怎么给杆加上质量阻尼与刚度阻尼和刚度阻尼,就是alpha阻尼和beta阻尼

扫二维码下载作业帮
1.75亿学生的选择
下载作业帮安装包
扫二维码下载作业帮
1.75亿学生的选择
请问结构动力分析中的质量阻尼和刚度阻尼都是什么?
扫二维码下载作业帮
1.75亿学生的选择
大多数系统中存在阻尼,而且在动力学分析中应当指定阻尼.在ANSYS程序可以指定五种形式的阻尼:Aplha和Beta阻尼(Rayleigh阻尼)和材料相关的阻尼恒定的阻尼比振型阻尼单元阻尼1.Alpha 阻尼 和 Beta 阻尼Alpha阻尼和Beta阻尼用于定义瑞利(Rayleigh)阻尼常数α和β.阻尼矩阵是在用这些常数乘以质量矩阵[M]和刚度矩阵[K]后计算出来的.命令 ALPHAD 和 BETAD 分别用于确定瑞利(Rayleigh)阻尼常数α和β.通常α和β的值不是直接得到的,而是用振型阻尼比 计算出来的.是某个振型i的实际阻尼和临界阻尼之比.如果 是模态i的固有角频率,则α和β满足下列关系:在许多实际问题中,Alpha阻尼(或称质量阻尼)可以忽略(α=0).这种情形下,可以由已知的 和 计算出β:由于在一个载荷步中只能输入一个β值,因此应该选取该载荷步中最主要的被激活频率来计算β值.为了确定对应给定阻尼比ξ的α和β值,通常假定α和β之和在某个频率范围内近似为恒定值(见图5).这样,在给定阻尼比ξ和一个频率范围ωi~ωj后,解两个并列方程组便可求得α和β.Alpha阻尼在模型中引入任意大质量时会导致不理想的结果.一个常见的例子是在结构的基础上加一个任意大质量以方便施加加速度谱(用大质量可将加速度谱转化为力谱).Alpha阻尼系数在乘上质量矩阵后会在这样的系统中产生非常大的阻尼力,这将导致谱输入的不精确,以及系统响应的不精确.Beta阻尼和材料阻尼在非线性分析中会导致不理想的结果.这两种阻尼要和刚度矩阵相乘,而刚度矩阵在非线性分析中是不断变化的.由此所引起的阻尼变化有时会和物理结构的实际阻尼变化相反.
为您推荐:
其他类似问题
扫描下载二维码jindongz@126
许多朋友在学习ANSYS经典界面时,可能会觉得相比HYPERMESH,ABAQUS,PATRAN,MARC而言,经典界面很不方便。而一旦转入ANSYS WORKBENCH后,会觉得ANSYS WORKBENCH实在是太方便了!做一个分析,只需要简单的点击几次鼠标就可以自动化的完成任务,真是酣畅淋漓!
但是大家或多或少也有遗憾,因为在经典界面里面可以做的一些底层操作现在都不见了。比如经典界面中设置单元类型,现在都不知道到哪里去设置,一个网格划分完毕以后,也不明白ANSYS用的是什么单元。经典界面中APDL命令用起来非常方便,现在也不知道在哪里使用。尤其是后处理时通过编程可以任意处理结果,现在也看不到。WORKBENCH中似乎没有方法可以操作单元,节点,这些都让我们这些熟悉经典界面的用户多少感觉有些不爽。
的确,笔者在最初接触到ANSYS WORKBENCH时,也深有同感。虽然WORKBENCH用起来很方便,但是因为缺乏对于底层功能的支持,感觉很不自在,总觉得少了点什么。
实际上,ANSYS WORKBENCH设计的目的,是为一般的结构设计工程师服务的。对于一般的结构设计工程师而言,他们并不需要懂得复杂的有限元术语,不需要明白SOLID186是一种什么性质的单元,它能支持什么力学特性;不需要搞懂接触算法是什么样的,不需要知道非线性分析应该选择什么算法.......这一切,WORKENCH都为用户封装了,选择了默认设置。所以一般工程师可以在并不怎么懂得有限元的条件下,就可以轻松自在的操作WORKBENCH,对自己的产品做一些分析。这对于软件的普及,无疑是有好处的。
但是,如果用户很懂有限元,则对于这种过于傻瓜化的操作,就不那么满意了。那么,有没有一种方法,既让我们能够享受到ANSYS WORKBENCH的操作方便性,又能充分使用底层功能,比如APDL编程操作呢?
有的。答案就是通过Finite Element Modeler这个中介。
下面以一个悬臂梁受到分布力系作用的例子来说明这种双向的转换操作。
(1)创建一个静力学分析系统
(2)在design modeler中创建一根悬臂梁。尺寸任意。
(3)在mechanical中划分网格,设置边界条件。
(4)把setup单元格的内容导入到Finite Element Modeler中。
(5)更新setup单元格。
(6)进入Finite Element Modeler并设置目标系统是mechanical apdl.
(7) 生成mechanical apdl的输入文件。
这里把文件导出到test.inp中。
(8)启动Mechanical apdl,并导入test.inp
(10)在MECHANICAL APDL中进行自己所想要的操作。
(11)操作完毕后,如果想回到WORKBENCH界面,则导出文件
(12)使用一个新的Finite element modeler导入上面的文件
(13)创建一个新的静力学分析,并导入该模型。
(13)再次进入mechanical 进行操作。
(14)结束
所以,朋友们如果既想使用ANSYS WORKBENCH的自动化操作,又不想牺牲底层功能,是可以的。不过就笔者自己而言,对此也不是很满意。如果能够在一个界面里既能傻瓜化地操作,又能深入底层,那就更好了。不过,如果我们只是对一个复杂模型进行分析,这种转换工作也只是偶尔才进行一下,其实也无所谓。
在把模型导入到经典界面中以后,朋友们可以查看一下经典界面中的一些设置,如单元类型,材料模型,实常数等,大家会发现一些很有意思的东西。至于有什么意思,大家一看就明白了。
笔者一般在WORKBENCH中操作,有时实在手痒,想重温一下在经典界面中的底层操作时,就回到经典界面中去,编编程序。也可以唤醒旧日的回忆,感到经典界面中的那段痛苦岁月也没有完全荒废。
Abaqus标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。建模方法:一个模型(model)通常由一个或几个部件(part)组成,“部件”又由一个或几个特征体(feature)组成,每一个部分至少有一个基本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴,数据平面,装配体的装配约束、装配体的实例等等。1.首先建立“部件”(1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options选项里调整。(2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主要有挤压、旋转、平扫三种。同一个模型中两个不同的部件可以有同名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。部件的特征体包括用各种方法建立的基本特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。(3)编辑部件可以用部件管理器进行部件复制,重命名,删除等,部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。&&&&特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除&&&&&2.建立材料特性(1)输入材料特性参数弹性模量、泊松比等(2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器(3)分配截面特性给各特征体,把截面特性分配给部件的某一区域就表示该区域已经和该截面特性相关联3.建立刚体(1)部件包括可变形体、不连续介质刚体和分析刚体三种类型,在创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。采用旋转方式建立部件,在绘制轴对称部件的外形轮廓时不能超过其对称轴。(2)刚体是不能够施加质量、惯性轴等特性的,建立刚体后必须给刚体指定一个参考点(reference point)。在加载模块里对参考点施加约束和定义其运动,对参考点施加的荷载或运动就相当于施加给了整个刚体。4.模型装配(1)在装配(assemble)模块里首先建立部件实例(part instance),一个部件实例可以看作部件的代表,但并不是原部件的拷贝。实例一直和原部件保持关联,当原部件几何形状发生变化时,实例也发生相应变化。不能对部件实例直接编辑,一个装配模型可以包含一个部件的多个实例。所有装配模型中的实例都是该装配模型的特征体,在创建第一个实例时所生成的装配模型总体坐标系也是该装配模型的一个实例。同一个部件中所有特征体在装配模块中对该部件建立实例时会形成一个整体,也即形成了装配模型中一个特征体。选择该实例时,该实例在装配之前原部件中所有特征体都被选择了,原部件中所有特征体在装配后形成了一个整体。对于各部件的实例,可以在view菜单assembly display options选项里选择instance标签对现有的各实例决定其是否显示在当前视窗中,这一功能对选择视窗中的对象很有帮助。所有建立的部件实例组成了装配模型新的特征体,在特征体管理器中查看。后续所有模块的操作对象就是所生成的部件实例,也即装配模型中的特征体,而不是原来的部件。『65』:部件实例有独立的和非独立的两种,缺省状态是非独立实例。独立的实例划分网格时独立划分,与源部件不相关,非独立实例划分网格时和源部件相关联。(2)在部件模块里定义部件,在材料特性模块来赋予部件材料参数,然而,在使用装配模块将各个部件装配成一个模型时,所操作的对象仅仅是部件实例,而不是部件本身。在交互模块、加载模块和单元划分模块里所操作的对象都是装配集合模型中各个部件的实例。(3)创建了一个部件实例后,ABAQUS需要生成一个装配体的总体坐标系定位该实例,该装配体的总体坐标系与创建部件时的总体坐标系是两个不同的坐标系。在创建部件基特征体时的绘图(sketch)坐标原点与装配体的总体坐标系原点重合,并且xy坐标平面和装配体总体坐标系xy平面平行。创建了第一个实例后,装配模块会在当前视图中显示出整体坐标系的原点和方向,ABAQUS定位该实例的方法就是将该实例基特征体的坐标原点(绘制平面草图的坐标原点)与装配体总体坐标系原点重合。(4)定位各个部件实例除了移动和旋转方法外,装配模块提供了定位各个部件实例的工具集,通过选择实例的面或边来定位。可以选择部件实例的面或边移动,成为移动部件实例,也可以选择面或边固定,成为固定部件实例。常见的定位标准包括:平行面、面对面、平行边、边对边、共轴、点重合、坐标系平行、接触。各定位标准之间互不影响,可以用新的定位标准替换原定位标准使实例重新定位。平行面:两个选择的面相互平行面对面:选择的两个面相互平行并且有一个给定的间距平行边:所选择的两个边相互平行边对边:所选择的两个边相互平行并且有一个给定的间距或者两个边共线共轴:两个选择的面轴线重合每一个定位标准都作为装配模型的特征体而保存,可以在特征体管理器里进行编辑,也即用来定位的面、边、点、轴、坐标系都成为了装配体的特征体。5.定义分析步骤:(1)对模型施加荷载和边界条件之前或者定义模型的接触问题之前,必须定义不同的分析步骤。然后可以指定在哪一步施加荷载,在哪一步施加边界条件,哪一步去定相互关联。创建了分析步骤后,CAE会选择分析过程相应的输出变量,选择变量写入输出结果文件数据库的频率。(2)CAE缺省地创建初始步(initial)分析步骤创建完成后自动生成了输出结果管理器(3)输出结果要求ABAQUS求解器通常计算每一个增量步许多变量值,而往往我们只对其中某一小部分计算数据感兴趣,软件提供了指定要输出到计算结果数据库中的某些变量结果的功能。输出要求包括一下一些信息:(a)所需要的变量或者变量分量;(b)模型中某一特定区域和积分点的计算结果;(c)写到计算结果数据库中各变量值的写入频率;建立了第一分析步后,CAE缺省地选择和相应的分析过程中输出变量集。缺省的情况下,CAE输出模型中每个节点或积分点的计算值。●场变量输出(field)和历程输出(history)(a)场变量输出:在通常情况下,后处理模块采用变形形状、等直线或矢量图来看实时输出结果,由ABAQUS生成的实时输出结果数据库文件都很大,因此可以通过输出要求来限制结果数据库的大小。(b)历程输出:ABAQYUS对模型中指定点产生历程输出数据。在大多数情况下可以使用后处理模块在XY坐标系中查看历史输出结果。结果的输出频率依赖于如何使用计算生成的各种数据,输出频率可以很高。可以建立历史输出要求,通过该要求限制历史输出频率。在建立历史输出要求时可以指定某一个独立的变量写入输出结果数据库。●输出要求的传递(propagate)创建了第一个分析步后,ABAQUS自动创建一个缺省的场变量输出要求和历程输出要求,并将其传递给其后创建的分析步。●通用分析步(general step)和线性干扰分析步(linear perturbation step)分析步包括通用步和线性干扰步两大类,对第一个建立的通用步和线性干扰步ABAQUS自动建立一个缺省的实时输出结果要求和历史输出结果要求。这两种要求都可以传递给其后的分析步,当在已有的分析步中插入新的通用分析步或者线性干扰分析步时,其上一个分析步相应的输出结果要求会自动传递给该分析步。如果在所有已有分析步之前插入一个新的分析步,ABAQUS将不会建立一个缺省的结果输出要求给该新的分析步,这时可以创建一个新的结果输出要求,也可以在结果输出要求管理器中将该分析步的下一分析步输出结果要求移动到该分析步。如果删除一个分析步,相应的结果输出要求以及其后由该步传递的各分析步的输出结果要求都将被删除。如果某一个分析步没有相应的结果输出要求,在计算模块(job)里生成输入文件时将会给出警告。输出文件用于从计算结果中绘制变形形状,等直线。输出文件管理器是依赖于步骤管理器而存在的,6.选择监视自由度可以定义模型中选定部分的特殊单元和节点集合,对这些集合可以在属性模块中分配断面特性、在交互模块中创建接触节点和表面集合的接触对、在加载模块中加载和施加边界条件、在步骤模块中指定输出文件要求、在显示模块中显示特定区域的计算结果。7.在交互模块中创建接触表面用于相互作用的接触问题在复杂的接触模型中首先要要用表面工具集创建接触接触表面集合供后面指定主从接触表面是选择方便,但是如果模型简单,接触表面很容易选择就无需创建接触表面,可以直接从模型中选择。当创建一个曲面接触面,必须指明是内表面还是外表面,可以通过所给出的矢量箭头确定。一个表面集合中可以有多个表面,从表面集合管理器中可以查看各表面集合。8.建立交互作用特性交互作用是用来建立模型中接触表面或相距很近的表面之间力学关系的对象。可以建立一系列交互作用特性,它和交互作用相互独立,每个交互作用都可以被分配到交互作用特性。交互作用特性共有三种:接触特性(contact)、膜条件特性(file condition)、激励和传导特性(actuator/sensor)接触交互作用特性可以是切向接触和法向接触,接触面间可以是有摩擦、无摩擦和阻尼接触,还可以相互间分离。接触交互作用特性中通常包含阻尼、热传导、热辐射、摩擦生热等信息。接触交互作用特性可以被通用接触、面对面接触或自我接触等交互作用引用。膜条件交互作用特性定义膜层传热系数为温度的函数。膜条件特性只能被膜条件交互作用引用。9.建立交互作用交互作用依赖于所建立的分析步。建立交互作用时必须指定主作用面和从作用面。对于主、从作用面可以从已经创建的作用面集合中选择,也可以从视窗中直接选择。10.施加边界条件和荷载在加载模块(load)中施加边界条件和荷载。施加边界条件也依赖于说建立的分析步。实体单元(solid element)只有平动自由度,没有转动自由度,所以施加边界条件时只需约束起平动自由度即可。对于分析刚体来说,约束只能施加给分析刚体的参考点。缺省的情况下,ABAQUS将边界条件传递给其后的每一个分析步。对每一个分析步中的边界条件可以进行编辑和修改。11.网格划分(1)进入单元划分模块后,ABAQUS的颜色代表该模型中不同区域适合用哪种方法就行单元划分。绿色表示可以可以采用结构法划分,黄色表示可以用旋转扫描法划分,橙色表示该区域不能用缺省的单元(实体单元缺省的单元为六面体单元hexahedral)形状进行单元划分,必须对该区域进行分解后才能用缺省的单元形状进行单元划分。当然,可以采用四面体单元(tetrahedral)利用只有网格技术对任何形状的模型区域进行单元划分。(2)分解模型(partition)可以对模型中的边(edge)、面(face)和体(cell)进行分解。用来将边、面、体分解成更小部分的点、边、面都成为模型中的特征体,这些特征体和其他特征体一样可以在特征体管理器中查看。(如:将一个体分解成两部分需要用一个面将体切割成两部分,这个面就成了模型中一个新的特征体。)分解一个体的方法有五种,也即有五种分割特征体可以将一个特征体分解:定义切割面(define cutting plane)、使用数据平面(use datum plane)、延伸平面(extended face)、挤压或旋转边(extrude/sweep edges)、N-sided patch。一次分解操作仅仅只是将被分解的对象分解成两部分,并不能改变被分解对象所在特征体(部件实例)的整体性,也即原特征体或其上的某一组成部分被分解一次,该特征体并不会被分解成两部分。(3)单元划分控制不能对刚体进行单元划分。在mesh control中指定单元类型(六面体单元、四面体单元等等)和单元划分方法(结构划分法(structured)、自由划分法(free)、旋转划分法(sweep)等等)。操作的对象是被分解后的边、面、和体,可以对同一实例(装配模型的特征体)分解后产生的不同边、面、体分别采用不同的单元划分方法,指定不同的单元类型。(4)分配单元类型选择单元库(standard、explicit)、确定线性单元(linear)或者二次单元(quadratic)、确定这两种单元的特性:杂交元(hybrid formulation)、缩步积分(reduced integration)、非协调单元模式(incompatible modes)。操作的对象是被分解后的边、面、和体,可以对同一实例(装配模型的特征体)分解后产生的不同边、面、体分别指定不同的单元库、单元特性等。(5)指定单元大小指定划分单元的近似尺寸。操作的对象是被分解后的边、面、和体。(6)划分单元操作对象是整个实例(装配体的特征体)12.提交工作13.画布对象画布可以看作是一个无限的屏幕或黑板,在上面可以布置各种对象。画布对象包括三大类:视窗、画布文字注释、画布箭头注释。(1)视窗是画布上显示模型和分析结果的对象。可以画布上随意建立和删除视窗,控制其尺寸、位置和外观,但是画布上至少有一个视窗对象,不能全部删除所有的视窗对象。(2)文字注释和箭头注释只能根据画布定位,与视窗无关,可以在视窗之内也可以在视窗之外,移动视窗对文字和箭头注释的位置没有任何影响,但是可以调整他们的位置使得他们处于视窗之中。14.草图模块(sketch)草图是二维的剖面图,可以用于生成三位部件。在草图模块中可以定义平面部件、梁、或者分割体用于挤压、平扫、旋转等方法形成三维部件。在草图模块中也可以定义与特征体无关的独立的二维平面断面图。15.后处理文件输出(1) *File Output:定义输出到结果文件File Output选项可以输出节点、单元、整体数据到选定的文件。*EL FILE、*ENGERGY FILE和*NODE FILE 选项必须和*FILE OUTPUT选相联使用。ABAQUS输入文件(input file)ABAQUS输入文件包含模型数据和历史数据。模型数据定义有限元模型:单元、节点、单元特性、材料定义等等。模型数据用来组织生成部件,部件经过装配后生成各种模型。历史数据定义对模型的操作,即求解模型响应所需要的时间顺序或加载情况等。在ABAQUS里将这个历史过程分解为不同的分析步。每一个分析步都是某一特定类型的响应,如静载、动力响应,土体瞬时固结等等。分析步的定义必须包括过程类型(静态应力分析、热传导分析等)、时间积分和非线性求解控制参数、荷载和输出控制。非线性求解步和线性慑动分析步ABAQUS中的非线性求解步和线性慑动分析步有着明显的差别。非线性分析步定义一系列事件,上一个非线性步必须为下一个非线性步提供初始条件。线性慑动分析步提供了系统基本状态(BASE STATE)的线性响应,基本状态也就是优先于线性慑动分析步的最后一个非线性分析步。每一个非线性分析步都必须把前一个非线性分析步的状态作为自己的初始条件。例如,动力分析可以不加载,动力响应主要来自静力分析步中所储存应变能的释放。(2)计算结果输出到data file或者results file所给定的场变量或历程变量可以通过下面Keyword写入.dat文件,但是不能在CAE中实现。*CONTACT PRINT *EL PRINT *ENERGY PRINT *INTERACTION PRINT *MODAL PRINT *NODE PRINT *SECTION PRINT&&
一、材料阻尼
1.瑞雷阻尼(Rayleigh damping)(1)质量阻尼Alpha:消除低频区*DAMPING, ALPHA=&(2)刚度阻尼Beta:消除高频区*DAMPING, BETA=
一般可取结构前十阶频率进行计算
2.结构阻尼结构阻尼适用于频域动力分析。它的假定是阻尼力和结构力成正比,和速度成反比,即该阻尼适用条件是位移和速度的相位相差90度【重要!务必注意】。Use the following option to define damping by specifying mode numbers:*MODAL DAMPING, STRUCTURAL, DEFINITION=MODE NUMBERSUse the following option to define damping by specifying a frequency range:*MODAL DAMPING, STRUCTURAL,DEFINITION=FREQUENCY RANGE
二、数值阻尼(无物理意义)
1.直接积分动力分析(隐式)HHT求解法,引入数值阻尼参数alpha,该值同前述的不一样。该值同时间增量和周期的比值有关。*DYNAMIC, ALPHA=
2.显式积分动力分析引入体积粘度来控制高频振动。Use the following option to define bulk viscosity for the entire model:*BULK VISCOSITYUse the following options to define bulk viscosity for an individual element set:*BULK VISCOSITY*SECTION CONTROLS
三、模态叠加求解法中的阻尼
1.临界阻尼比例Use the following option to define damping by specifying mode numbers:*MODAL DAMPING, MODAL=DIRECT,DEFINITION=MODE NUMBERSUse the following option to define damping by specifying a frequency range:*MODAL DAMPING, MODAL=DIRECT,DEFINITION=FREQUENCY RANGE
2.瑞雷阻尼Use the following option to define damping by specifying mode numbers:*MODAL DAMPING, RAYLEIGH, DEFINITION=MODE NUMBERSUse the following option to define damping by specifying a frequency range:*MODAL DAMPING, RAYLEIGH, DEFINITION=FREQUENCY RANGE
3.复合模态阻尼*DAMPING, COMPOSITE= *MODAL DAMPING, MODAL=COMPOSITE
4.结构阻尼Use the following option to define damping by specifying mode numbers:*MODAL DAMPING, STRUCTURAL,DEFINITION=MODE NUMBERSUse the following option to define damping by specifying a frequency range:*MODAL DAMPING, STRUCTURAL,DEFINITION=FREQUENCY RANGE
最后引用ABAQUS的一句原话:In direct-integration dynamic analysis you very often define energy dissipation mechanisms—dashpots, inelastic material behavior, etc.—as part of the basic model. In such cases there is usually no need to introduce additional damping: it is often unimportant compared to these other dissipative effects
参考资料:
1、2、ABAQUS用户手册
每种软件在顺利运行中都有自己的一套在诸如单位、符号、变量值表示等方面的约定用法,如果想用此种软件进行适合自己的分析,自己进行主观操作之外,对它的这种约定我们也要提起注意,否则很容易产生我们觉察不到的问题。
(参考 abaqus analysis manual 中1.2.2&Conventions)
2、坐标系统
4、时间尺度
5、曲面方向
6、应力与应变
一、自由度
Abaqus中对单位的认定与其他软件(如ANSYS)稍微有点不同就在于默认情况下abaqus是以1、2、3等数字来表示各种自由度的标符的,在手写inp中,只能以它们表示自由度。
A. 除了轴对称单元(.ax..)以外,其它单元对自由度进行如下约定:
1、x方向(平动自由度)
2、y方向(平动自由度)
3、z方向(平动自由度)
4、绕x轴旋转的旋转自由度(以弧度表示)
5、绕y轴旋转的旋转自由度(以弧度表示)
6、绕z轴旋转的旋转自由度(以弧度表示)
7、翘曲(对于开口截面梁单元)
8、孔隙压力(或静水压)
11、温度(或质量扩散分析中的归一化浓度)
12、第二温度(对于壳、梁)
13、第三温度(对于壳、梁)
其中,x、y、z默认情况下是分别与系统的整体坐标系X、Y、Z相一致的,但如果使用*Transform对结点进行局部坐标系转化的话,那么它们将与局部坐标系中的相关坐标轴一致。
B. 对轴对称单元的平动与旋转自由度如下规定:
1、r方向(径向)位移
2、z方向(轴向)位移
5、绕z轴旋转(用于带扭曲的轴对称单元),以弧度表示
6、r-z平面的旋转(用于轴对称壳单元),以弧度表示
用*transform进行结点坐标系转换的自由度改变同上。
C. 可用的自由度
上述所列自由度并不是同时都能用在某一单元结点上的,不同的分析,不同的单元自会有适合其分析的自由度,而其他则在此是失效的。
D. ABAQUS/Standard中的内部变量
除了上述所列的自由度外,ABAQUS/Standard对某些单元还内定了内部‘自由度‘变量(如用于施加约束的拉格朗日乘子),一般情况下,使用ABAQUS分析并不需要去了解这些变量,但在进行分析过程中,当迭代中对非线性约束的满足进行检验时常用到这些内部变量,这从msg文件中的错误警告信息中可以看到。内变量与内部结点相关,内部结点在ABAQUS中为系统分析所用,以负的结点号出现以别于我们所定义的结点。
二、坐标系
同一般规定一样,ABAQUS采用的基本坐标系(系统整体坐标系)是直角坐标系,方向遵循右手法则。为便于各种分析,用户可以自行定义局部坐标系以便于建模、定义材料、定义载荷以及变量输出等。
建模中,常在node/ngen中加入*system
材料中,常以*orientation进行定义局部坐标系(尤其对于壳、梁单元)
载荷中,用*transform可以定义局部坐标系下的载荷
输出中,先前定义的*transform(用于结点变量)与*orientation可以发挥作用。
实际上,ABAQUS没有单位的概念,它仅是通过有限元方法对矩阵进行数学运算得到结果,理论上没有什么物理意义,但各种变量从人为地角度赋与物理意义以及物理定理的数学表示,从而发动ABAQUS进行求解出‘有意义的‘的结果来,由此看来,结果是否有效,人对各种数据变量的主观把握是重要的。单位的一致性可以保证结果运算不会产生与之相关的问题。一般,ABAQUS建议用一套认可的单位制进行单位定义,比方说,国际单位制。当然,如果你原意通过一系列的转化(转化因子可能复杂)的话,可以不遵守单位一致性的约定。
A. 旋转及角度表示
ABAQUS中,旋转自由度(4、5、6)以弧度来表示,而其他角度相关的一般都以真实角度表示(如相角、*ncopy,shift中的旋转角度),其实,便于好记的说法就是,与长度或三角运算相关的用弧度,与旋转相关的用角度表示。
B. 国际单位制
国际单位制是我们最常用的一套符合一致性要求的单位系统(SI)。其基本的单位共五个:长度(m),质量(kg)、时间(s)、温度(K)、电流(A)。其他相关单位均在此单位基础上组合或推导出来。
C. 美(英)式单位
对我们而言,总是不太习惯使用美式或英式单位制,这是因为其单位命名规则不像国际单位制中的表示的那样清楚。
ABAQUS共有两种时间计法,一种是步时间(step time)另一种是总分析时间(total time)。除了线性扰动分析(它不考虑时间),步时间是从每一分析步开始计算,而总分析时间则是从第一个step开始计算起的所有step的时间积累(包括*restart步)。
五、空间曲面的局部方向
完全的空间曲面定义需要有局部面方向的定义以完成定义诸如基于单元接触曲面的切向滑移方向或是壳单元的应力应变方向。对此类方向ABAQUS作如下规定:
默认的局部1方向是整体x轴向曲面的投影,如果该x轴垂直于曲面(与曲面法线夹角小于0.1度),其局部1方向是整体z轴向曲面的投影。而局部2方向则是局部1方向依右手法则形成,故而局部1、2和曲面的正法线的构形局部坐标轴方向(依右手法则)。如下图。曲面的正法线方向是通过构成该单元的结点以右手法则旋转而成。局部曲面方向可以通过*orientation定义。
当考虑垫片单元或与*section print和*section file相关的局部坐标系统定义时,曲面的局部1-、2-方向变成局部2-、3-方向。
对于线型单元如梁beam、管pipe、杆truss的空间方向,其默认的局部1-方向和2-方向该单元的切向与横向(其具体方向与结点定义顺序有关),当然也可以通过*orientation进行修改。
B. 局部旋转方向
对于几何线性分析而言,以默认的材料方向(初始参考中定义)就可以将应力应变表示出来。
对于几何非线性分析,在ABAQUS/Standard中的小应变壳单元(S4R5, S8R, S8R5, S8RT, S9R5, STRI3, 和 STRI65)使用总体拉格朗日应变算法,应力应变可以相对于参考构型的材料方向改定。垫片单元是小应变小位移单元,默认情况下其应力应变值也是以初始参考构型定义的行为方向输出。
对于有限膜应变单元(所有的膜单元以及S3/S3R, S4, S4R, SAX,和 SAXA单元)和在ABAQUS/Explicit中的小应变单元,其材料方向是随着曲面的平均刚性旋转运动而变以形成当前构型的材料方向。此时这些单元的应力应变则是根据当前的参考构型中的材料方向给出的。(更详细地说明可以参考ABAQUS相关手册)。用户可以决定与*section print和*section file相关的局部坐标系统是固定不动还是随着曲面的平均刚性运动而旋转。
对于大多数的接触问题,在ABAQUS中有通用接触(General Contact)和接触对(Contact Pair)两种算法处理,它们的异同主要体现在用户交互、默认设置、可选设置三个方面。
总的来说,通用接触算法的相互作用主体、接触属性、接触面属性是可以各自独立地指定,它提供了一个更有弹性的方法去增加模型中接触的细节。通用接触算法允许非常自动化的接触定义,尽管也可以采用传统的、类似于接触对算法的方法去交互式定义。对于传统的接触对算法,相对于全部包括式的自接触(Self-contact),接触对算法的计算效率可能更高,而且使用CAE也能比较方便地建立接触对。因而这两种接触算法的选择其实就是一个在接触定义的便利性和计算效率性之间的平衡,它们之间的差异主要有:
一、通用接触(General Contact)和接触对(Contact Pair)的默认设置差异
1、接触离散方式:通用接触算法使用有限滑动和面对面的离散方式,而接触对算法使用有限滑动和点对面的离散方式;
2、对壳的厚度和偏移的处理:通用接触算法自动考虑,接触对算法在使用点对面的离散方式时不考虑壳的厚度和偏移;
3、接触的执行:通用接触算法采用罚函数方法,接触对算法在使用点对面的离散方式时采用拉格朗日乘数方法;
4、初始过盈量的处理:通用接触算法采用无应变调整的方法消除过盈量,接触对算法将过盈量作为穿透在第一个分析增量步处理;
5、主从面指定:通用接触算法自动指定,接触对算法必须由用户指定。
当接触对算法采用有限滑动和面对面的离散方式时,就没有前三个差异了。
二、可选的接触属性
下列功能只有接触对算法拥有:
1、包含RSURFU子程序定义的刚性面或解析刚性面的接触,当然基于单元的刚性面通用接触和接触对都可以;
2、包含基于节点的面或者三维梁单元面的接触;
3、小滑移接触和绑定接触;
4、有限滑动和点对面的离散方式;
5、粘性接触;
6、压力渗透加载;
7、粗糙摩擦模型(Rough);
8、用户子程UINTER和FRIC;
9、Lagrange enforcement of friction constraints;
10、Local definitions of some numerical contact controls
注:同一个模型可同时使用通用接触算法和接触对算法。Explicit中的异同参考AUUM 31.1.1
原创文章,转载请注明来自:
Abaqus/Explicit中默认的是时间增量步方案是完全自动的,一般不需要用户的干预,尽管如此,ABAQUS提供了两种时间增量步估计器可供选择:element by element&方案和 global方案。一般一个分析以前者开始,分析中可能在某种情况下转为后者。
1、Element-by-element estimation
该方式使用每个单元中的膨胀波速进行估计,是一种偏保守的估计方法,得到的稳定步长要小于按整个模型最高频率估计的真实稳定步长。一般来说,边界条件、动力接触等等约束可能压缩模型的本征谱,但是Element-by-element estimation并不计及该效应。
理解来说,稳定步长其实是膨胀波速通过最小的单元尺度的时间,不知对不对~~~
2、Global estimation
除非Element-by-element 方式、固定时间步或者不适合Global estimation方式的情况出现,ABAQUS将使用Global方式估计稳定时间步长。该方式是以整个模型的膨胀波速来估计模型的最高频率,一般来说,该方式估计的时间步长大于Element-by-element estimation。
3、不适合Global estimation方式的情况
(1)流体单元
(2)无限元
(3)阻尼器
(4)厚壳(厚度/特征长度大于0.92)
(5)厚梁(厚度/长度大于1)
(6)The JWL equation of state
(7)★★★材料阻尼(觉得这个情况最常出现!!!)
(8)附属场变量的各向异性弹性材料
(9)扭曲控制
(10)自适应网格
(11)Subcycling
4、为了降低计算变得不稳定的几率,也可以通过设置比例系数(Time scaling factor)来调整自动计算的时间增量步长,该系数可以使用在除直接指定时间步长的其他情况。
原创文章,转载请注明来自:
在INP文件中进行编辑;在*Output, history, variable=PRESELECT后面添加以下语句*Section Print, name=a1, surface=asd, axes=local
(空两行)
二、注意:
1、中间要空开两行;
2、name名字自己定义,surface的名字是自己定义的那个面;
3、算完后在DAT文件里面有SOM和SOF的输出数值;
4、cutting surface需要事先定义好才可以输出该位置的剪力和弯矩。
三、相关问题:
在INP文件中加入
*surface,type=cutting surface,name=halfheight
60.,50.,500.,0,0,1
(空一行)
*End Assembly
资料来自SIMWE论坛shanhuimin923,特表示感谢!
ABAQUS&用连续介质的方法建立描述混凝土模型 不采用宏观离散裂纹的方法描述 裂纹的水平的在每一个积分点上单独计算其中。
低压力混凝土的本构关系包括:
Concrete Smeared cracking model (ABAQUS/Standard)&Concrete&&Brittle cracking model (ABAQUS/Explicit)&Concrete Damage plasticity model
高压力混凝土的本构关系:
1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):——只能用于ABAQUS/Standard中
裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性
用于描述&:单调应变&、在材料中表现出拉伸裂纹或者压缩时破碎的行为
在进行参数定义式的Keywords:
*TENSION STIFFENING
*SHEAR&RETENTION
*FAILURE RATIOS
2、ABAQUS/Explicit中脆性破裂模型Concrete&&Brittle cracking model (ABAQUS/Explicit)&:
适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。
在进行参数定义式的Keywords*BRITTLE CRACKING,*BRITTLE FAILURE,&*BRITTLE SHEAR
3、塑性损伤模型Concrete Damage plasticity model:适用于混凝土的各种荷载分析,单调应变,&循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性
在进行参数定义式的Keywords:
*CONCRETE DAMAGED PLASTICITY*CONCRETE TENSION STIFFENING*CONCRETE COMPRESSION HARDENING*CONCRETE TENSION DAMAGE*CONCRETE COMPRESSION DAMAGE
/scut_yumin/blog/static//
一、方法介绍:
1、采用rebar layer 的办法,在part里面画一个面,然后在property里面一个surface为rebar layer,把这个surface的属性赋给前面的part里面的那个面,然后在interation中embed中把钢筋层embed到中去。
2、采用桁架的办法,在part里面建好纵筋和箍筋的钢筋骨架,在property中分别赋予截面和属性,在interation中的embed把钢筋骨架embed到混凝土的实体中去。(也可通过CAD导入钢筋骨架embed到混凝土中)
步骤:part (用wire的方法画线)——》property 模(创建钢筋的section,property【在category里面选beam——》truss】)——》assembly 模块(建立instance)——》Interaction 模块(在constaint里面选embedded)——》mesh 模块(指定单元属性,钢筋单元必须为truss单元,如T3D2等)
二、方法评价:
1、如果是作构件的话,第二种办法建的比较精确,而且比较方便,查看钢筋单元的比较直观,如果是作的话,第一种钢筋层的办法比较好,但是个人觉得钢筋层的办法纵筋和箍筋的位置定义的不是很明确。
2、*rebar和*embeded是两种完全不同的处理方法,如果要考察筋材的性能,用*rebar肯定是不行的,因为该关键词的含义是局部增强来模拟加筋,不能对筋材进行显示,只能考察加筋后的主体构建的性能。而*embeded可以把筋材和主体构建分别显示,方便对筋材性能的考察。
3、对于剪切破坏的钢筋混凝土构件,箍筋的对于抗剪作用比较关键,必须要建立箍筋单元,对于受弯曲破坏的钢筋混凝土构件,可以不建箍筋。而在ABAQUS中,纵筋可以通过rebar&layer的方式施加,箍筋采用rebar&layer方式施加的话,位置定义的不是很明确。}

我要回帖

更多关于 刚度和阻尼的关系 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信