开关电源效率计算、谐波参数如何测试?

君,已阅读到文档的结尾了呢~~
高效准确的开关电源测试方案,开关电源测试系统,开关电源测试仪器,开关电源测试标准,开关电源耐压测试,开关电源纹波测试,开关电源测试项目,开关电源测试报告,开关电源测试方法,开关电源测试规范
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
高效准确的开关电源测试方案
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口开关电源的测试参数
 &>&&>&&>&&>&正文
E. 输出杂讯(PARD):&&& 输出杂讯(PARD)系指于输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。输出杂讯是表示在经过稳压及滤波后的直流输出电压上所有不需要的交流和噪声部份(包含低频之50/60Hz电源倍频信号、高于20 KHz之高频切换信号及其谐波,再与其它之随机性信号所组成)),通常以mVp-p峰对峰值电压为单位来表示。 一般的开关电源的规格均以输出直流输出电压的1%以内为输出杂讯之规格,其频宽为20Hz到20MHz(或其它更高之频宽如100MHz等)。 开关电源实际工作时最恶劣的状况(如输出负载电流最大、输入电源电压最低等),若电源供应器在恶劣环境状况下,其输出直流电压加上杂讯后之输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限情形,否则将可能会导致电源电压超过或低于逻辑电路(如TTL电路)之承受电源电压而误动作,进一步造成死机现象。
例如5V输出,其输出杂讯要求为50mV以内(此时包含电源调整率、负载调整率、动态负载等其它所有变动,其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)。在测量输出杂讯时,电子负载的PARD必须比待测之电源供应器的PARD值为低,才不会影响输出杂讯之测量。同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振铃和驻波,一般都采用双同轴电缆并以50&O于其端点上,并使用差动式量测方法(可避免地回路之杂讯电流),来获得正确的测量结果,日本计测KEISOKU GEIKEN 的PARD 测试仪具备此种功能。F. 输入功率与效率:&&&&& 电源供应器的输入功率之定义为以下之公式: &&&&& True Power = Pav(watt) = V1 Ai dt = Vrms x Arms x Power Factor即为对一周期内其输入电压与电流乘积之积分值,需注意的是Watt&VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.为功率因素(Power Factor),通常电源供应器的功率因素在0.6~0.7左右,而大功率之电源供应器具备功率因素校正器者,其功率因素通常大于0.95,当输入电流波形与电压波形完全相同时,功率因素为1,并依其不相同之程度,其功率因素为1~0之间。电源供应器的效率之定义为: &&&&&&& &SVout x lout / True Power (watts)即为输出直流功率之总和与输入功率之比值。通常个人电脑用电源供应器之效率为65%~80%左右。效率提供对电源供应器正确工作的验证,若效率超过规定范围,即表示设计或零件材料上有问题,效率太低时会导致散热增加而影响其使用寿命。 由于近年来对于环保及能源消耗愈来愈重视,如电脑能源之星「Energy Star」对开关电源之要求:于交流输入功率为30Wrms时,其效率需为60%以上(即此时直流输出功率必须高于18W);又对于ATX架构开关电源于直流失能(DC Disable)状态其输入功率应不大于5W。因此交流功率测试仪表需要既精确又范围宽广,才能合乎此项测试之需求。G. 动态负载或暂态负载&&& 一个定电压输出的电源,于设计中具备反馈控制回路,能够将其输出电压连续不断地维持稳定的输出电压。由于实际上反馈控制回路有一定的频宽,因此限制了电源供应器对负载电流变化时的反应。若控制回路输入与输出之相移于增益(Unity Gain)为1时,超过180度,则电源供应器之输出便会呈现不稳定、失控或振荡之现象。实际上,电源供应器工作时的负载电流也是动态变化的,而不是始终维持不变(例如硬盘、软驱、CPU或RAM动作等),因此动态负载测试对电源供应器而言是极为重要的。可编程序电子负载可用来模拟电源供应器实际工作时最恶劣的负载情况,如负载电流迅速上升、下降之斜率、周期等,若电源供应器在恶劣负载状况下,仍能够维持稳定的输出电压不产生过高激(Overshoot)或过低(Undershoot)情形,否则会导致电源之输出电压超过负载组件(如TTL电路其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)之承受电源电压而误动作,进一步造成死机现象。H. 电源良好/失效时间(Power Good、Power Fail或Pok)&&& 电源良好信号,简称PGS(Power Good Signal或Pok High),是电源送往电脑系统的信号,当其输出电压稳定后,通知电脑系统,以便做开机程序之 C 而电源失效信号(Power Fail或Pok Low)是电源供应器表示其输出电压尚未达到或下降超过于一正常工作之情况。 以上通常由一「PGS」或「Pok」信号之逻辑改变来表示,逻辑为「1或High」时,表示为电源良好(Power Good),而逻辑为「0或Low」时,表示为电源失效(Power Fail),请叁考图5之时序图:电源的电源良好(Power Good)时间为从其输出电压稳定时起到PGS信号由0变为1的时间,一般值为100ms到2000ms之间。 电源的电源失效(Power Fail)时间为从PGS信号由由1变为0的时间起到其输出电压低于稳压范围的时间,一般值为1ms以上。日本计测KEISOKU GEIKEN 的电子负载可直接测量电源良好与电源失效时间,并可设定上下限,做为是否合格的判别。I. 启动时间(Set-Up Time)与保持时间(Hold-Up Time)&&& 启动时间为电源供应器从输入接上电源起到其输出电压上升到稳压范围内为止的时间,以一输出为5V的电源供应器为例,启动时间为从电源开机起到输出电压达到4.75V为止的时间。
&&第2页&&&&http://www.autooo.net/autooo/power/tech//89523.html【安泰测试】开关电源的EMC技术是怎样的
【安泰测试】开关电源的EMC技术是怎样的
&&&&&&公告|Placard
q0lh8bxz.  开关电源的EMC技术是怎样的
  开关电源的EMC技术是怎样的?开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。
  1 减小骚扰源的骚扰强度
  选择合适的开关电源的工作方式不同,他们的产生的电磁骚扰强度及所产生的电磁骚扰控制难度是不同的。例如:自激式开关电源在负载轻重不同时不但脉冲宽度会改变,其开关频率变化很大,这样给克服开关脉冲骚扰和控制其传播带来很大的难度;他激式开关电源开关频率不变,它靠改变脉冲宽度来保持输出稳定。显然,他激式开关电源更容易控制电磁骚扰。隔离型开关电源比隔离型开关电源骚扰小。桥式整流产生的骚扰比其它整流方式产生的骚扰小。光耦隔离比变压器隔离的骚扰更容易控制。对 隔离型开关电源谐振型比极性反转型骚扰小多了。
  开关电源的工作频率也与骚扰强度密相关。低的开关电源工作频率不但可以减小骚扰的高频分量,其传导骚扰和辐射骚扰的传播效率会大大降低。实际设计中,我们进行工作方式选择时,综合考虑其电磁容性能,这样往往可以取到事功倍的效果。至于工作频率,在不增加成本和影响工作效率的情况下当然是越小越好。
  选择合适的电路元件
  开关电源电路是开关电源产生的电磁骚扰最直接和最主要的来源。在开关回路中,开关管是核心。我们实际设计和测试中发现,我们用同样耐压的电流容量的不同品牌的开关管进行辐射骚扰测试,整体骚扰最大的与最小的可能相差 15-20dB。
  对传导骚扰的频率高端,我们也发现同样的现象(对传导骚扰的频率低端这种现象没有高端明显)。这与开关管在设计中有否考虑电磁容有关。好的开关管在设计中考虑到了高频率抑制信开关瞬间的震荡并顾了转换效率。这种开关管成本可能会高些。开关回路中另一关键部件是脉冲变压器,脉冲变压器,对电磁容的影响表现在两个方面:一个是初级线圈与次级线圈间加静电屏层并引出接地,该接地线尽量靠近开关管的发射极接直流输入的 0V地(热地),这样可以大大减小分布电容cd,从而减小了初、次级的电场的耦合骚扰。
  为了减小脉冲变压器的漏磁,可以选择封闭磁芯(如圆环),封闭磁芯比开口磁芯的漏磁小。不可以通过在脉冲变压器外包高磁导率的屏材料抑制漏磁,从 而减小了通过漏磁辐射的骚扰。开关回路中的C1 选择也很关键,选择高频特性良好的电容或在其上并联一个高频电容,降低高频阻抗,可以减少高频电流以差模方式传导到交流电源中去形成传导骚扰。在二次整流回路中,整流二极管D2 常关键。在低压大电流 的整流回路中,快速恢复的肖特基是一种较好的选择。对高压输出电路可选用其它快速恢复二极管或带软恢复特性的二极管。
  骚扰吸收回路
  可在开关回路的开关T两端并联RC吸收回中如图 3(b)所示,或在开关管T两端并联RC吸收回路如图 3(a)所示,或在 RC/DRC回路可吸收天开关管T接通和断开瞬间产生的较高的浪涌尖峰电压,降低开关回路的骚扰。如图 3(c)所示,在输出端的整流二极管D2 和D1 正极引线中串接带可饱和磁芯的线圈或微晶磁珠(co系)sc1、sc2。可饱和磁芯线圈/微晶磁珠在通过正常电流时磁芯饱和,电感量很小,不会影响电路正常工作,一旦电流要反向流过时,它将产生很大的反电势,阻止反向电流的上,因此将它与二极管D1、D2 串联就能有效地抑制二极管D2 的反向浪涌电流。徽晶磁珠可以直接套在二极管的引线上,使用方便,效果也比RC吸收回路好。另外,D1、L、C2组成的滤波网络可以更好滤除输出直流中的高频纹波,减小输出端的高频差模骚扰。
  一次整流回路中PFC网络
  对一次整流回路,最显著的骚扰是整流回路对交流电网的选择性取电引起的供电网络的波形畸变,功率因素偏低。为解决这个问题,可在一次整流回路加入现成的PFC(功率因素控制)模板。该模块分有源和无源两种,有源模板效果更好,但电路复杂,成本较高。为了更适合所设计的产品,也有公司提供PFC电路后一可将功率因素从 0.4 提到 0.9 以上。可以使所设计的开关电源顺利通过GB-1998 的电流谐波测试。2. 切断骚扰传播途径
  滤波技术
  滤波技术是抑制的一种有效措施,其是在对付开关电源EMI信号的传导某些辐射骚扰方面,具有明显的效果,电源线上的骚扰电路以两种形式出现:一种是在火线零线回路中,其骚扰被称为差模骚扰;另一种是在和火线、零线与地和大地的回路中,称为共模骚扰。
  差模骚扰在两导线之间传输,属于对称性骚扰,共模骚扰在导线与地(机壳)之间传输,属于非对称性骚扰。通常 20KHZ 以下时,差模骚扰成分占主要成分。1MHZ 以上时,共模骚扰成分占主要成分。在一般情况下,差模骚扰频率高,还可以通过导线产生辐射,所造成的干扰较大。因此,欲削弱传导骚扰,把 EMI 信号控制在有关 EMC 标准规定的极限电平以下。
  除抑制骚扰源以外,最有效的方法就是在开关电源输入和输出电路中加装 EMI信号,只要选择相应的去耦电路或 EMI 滤波器,就不满足 EMC 标准的滤波效果。减小差模式传达室导骚扰的方法是在电源线上串联差模扼流圈、在地与导线之间并联电容器、组成 LC 滤波器进行滤波,滤去共模传达室导噪声。共模扼流圈是将电源线的零线和火线同方向在铁氧体磁芯上构成的,它对线间流动的电源电流阻抗很小,而对两面三刀根线与地之间流过的共模电流阻抗则很大。
  对开关电源来说,输入电源端是电磁骚扰从交流电源端是电磁骚扰从交流电网传入内部和内部骚扰反向注入电网的主要途径。为此必须在电源入口处安装一个低通滤波器,这个滤波器只容许设备的工作频率(50HZ、60HZ、400HZ)通过,而对较高频率的骚扰有很大的损耗,由于这个滤波器专门用于设备电源,所以称为电源滤波器。电源滤波器对差模骚扰和共模骚扰都抑制作用,但由于电路结构不同,对差模骚扰和共模骚扰的抑制效果不一样。所以滤波器的技术指标中有差模插入损耗和共模插入损耗之分。
  对交流供电的开关电源来说,如果没有输入电源滤波电路,要通过电磁容测试是很难想象的,典型的交泫电源滤波网络见图 4 所示。共模式扼流圈 LC1 由两个在同一个高磁导率磁芯上的组成,它们的结构使差模电流产生的磁场相互抵消。这种结构可以以较小体积得较大的电感值,通常 1——10MHZ 并且不用担心由于工作电流导至饱和。每个组的电感可以减相对与地的共模干扰电流,但只有漏电感才能衰减差模干扰电流。因此,滤波器差模特性在很大程度上受线索圈的结构的影响,因为线圈电感能够提供较大的差模衰减,但付出的代价是磁芯的饱和电流降低。
  共模电容器 CY1 和 CY2 衰减共模干扰,当 CX3 很大时,这两个电容器对差模没有太大的影响。CY 电容器的有效性在很大程度上由设备的共模源阻抗决定。共模源阻抗一般是耦合到地的寄生电容的数,它由电路的结构方式和电源变压器初级——次级电容等决定,一般会超过 1000PF。由 CY 的分流作用提供的共模减一般不会超过 15——20dB。共模扼流圈组合(如图 4 中的 Lc2、Cx2)。
  差模电容器 CX1 和 CX2(3)只衰减差模干扰电流,它们的电容值可以较大,通常为 0.1—0.47UF。注意源和负载的阻抗可能很低,以致于电容器起不到作用,
  因此根据具体情况,可以省略一只电容器。例如,一只 0.1UF10ohm,而对于一个数百的电源,从 CX3 的电容值几乎没有效果,这时 CX3 右取消。
  减小分布电容的耦合
  为了防止开关管集电极和开关管散热片之间的耦合电容 Ci 将开关管集电极上的脉冲骚扰耦合到机壳和保护地 PE 上形成面向空间的辐射骚扰和电源线传导共模骚扰。我们应该减少开关管集电极和散热片之间的耦合电容 Ci 选用低介电常数的材料作绝缘垫,加厚垫片的厚度,并采用静电屏的方法:一般开关管的外壳是集电极,在集电极和散热片之间垫上一层夹心绝缘物,既绝缘物中间夹一层铜箔,作为静电屏层,接在输入直流 0V 地(热地)上,散热片仍在机壳地上,这样就大大减少集电极与散热片之间的电场耦合
  对脉冲变压器的初级与次级之间的耦合电容 Cd,也可以用同样的方式通过加静电屏层并就近在开关管的为射极接直流输入的 0V 地(热地)。该方式只能少cd 的耦合,仍然会有部分骚扰冲变压器的初级耦合到次级形成共模骚扰,这时可通过在直流输入的 0V 地(热地)端的共模骚扰一个回路,重新回到直流输入的 0V 地,从而减小通过 cd 耦合的共模骚扰。在选择该电容时为保证通过安全测试所的耐压,一般由两个 Y 电容串联使用。
  3.屏蔽技术
  抑制开关电源辐射骚扰的有效方法是屏蔽技术。对电场屏用导电良好的材料 。为了防止冲变压器的磁场 泄露,可利用闭环形成磁屏,对整个开关电源要进行电场屏。在屏的应考虑散热和通风问题,屏外壳上的通风孔最好为多孔圆形,在满足我的条件下,孔的数量可以多,每个孔的尺寸要尽可能小,接缝处最好焊接,以保证电磁的连续性,如果采用螺钉固定,注意螺丝间距要短,屏外壳的引入、引出线处要采取滤波措施,否则这些线都会成为良好的骚扰发射天线,严重降低屏处壳的屏效果,对无法进行完全屏的开关电源,至少在其关键部位要有局部屏。电场屏如果屏外壳不接地。对非嵌入的外置式开关电源的外壳进行电场屏非常重要,否则很难通过辐射骚扰测试。对嵌入式的内置开关电源是否采用外壳屏则视其系统的屏效能及系统中其他部分对电源骚扰的敏感程度而定。
  4. 电路布线
  元件及电路的选择对于控制 EMI 至关重要,但电路板的布局和互连也具有同等重要的影响。尤其是对于高密度、采用多层电路板的开关电源,元件的布局和走线上产生很大 dv/dt 和 di/dt 的信号,它可以耦合到其它连线上造成兼容问题。
西安安泰测试设备有限公司地处西安市高新技术开发区,是一家专注于电子测试及工业测试领域仪器销售与系统集成的专业公司。 公司电话:029-
&&&&&&日历|Calendar
August 2016日一二三四五六12345678910111213141516171819202122232425262728293031
&&&&&&日志|News
&&&&&&留言|Messages
&&&&&&评论|Comments
&&&&&&登陆|Login
用户名称:
登陆密码:
密码保存:不保存保存一天
保存一月保存一年
&&&&&&搜索|Search
日志标题日志内容
&&&&&&统计|Info
blog名称:【安泰测试】开关电源的EMC技术是怎样的日志总数:1评论数量:0留言数量:1访问次数:162建立时间:日
&&&&&&链接|Links
mhh13he0z 发表于
tqwrdw4y.  开关电源的EMC技术是怎样的
  开关电源的EMC技术是怎样的?开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。
  1 减小骚扰源的骚扰强度
  选择合适的开关电源的工作方式不同,他们的产生的电磁骚扰强度及所产生的电磁骚扰控制难度是不同的。例如:自激式开关电源在负载轻重不同时不但脉冲宽度会改变,其开关频率变化很大,这样给克服开关脉冲骚扰和控制其传播带来很大的难度;他激式开关电源开关频率不变,它靠改变脉冲宽度来保持输出稳定。显然,他激式开关电源更容易控制电磁骚扰。隔离型开关电源比隔离型开关电源骚扰小。桥式整流产生的骚扰比其它整流方式产生的骚扰小。光耦隔离比变压器隔离的骚扰更容易控制。对 隔离型开关电源谐振型比极性反转型骚扰小多了。
  开关电源的工作频率也与骚扰强度密相关。低的开关电源工作频率不但可以减小骚扰的高频分量,其传导骚扰和辐射骚扰的传播效率会大大降低。实际设计中,我们进行工作方式选择时,综合考虑其电磁容性能,这样往往可以取到事功倍的效果。至于工作频率,在不增加成本和影响工作效率的情况下当然是越小越好。
  选择合适的电路元件
  开关电源电路是开关电源产生的电磁骚扰最直接和最主要的来源。在开关回路中,开关管是核心。我们实际设计和测试中发现,我们用同样耐压的电流容量的不同品牌的开关管进行辐射骚扰测试,整体骚扰最大的与最小的可能相差 15-20dB。
  对传导骚扰的频率高端,我们也发现同样的现象(对传导骚扰的频率低端这种现象没有高端明显)。这与开关管在设计中有否考虑电磁容有关。好的开关管在设计中考虑到了高频率抑制信开关瞬间的震荡并顾了转换效率。这种开关管成本可能会高些。开关回路中另一关键部件是脉冲变压器,脉冲变压器,对电磁容的影响表现在两个方面:一个是初级线圈与次级线圈间加静电屏层并引出接地,该接地线尽量靠近开关管的发射极接直流输入的 0V地(热地),这样可以大大减小分布电容cd,从而减小了初、次级的电场的耦合骚扰。
  为了减小脉冲变压器的漏磁,可以选择封闭磁芯(如圆环),封闭磁芯比开口磁芯的漏磁小。不可以通过在脉冲变压器外包高磁导率的屏材料抑制漏磁,从 而减小了通过漏磁辐射的骚扰。开关回路中的C1 选择也很关键,选择高频特性良好的电容或在其上并联一个高频电容,降低高频阻抗,可以减少高频电流以差模方式传导到交流电源中去形成传导骚扰。在二次整流回路中,整流二极管D2 常关键。在低压大电流 的整流回路中,快速恢复的肖特基是一种较好的选择。对高压输出电路可选用其它快速恢复二极管或带软恢复特性的二极管。
  骚扰吸收回路
  可在开关回路的开关T两端并联RC吸收回中如图 3(b)所示,或在开关管T两端并联RC吸收回路如图 3(a)所示,或在 RC/DRC回路可吸收天开关管T接通和断开瞬间产生的较高的浪涌尖峰电压,降低开关回路的骚扰。如图 3(c)所示,在输出端的整流二极管D2 和D1 正极引线中串接带可饱和磁芯的线圈或微晶磁珠(co系)sc1、sc2。可饱和磁芯线圈/微晶磁珠在通过正常电流时磁芯饱和,电感量很小,不会影响电路正常工作,一旦电流要反向流过时,它将产生很大的反电势,阻止反向电流的上,因此将它与二极管D1、D2 串联就能有效地抑制二极管D2 的反向浪涌电流。徽晶磁珠可以直接套在二极管的引线上,使用方便,效果也比RC吸收回路好。另外,D1、L、C2组成的滤波网络可以更好滤除输出直流中的高频纹波,减小输出端的高频差模骚扰。
  一次整流回路中PFC网络
  对一次整流回路,最显著的骚扰是整流回路对交流电网的选择性取电引起的供电网络的波形畸变,功率因素偏低。为解决这个问题,可在一次整流回路加入现成的PFC(功率因素控制)模板。该模块分有源和无源两种,有源模板效果更好,但电路复杂,成本较高。为了更适合所设计的产品,也有公司提供PFC电路后一可将功率因素从 0.4 提到 0.9 以上。可以使所设计的开关电源顺利通过GB-1998 的电流谐波测试。2. 切断骚扰传播途径
  滤波技术
  滤波技术是抑制的一种有效措施,其是在对付开关电源EMI信号的传导某些辐射骚扰方面,具有明显的效果,电源线上的骚扰电路以两种形式出现:一种是在火线零线回路中,其骚扰被称为差模骚扰;另一种是在和火线、零线与地和大地的回路中,称为共模骚扰。
  差模骚扰在两导线之间传输,属于对称性骚扰,共模骚扰在导线与地(机壳)之间传输,属于非对称性骚扰。通常 20KHZ 以下时,差模骚扰成分占主要成分。1MHZ 以上时,共模骚扰成分占主要成分。在一般情况下,差模骚扰频率高,还可以通过导线产生辐射,所造成的干扰较大。因此,欲削弱传导骚扰,把 EMI 信号控制在有关 EMC 标准规定的极限电平以下。
  除抑制骚扰源以外,最有效的方法就是在开关电源输入和输出电路中加装 EMI信号,只要选择相应的去耦电路或 EMI 滤波器,就不满足 EMC 标准的滤波效果。减小差模式传达室导骚扰的方法是在电源线上串联差模扼流圈、在地与导线之间并联电容器、组成 LC 滤波器进行滤波,滤去共模传达室导噪声。共模扼流圈是将电源线的零线和火线同方向在铁氧体磁芯上构成的,它对线间流动的电源电流阻抗很小,而对两面三刀根线与地之间流过的共模电流阻抗则很大。
  对开关电源来说,输入电源端是电磁骚扰从交流电源端是电磁骚扰从交流电网传入内部和内部骚扰反向注入电网的主要途径。为此必须在电源入口处安装一个低通滤波器,这个滤波器只容许设备的工作频率(50HZ、60HZ、400HZ)通过,而对较高频率的骚扰有很大的损耗,由于这个滤波器专门用于设备电源,所以称为电源滤波器。电源滤波器对差模骚扰和共模骚扰都抑制作用,但由于电路结构不同,对差模骚扰和共模骚扰的抑制效果不一样。所以滤波器的技术指标中有差模插入损耗和共模插入损耗之分。
  对交流供电的开关电源来说,如果没有输入电源滤波电路,要通过电磁容测试是很难想象的,典型的交泫电源滤波网络见图 4 所示。共模式扼流圈 LC1 由两个在同一个高磁导率磁芯上的组成,它们的结构使差模电流产生的磁场相互抵消。这种结构可以以较小体积得较大的电感值,通常 1——10MHZ 并且不用担心由于工作电流导至饱和。每个组的电感可以减相对与地的共模干扰电流,但只有漏电感才能衰减差模干扰电流。因此,滤波器差模特性在很大程度上受线索圈的结构的影响,因为线圈电感能够提供较大的差模衰减,但付出的代价是磁芯的饱和电流降低。
  共模电容器 CY1 和 CY2 衰减共模干扰,当 CX3 很大时,这两个电容器对差模没有太大的影响。CY 电容器的有效性在很大程度上由设备的共模源阻抗决定。共模源阻抗一般是耦合到地的寄生电容的数,它由电路的结构方式和电源变压器初级——次级电容等决定,一般会超过 1000PF。由 CY 的分流作用提供的共模减一般不会超过 15——20dB。共模扼流圈组合(如图 4 中的 Lc2、Cx2)。
  差模电容器 CX1 和 CX2(3)只衰减差模干扰电流,它们的电容值可以较大,通常为 0.1—0.47UF。注意源和负载的阻抗可能很低,以致于电容器起不到作用,
  因此根据具体情况,可以省略一只电容器。例如,一只 0.1UF10ohm,而对于一个数百的电源,从 CX3 的电容值几乎没有效果,这时 CX3 右取消。
  减小分布电容的耦合
  为了防止开关管集电极和开关管散热片之间的耦合电容 Ci 将开关管集电极上的脉冲骚扰耦合到机壳和保护地 PE 上形成面向空间的辐射骚扰和电源线传导共模骚扰。我们应该减少开关管集电极和散热片之间的耦合电容 Ci 选用低介电常数的材料作绝缘垫,加厚垫片的厚度,并采用静电屏的方法:一般开关管的外壳是集电极,在集电极和散热片之间垫上一层夹心绝缘物,既绝缘物中间夹一层铜箔,作为静电屏层,接在输入直流 0V 地(热地)上,散热片仍在机壳地上,这样就大大减少集电极与散热片之间的电场耦合
  对脉冲变压器的初级与次级之间的耦合电容 Cd,也可以用同样的方式通过加静电屏层并就近在开关管的为射极接直流输入的 0V 地(热地)。该方式只能少cd 的耦合,仍然会有部分骚扰冲变压器的初级耦合到次级形成共模骚扰,这时可通过在直流输入的 0V 地(热地)端的共模骚扰一个回路,重新回到直流输入的 0V 地,从而减小通过 cd 耦合的共模骚扰。在选择该电容时为保证通过安全测试所的耐压,一般由两个 Y 电容串联使用。
  3.屏蔽技术
  抑制开关电源辐射骚扰的有效方法是屏蔽技术。对电场屏用导电良好的材料 。为了防止冲变压器的磁场 泄露,可利用闭环形成磁屏,对整个开关电源要进行电场屏。在屏的应考虑散热和通风问题,屏外壳上的通风孔最好为多孔圆形,在满足我的条件下,孔的数量可以多,每个孔的尺寸要尽可能小,接缝处最好焊接,以保证电磁的连续性,如果采用螺钉固定,注意螺丝间距要短,屏外壳的引入、引出线处要采取滤波措施,否则这些线都会成为良好的骚扰发射天线,严重降低屏处壳的屏效果,对无法进行完全屏的开关电源,至少在其关键部位要有局部屏。电场屏如果屏外壳不接地。对非嵌入的外置式开关电源的外壳进行电场屏非常重要,否则很难通过辐射骚扰测试。对嵌入式的内置开关电源是否采用外壳屏则视其系统的屏效能及系统中其他部分对电源骚扰的敏感程度而定。
  4. 电路布线
  元件及电路的选择对于控制 EMI 至关重要,但电路板的布局和互连也具有同等重要的影响。尤其是对于高密度、采用多层电路板的开关电源,元件的布局和走线上产生很大 dv/dt 和 di/dt 的信号,它可以耦合到其它连线上造成兼容问题。
西安安泰测试设备有限公司地处西安市高新技术开发区,是一家专注于电子测试及工业测试领域仪器销售与系统集成的专业公司。 公司电话:029-
wfvale095 发表于
tqwrdw4y.  选择测试仪器的几个重要指标都有哪些
  选择测试仪器的几个重要指标都有哪些?以数字示波器为例,很多用户可能都知道示波器的一些传统的指标,比如带宽,采样率,存储深度等等,甚至出现在选型的时候根据指标”比数大小”,以为数大的就比数小的好 ---其实不然!要想真正了解数字示波器,就必须深入洞察隐藏在标称的指标背后的产品的真正性能和质量,就像有不少消费者在选购数码相机的时候往往很在意像素数,其实除了这个”数”之外,还有很多(更)重要的指标甚至材质需要考虑的.
  在可扩展性、支持的通信标准数量、测试精度、动态范围和解调带宽等方面,这些参数都很重要。未来的基站可能向双模和多模演进,很多手机都已经具备多模功能,如GSM和WCDMA双模手机,如果仪器支持的通信标准多,那么需采购仪器的品种和数量就大大减少。另外,随着3G、LTE等技术的出现,对仪表提出了更高的要求,高测试精度、大动态范围和大解调带宽的仪器非常受欢迎。移动通信技术发展很快,目前中国还没有大量商用3G,而LTE,作为WCDMA和TD-SCDMA的后续技术,已经快推出原型机了。网络运营商可能会加快新的技术的引入,这对基站和终端生产厂商确实是挑战:他们现在购买的测试仪器必须具备很好的扩展性,能方便地升级到未来技术,这样才能更大限度保护厂商的投资。
  另外,示波器的带宽、采样率等都是示波器的常见参数。示波器带宽由于制造与研发技术的发展,使示波器带宽能够得到修正和补偿。但这些修正和补偿未尝都是好事一桩,有些客户并不希望这些技术带入到测试中去,他们更需要原始的测试数据,比如雷达实验。
  现在电子工程师更加关心选购的仪器是否能真正解决测试中碰到的实际问题,“解决问题”才是示波器的真正价值所在,而不是罗列冷冰冰的硬件指标。力科示波器面向“解决问题”而专门设计,具体体现在:7Zi系列示波器上最新采用的专利技术TriggerScan能比传统方法通过快刷新方式捕捉到异常信号提高了20倍以上效率,这就大大提高了工程师调试电路的效率;长波形采集和仪器反应能力一直是矛盾的示波器性能指标,某些厂商宣称他们的产品能达到几百兆甚至千兆级别的存储深度,但实际上当用户使用到这么多内存时,示波器的响应会变慢,任何简单的操作比如垂直灵敏度调整都得让用户痛苦的等上很长时间才能看到结果。力能
家专注于电子测试及工业测试领域仪器销售与系统集成的专业公司。 西安安泰测试设备有限公司地处西安市高新技术开发区,是一家专注于电子测试及工业测试领域仪器销售与系统集成的专业公司。 公司电话:029-
Powered by
& Copyright 2004. All rights reserved. Processed in 0.031 second(s), page refreshed 1084254 times.}

我要回帖

更多关于 开关电源效率 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信