如何理解PID控制中的容量pid一阶惯性滞后模型和纯pid一阶惯性滞后模型

基于PID算法的电机转速控制系统的设计-五星文库
免费文档下载
基于PID算法的电机转速控制系统的设计
导读:反应系统的累计偏差,使系统消除稳态误差,反映系统偏差信号的变化率e(t)-e(t-1),产生超前的控制作用,因此可以改善系统的动态性能,加强微分对系统抗干扰不利,必须与比例控制配合,3.2控制器的P,I,D项选择,1、比例控制规律P:采用P控制规律能较快地克服扰动的影响,它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一定范围内有,如:金彪公用工程部下设的水泵房冷、热水池水
积分,反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行,直至无误差;
微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。但是微分对噪声干扰有放大作用,加强微分对系统抗干扰不利。
积分和微分都不能单独起作用,必须与比例控制配合。
3.2 控制器的P,I,D项选择。
1、比例控制规律P:采用P控制规律能较快地克服扰动的影响,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现。它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一定范围内有余差的场合。如:金彪公用工程部下设的水泵房冷、热水池水位控制;油泵房中间油罐油位控制等。
2、比例积分控制规律(PI):在工程中比例积分控制规律是应用最广泛的一种控制规律。积分能在比例的基础上消除余差,它适用于控制通道滞后较小、负荷变化不大、被控参数不允许有余差的场合。如:在主线窑头重油换向室中F1401到F1419号枪的重油流量控制系统;油泵房供油管流量控制系统;退火窑各区温度调节系统等。
3、比例微分控制规律(PD):微分具有超前作用,对于具有容量滞后的控制通道,引入微分参与控制,在微分项设置得当的情况下,对于提高系统的动态性能指标,有着显著效果。因此,对于控制通道的时间常数或容量滞后较大的场合,为了提高系统的稳定性,减小动态偏差等可选用比例微分控制规律。如:加热型温度控制、成分控制。需要说明一点,对于那些纯滞后较大的区域里,微分项是无能为力,而在测量信号有噪声或周期性振动的系统,则也不宜采用微分控制。如:大窑玻璃液位的控制。
4、例积分微分控制规律(PID):PID控制规律是一种较理想的控制规律,它在比例的基础上引入积分,可以消除余差,再加入微分作用,又能提高系统的稳
定性。它适用于控制通道时间常数或容量滞后较大、控制要求较高的场合。如温度控制、成分控制等。
鉴于D规律的作用,我们还必须了解时间滞后的概念,时间滞后包括容量滞后与纯滞后。其中容量滞后通常又包括:测量滞后和传送滞后。测量滞后是检测元件在检测时需要建立一种平衡,如热电偶、热电阻、压力等响应较慢产生的一种滞后。而传送滞后则是在传感器、变送器、执行机构等设备产生的一种控制滞后。纯滞后是相对与测量滞后的,在工业上,大多的纯滞后是由于物料传输所致,如:大窑玻璃液位,在投料机动作到核子液位仪检测需要很长的一段时间。
总之,控制规律的选用要根据过程特性和工艺要求来选取,决不是说PID控制规律在任何情况下都具有较好的控制性能,不分场合都采用是不明智的。如果这样做,只会给其它工作增加复杂性,并给参数整定带来困难。当采用PID控制器还达不到工艺要求,则需要考虑其它的控制方案。如串级控制、前馈控制、大滞后控制等。
3.3 PID参数整定
2、参数的自整定
Kp,Ti,Td三个参数的设定是PID控制算法的关键问题。一般说来编程时只能设定他们的大概数值,并在系统运行时通过反复调试来确定最佳值。因此调试阶段程序须得能随时修改和记忆这三个参数。
在某些应用场合,比如通用仪表行业,系统的工作对象是不确定的,不同的对象就得采用不同的参数值,没法为用户设定参数,就引入参数自整定的概念。实质就是在首次使用时,通过N次测量为新的工作对象寻找一套参数,并记忆下来作为以后工作的依据。
图3-2 PID算法流程图
4 模糊控制的基本原理
4.1模糊控制的起源
“模糊”一词的英语名称是“Fuzzy”,从文字上理解,包含了“含糊”、“不确定”、“不清楚”等概念,人们在生产中碰到的很多事情,包括人脑的思维,具有模糊性的特点,所谓“模糊性”,只要是指客观事物彼此之间的差异在中过渡的“不分明性”。例如:冷和热,或很冷、冷、暖和、热和很热,大、中、小,长和短等等,都很难用精确的数学语言划分出一条截然分明的界限。而经典数学只能确切地描述事物,难以描述人们在日常生活中遇到的大量模糊现象和概念。随着科学技术的发展,迫切要求能描述和处理这些模糊现象和概念。人们在经典数学的基础上,对它进行改造和扩充,产生了模糊数学。
模糊理论是在美国加里福尼亚大学L.A.Zadeh教授于1965创立的模糊集合理论的数学基础上发展起来的,是描述处理人类语言所特有的模糊信息理论。主要包括模糊集合及其隶属函数,模糊算子和模糊关系。
Zadeh教授首次提出了表达事物模糊性的重要概念―隶属函数,从而突破了19世纪末期德国数学家Cantor创立的经典集合理论的局限性。借助于隶属函数可以表达一个模糊概念从“完全不属于”到“完全属于”的过渡,才能对有的模糊概念进行定量表示。隶属函数的提出奠定了模糊理论的数学基础。这样,像“冷”和“热”这些常规经典集合中无法解决的模糊概念就可以在模糊集合得到有效的表达,为计算机处理这种语言信息提供了一种可行的方法。[30]
1974年,英国的EH.Mmadnai首次用模糊逻辑和模糊推理实现世界第一个实验性的蒸汽机控制,并取得了比传统的直接数字控制算法更好的效果。他的成功也标志着人们采用模糊逻辑进行工业控制的开始,从而宣告了模糊控制的问世。从将近半个世纪的发展来看,模糊逻辑应用最为广泛的领域就是模糊控制,模糊控制在各种领域出人意料地解决了传统控制理论无法解决或难以解决问题,并取得了一些令人信服的成效。
对于模糊控制的评价是模糊控制不依赖于被控对象精确的数学模型。模糊控制在特定的条件下可以达到经典控制论难以达到的“满意控制”,而不是最佳控制。其二模糊理论确实有很多不完替之处,比如模糊规则的获取和确定,隶属函数的选择以及比较敏感的稳定性问题至今未得到完善的解决,但这些却不能否认
包含总结汇报、人文社科、经管营销、旅游景点、党团工作、IT计算机、工作范文、文档下载、外语学习、教学研究以及基于PID算法的电机转速控制系统的设计等内容。本文共16页
相关内容搜索}

我要回帖

更多关于 网签滞后性如何理解 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信