从抛出落回原位置的时间)
注:⑴全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
⑵分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
⑶上升与下落过程具有对称性,如在同点速度等值反向等。△s=g*t^2
重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显著减小,此时不能认为g为常数。
距离地面同一高度的重力加速度,也会随着纬度的升高而变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到最大。
通常指地面附近物体受地球引力作用在真空中下落的加速度,记为g。为了便于计算,其近似标准值通常取为980厘米/秒^2或9.8米/秒^2。在月球、其他行星或星体表面附近物体的下落加速度,则分别称月球重力加速度、某行星或星体重力加速度。
在近代一些科学技术问题中,需考虑地球自转的影响。更精确地说,物体的下落加速度g是由地心引力F(见万有引力)和地球自转引起的离心力Q(见相对运动)的合力W产生的(图1)。Q的大小为mω(RE+H)cosδ,m为物体的质量;ω为地球自转的角速度;RE为地球半径;H为物体离地面的高度;δ为物体所在的地球纬度。这个合力即实际见到的重力G=mg。地球重力加速度是垂直于大地水准面的。在海平面上g随纬度δ变化的公式(1967年国际重力公式)为:
g=978.0.sin2
+0.sin4)厘米/秒。
在高度为H的重力加速度g(1930年国际重力公式)同H和δ有关,即
g&=978.049(1+0.005288sinδ-0.000006sin2δ
-&0.0003086H)厘米/秒,
式中H为以米为单位的数值。
最早测定重力加速度的是伽利略。约在1590年,他利用斜面将g的测定改为测定微小加速度a=gsinθ,θ是斜面的倾角。测量重力加速度的另一方式是阿脱伍德机。1784年,G.阿脱伍德将质量同为Μ的重块用绳连接后,放在光滑的轻质滑车上,再在一个重块上附加一重量小得多的重块m(图2)。这时,重力拖动大质量物块,使其产生一微小加速度,测得a后,即可算出g。后人又用摆和2Μ+m各种优良的重力加速度计测定g。
地球上几个不同纬度处的g值见下表;从中可以看出g值随纬度的变化情况:
由于地球有自转,所以略微呈椭球形,在一般情况下,重力加速度的方向不通过地心。重力加速度的测定,对物理学、地球物理学、重力探矿、空间科学等都具有重要意义
地球表面的重力加速度/重力加速度
在地球表面附近,一质点的自由落体加速度g与它的重力加速度a稍微不同,一个质点的重量mg与它所受的重力(万有引力和惯性力的共同作用叫重力)也不同,原因是地球会自转。若考虑地球自转,则:
(测量到的重量mg)=(万有引力)-(质量m×向心加速度(w^2)*R)
可以得到:
(自由落体加速度g)=(万有引力)-(向心加速度(w^2)*R)
注意以上式子中的减法为矢量相减。自由落体加速度实际上是小于重力加速度的,方向也略有区别,在赤道上则相差最多,但由于地球的半径与自转周期的关系,两者大约只相差0.034m(s^2),因此在日常使用的计算上,重量与重力之间的差异通常是可忽略的。
地表附近的所有物体下降的加速度都介于9.78和9.83m/(s^2);之间,差别是取决于纬度等因素(赤道最少,南北极最大),标准重力加速度是9.80665&m/s^2;(为方便计算,一般使用9.81&m/(s^2);9.8&m/(s^2);或10&m(s^2);)。
数值/重力加速度
由于g随经度变化不大,因此国际上将在纬度45°的海平面精确测得物体的重力加速度g=9.80665米/秒^2;作为重力加速度的标准值。在解决地球表面附近的问题中,通常将g作为常数,在一般计算中可以取g=9.80米/秒^2;。理论分析及精确实验都表明,随纬度的提高,重力加速度g的数值略有增大,如赤道附近g=9.780米/秒^2,
广州g=9.788米/秒^2。
武汉g=9.794米/秒^2。
上海g=9.794米/秒^2。
东京g=9.798米/秒^2。
北京g=9.801米/秒^2。
纽约g=9.803米/秒^2。
莫斯科g=9.816米/秒^2。
北极地区g=9.832米/秒^2。
各纬度海平面的重力加速度(m/s2)
重力加速度
重力加速度
不同高度的重力加速度&(m/s^2)
纬度(度)
注:如果上升高度不大,则每升1km,g&减少0.03%。
重力加速度g不同单位制之间的换算关系为:重力加速度g&=&9.81m/s^2;=&981cm/s^2;&=&32.18ft/s^2;
注:图为测量的一种重力加速度试验单
月球表面的重力加速度约为1.62&m/s^2;,约为地球重力的六分之一
△g纬=8.14sin2φ×D(φ为纬度值,D为纬向距离、在北半球向北为正),即在北纬45°附近向北一公里&g增大8.14g.u.=8.14×10^-6m/s^2
△g高=-3.086△h(g.u.),即高度差距不太大时,每升高1米g减小3.086g.u.=3.086×10^-6m/s^2
计算方法/重力加速度
因为F=GMm/r^2,F=G=mg
所以g=GM/r^2
G:引力常量=6.N㎡/kg^2(m^3/k·gs^2)
M:中心天体质量/千克
r:天体中心与物体中心的距离/m
g的单位是m/s^2或N/kg
精确计算/重力加速度
严格说来,质点受到万有引力是质点的重力和质点随地球绕自转轴作匀速圆周运动产生向心力的矢量和。那么,重力就是质点受到万有引力和质点随地球绕自转轴作匀速圆周运动产生向心力的矢量差。
假设地球质量是M,质点质量是m,质点所在纬度是θ,海拔高度h,此处的地球半径是R,地球自转的角速度是ω,万有引力常数是G,质点和地球自转轴之间的距离是r,那么显然有r=(R+h)cosθ。此时,万有引力F引=GMm/(R+h)^2,向心力F向=mrω^2=mω^2(R+h)cosθ
由余弦定理得G^2=F引^2+F向^2-2F引F向cosθ
具体公式见图片。
上式是理论上的公式,实际应用可用下式
g=9.78049(1&+&0.0052884&(Sinθ)^2&-&0.0000059&*(Sin2θ)&^&2)&-&0.h
逃逸速度/重力加速度
一个质量为m的物具有速度v,则它具有的动能为mv^2/2。假设无穷远地方的引力势能为零(应为物体距离地球无穷远时,物体受到的引力势能为零,所以这个假设是合理的),则距离地球距离为r的物体的势能为-mar(a为该点物体的重力加速度,负号表示物体的势能比无穷远点的势能小)。又因为地球对物体的引力可视为物体的重量,所以有
GmM/r^2=ma
即a=(GM)/r^2.
所以物体的势能又可写为-GmM/r,其中M为地球质量。设物体在地面的速度为V,地球半径为R,则根据能量守恒定律可知,在地球表面物体动能与势能之和等于在r处的动能与势能之和,即
mV^2/2+(-GMm/R)=mv^2/2+(-GmM/r)。
当物体摆脱地球引力时,r可看作无穷大,引力势能为零,则上式变为
mV^2/2-GmM/R=mv^2/2.
显然,当v等于零时,所需的脱离速度V最小,即
V=2GM/R开根号,
GMm/R^2=mg,
V=2gR开根号,
另外,由上式可见逃逸速度(第二宇宙速度)恰好等于第一宇宙速度的根号2倍。
其中g为地球表面的重力加速度,其值为9.8牛顿/千克。地球半径R约为6370千米,从而最终得到地球的脱离速度为11.17千米。
不同天体有不同的逃逸速度,脱离速度公式也同样适用于其他天体。
天体计算/重力加速度
宇宙总是那么奥妙无穷,我们知道天体的质量非常大,人们又是如何测量出天体的质量的呢?
一、&用万有引力定律和牛顿运动定律估算天体质量
在天体运动中,近似认为天体的运动是匀速圆周运动,在其运动过程中起决定因素的是万有引力,即万有引力提供天体做匀速圆周运动所需的向心力,有G(mM/r2)=m&×&(2π/T)2×r&其中周期可通过天文观测方式获得,从而可得天体质量为:M&=&[(2π/T)2×r3]&/&G
例:(2001年理综)太阳现正处于主序星演化阶段,它主要是由电子和&11H、24He等原子核组成。维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+411H---24He+&释放的核能,这些核能最后转化为辐射能。根据恒星演化的理论,若由于聚变反应而使太阳中的11H核的数目从现有数减少10%,太阳将离开主序星阶段而转入红巨星的演化阶段。为了简化,假定太阳全部由电子和11H核组成。
⑴&为了研究太阳演化过程,需要知道太阳的质量M。已知地球半径为R=6.4×106m&,地球质量为m=6.0×1024&kg,日地中心的距离为&r=1.5×1011m,地球表面处的重力加速度为g=10m/s2&,一年约为3.2×107&s。试估算日前太阳的质量M。(估算结果只要求一位有效数字,另第二、三问略)
分析:设T为地球绕日心运动的周期,则由万有引力定律和牛顿运动定律可知:
G(mM/r2)&=&m&×&(2π/T)2×r-----------①
地球表面处的重力加速度:
g&=&Gm/R2-----------------------②
由①②式联立解得:
M&=&m&×&(2π/T)2×(r3/R2g)
以题结数值代入,得M&=&2&×&10^30Kg。
二、&用天体真半径和表面重力加速度推算天体质量
在天体表面,物体所受万有引力与它所受重力近似相等,由万有引力定律有:G(mM/R2)=mg
即M&=&gR2/G
例:由天文观测可得月球的直径为3476km,月面上物体做自由落体运动的重力加速度为1.62m/s2,则月球的质量为:M月=&g月R2月/G&=&g月D2月/4G&=&1.62×(3.476×106)2/(4×6.67×10-11)Kg&=&7.34×1022&Kg
三、&由开普勒第三定律估算天体质量
开普勒三定律注①是关于行星围绕太阳运动的规律,是德国天文学家开普勒认真分析了丹麦天文学家第谷·布拉赫的大量对天体运行观测资料的基础上提出的,它的内容是:
开普勒第一定律(椭团轨道定律):所有行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的一个焦点上,但行星轨道的偏心率都比较小,例如,地球轨道的偏心率只有0.0167,很接近于圆。
开普勒第二定律(面积定律):对每个行星来说,太阳和行星的联线在相等的时间内扫过的面积相等。
开普勒第三定律(周期定律):所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等。即:a3/T2&=&C(常数)
由于第谷·布拉赫的资料都是靠肉眼观测记录的,开普勒三定律与行星实际运行的情况有少许偏离,后来人们修正了开普勒第三定律,得到准确的表达式是:a3/T2(M+m)&=&G/4π2
其中M为太阳的质量;m为行星的质量;a为椭圆轨道的长半轴;T为行星的公转周期;万有引力常数&G&=&6.67×10-11N·m2/Kg2。
例:试估算银河系的质量。
分析:测量银河系的质量时,为了便于分析和计算,通常改变修正后的开普勒第三定律中的&和&的单位。如果设地球到太阳的平均距离为&=1天文单位,地球绕太阳公转的周期&=1年,则对地球和太阳这个系统而言,若略去地球质量,地球绕太阳运转的开普勒第三定律为:
13/12(M太+0)&=&G/4π2即&G/4π2&=&1/M太--------③
选太阳和银河系为一个系统,由开普勒第三定律有:
a3/T2(M银+M太)&=&G/4π2-----------------------④
长期的天文观测可知,太阳以250km/s&的速度带领着太阳系中的星体绕银河系的中心旋转,若取天文单位为距离单位,年为周期单位,太阳每转一周约需T=2.4×108年;太阳到银河系中心的距离为&a&≈33000光年=2.06×109天文单位,联立③④可得:M银+M太=&(2.06×109)3M太/(2.4×108)2=&1.5×1011M太
这里M太是太阳绕银河系的中心旋转的轨道以内银河系诸星体的质量,因M太&×M银&,故M银=1.5×1011M太,即银河系的质量至少是太阳的1.5千亿倍!
四、&用天体的质量和光度之比的质光关系估算天体质量
所谓质光关系注②就是恒星的质量和绝对光度之间的一个重要关系,最早为哈姆所提出,并在1919年由赫茨普龙通过观测资料证实,1924年爱丁顿从理论上导出绝对光度为L的恒星与其质量M的关系为:L&=&kM3.5
其中绝对光度L可由实际观察得到,&为常数,它与哈勃常数H有关。由上式可估算天体的质量为:M&=&(L/k)2/7
该方法除对物理性质特殊的巨星、白矮星和某些致密天体不适用外,对占恒星总数的90%的主序星非常适用。
除以上方法可以估算天体质量以外,还有注③:用维里定理估算天体的质量(称为"维里质量");双谱分光双星又是食双星可由分光解和测光解中的轨道倾角,可求得两子星的质量;双谱分光双星又是干涉双星,可由分光解和轨道倾角,可计算出两子星的质量;双谱分光双星的分光解加上偏振观测所得轨道倾角可得出两子星的质量;利用已知半径的白矮星的引力红移量求白矮星的质量;利用恒星在赫罗图上的理论演化轨迹估算恒星质量(称为"演化质量");对已知真半径的脉动变星,可以由脉动周期估算平均密度,从而得出质量(称为"脉动质量")等方法。
当然,天体的质量随着时间而不断变化,主要是由于热核反应把质量不断转变为辐射能和许多天体因大气膨胀或抛射物质而不断损失质量。而且仍有不少恒星的质量数据至今还很不可靠或精度甚低,如大角、老人、织女一、河鼓二、参宿四、心宿二等亮星,欲得到精度较高的恒星的质量,人们仍有大量的工作要做。
参考书目:
注①:《中国大百科全书天文学》第189页"开普勒定律"条目,中国大百科全书出版社出版,1980&年12月第一版
注②:同上,第556页"质光关系"条目
注③:&同上,第144--145页"恒星质量"条目
三要素/重力加速度
大小:与质量和位置有关;(G=mg)&(其中g=9.80665&m/s^2,为标准重力加速度)
方向:竖直向下;
作用点:重心
万方数据期刊论文
西北工业大学学报
万方数据期刊论文
万方数据期刊论文
火力与指挥控制
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:19次
参与编辑人数:14位
最近更新时间: 16:27:57
申请可获得以下专属权利:
贡献光荣榜《好看》依托百度技术,精准推荐优质短视频内容,懂你所好,量身打造最适合你的短视频客户端!相关词典网站:当前位置:
>>>一质量为m的人站在电梯中,电梯加速上升,加速度大小为g/3,g为重..
一质量为m的人站在电梯中,电梯加速上升,加速度大小为g/3,g为重力加速度.人对电梯底部的压力大小为______.
题型:问答题难度:中档来源:不详
对人受力分析,受重力和电梯的支持力,加速度向上,根据牛顿第二定律N-mg=ma故N=mg+ma=43mg根据牛顿第三定律,人对电梯的压力等于电梯对人的支持力,故人对电梯的压力等于43mg故答案为:43mg
马上分享给同学
据魔方格专家权威分析,试题“一质量为m的人站在电梯中,电梯加速上升,加速度大小为g/3,g为重..”主要考查你对&&牛顿第二定律&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
牛顿第二定律
内容:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F合=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。对牛顿第二定律的理解:①模型性牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。②因果性力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。③矢量性合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。④瞬时性加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。⑤同一性(同体性)中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。⑥相对性在中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。⑦独立性F合产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:。⑧局限性(适用范围)牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。牛顿第二定律的应用: 1.应用牛顿第二定律解题的步骤: (1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。 (2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。 (3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 (4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。2.两种分析动力学问题的方法: (1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。 (2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。 ①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。 ②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。3.应用牛顿第二定律解决的两类问题: (1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下: (2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。知识扩展:1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。 2.关于a、△v、v与F的关系 (1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。 (2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。 (3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。
发现相似题
与“一质量为m的人站在电梯中,电梯加速上升,加速度大小为g/3,g为重..”考查相似的试题有:
428008164613364883299086437024288781}

我要回帖

更多关于 重力加速度g 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信