幂函数方程求解一个函数

用一个函数来实现求两个整数中的较大者。在主函数中国调用此函数并输出结果。 我是新手_百度知道
用一个函数来实现求两个整数中的较大者。在主函数中国调用此函数并输出结果。 我是新手
baidu.jpg" esrc="http。在主函数中国调用此函数并输出结果;&nbsp.我是新手;&nbsp。&&nbsp.jpg" target="_blank" title="点击查看大图" class="ikqb_img_alink"><img class="ikqb_img" src="http,这个怎么改<a href="&nbsp://c://c.com/zhidao/pic/item/d62aaf20ebb5c9eab8f9://c.&&/zhidao/wh%3D600%2C800/sign=756b80dcb18f8c54e386cd290a1901cd/d62aaf20ebb5c9eab8f9;&/zhidao/wh%3D450%2C600/sign=2ae0feee4de/d62aaf20ebb5c9eab8f9;&nbsp.hiphotos.hiphotos.baidu用一个函数来实现求两个整数中的较大者
提问者采纳
&}void&&nbsp,c,b\n&&&a;z#include&max(int&nbsp,b);&y)&a;&&%d;&&&&&c=max(a;&nbsp,%d&main()&&stdio,&amp,int&&&&&nbsp,&int&&&&&&&&z=y;).h&;&printf(&quot,b;c=%d\n&&&y)z=x;&else&&&printf(&return(z);int&&&nbsp,c);&&&x;&scanf(&{int&&&b);if(x&输入a;&&;&&&nbsp
提问者评价
太给力了,你的回答完美地解决了我的问题,非常感谢!
来自团队:
其他类似问题
为您推荐:
主函数的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁当前位置:
>>>(1)任选以下三个条件中的一个,求二次函数的解析式;①y随x变化的..
(1)任选以下三个条件中的一个,求二次函数的解析式;①y随x变化的部分数值规律如下表:x-10123y03430&②有序数对、、满足;③已知函数的图象的一部分(如图).&(2)直接写出二次函数的三个性质.
题型:解答题难度:中档来源:不详
(1)见解析(2)1、对称轴为,2、开口向下3、与轴有2个交点4、交 &轴正半轴(1)方法一:由?可得:C=3,,,所以,,C=3,所以二次函数解析式为:方法二:由②可得:,,,解之得:,,C=3,所以二次函数解析式为:方法三:由③可得:C=3,,,解之得:,,C=3,所以二次函数解析式为:(三种选其一即可)(2)1、对称轴为, 2、开口向下 3、与轴有2个交点 4、交 &轴正半轴
马上分享给同学
据魔方格专家权威分析,试题“(1)任选以下三个条件中的一个,求二次函数的解析式;①y随x变化的..”主要考查你对&&二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
定义:一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。 ①所谓二次函数就是说自变量最高次数是2;②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。二次函数的解析式有三种形式: (1)一般式:(a,b,c是常数,a≠0); (2)顶点式: (a,h,k是常数,a≠0) (3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。 二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零。二次函数的判定:二次函数的一般形式中等号右边是关于自变量x的二次三项式;当b=0,c=0时,y=ax2是特殊的二次函数;判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。 抛物线的主要特征:①有开口方向,a表示开口方向:a&0时,抛物线开口向上;a&0时,抛物线开口向下;②有对称轴;③有顶点;④c 表示抛物线与y轴的交点坐标:(0,c)。 二次函数图像性质:轴对称:二次函数图像是轴对称图形。对称轴为直线x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点:二次函数图像有一个顶点P,坐标为P ( h,k )当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。h=-b/2a, k=(4ac-b^2)/4a。开口:二次项系数a决定二次函数图像的开口方向和大小。当a&0时,二次函数图像向上开口;当a&0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。决定对称轴位置的因素:一次项系数b和二次项系数a共同决定对称轴的位置。当a&0,与b同号时(即ab&0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a&0,所以 b/2a要大于0,所以a、b要同号当a&0,与b异号时(即ab&0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a&0, 所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab&0),对称轴在y轴左;当a与b异号时(即ab&0 ),对称轴在y轴右。事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。决定与y轴交点的因素:常数项c决定二次函数图像与y轴交点。二次函数图像与y轴交于(0,C)注意:顶点坐标为(h,k), 与y轴交于(0,C)。与x轴交点个数:a&0;k&0或a&0;k&0时,二次函数图像与x轴有2个交点。k=0时,二次函数图像与x轴只有1个交点。a&0;k&0或a&0,k&0时,二次函数图像与X轴无交点。当a&0时,函数在x=h处取得最小值ymin=k,在x&h范围内是减函数,在x&h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y&k当a&0时,函数在x=h处取得最大值ymax=k,在x&h范围内是增函数,在x&h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y&k当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。二次函数的最值:1.如果自变量的取值范围是全体实数,则当a&0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=;当a&0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=。 也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1 时;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2时&。 求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“(1)任选以下三个条件中的一个,求二次函数的解析式;①y随x变化的..”考查相似的试题有:
548099428988479739688665701881725903最优化问题的MATLAB求解_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
最优化问题的MATLAB求解
上传于||暂无简介
大小:1.72MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢新手求指导--如何引用另一个文件中函数_数据结构吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:35,275贴子:
新手求指导--如何引用另一个文件中函数收藏
如何引用另一个文件(叫做List2.c)中函数。我知道是“#include“List2.c”,但有些细节不懂具体来说如下:List1.c要引用List2.c中一个顺序表初始化的函数,List1.c的代码如下:#include&stdio.h&#include&stdlib.h&#include"list2.c"#define
20typedef struct { int
date[MaxSize];}SeqList,*PSeqL main(){
//引用List2.c中的初始化函数,【该函数类型必须是PSeqList】 Init_SeqList();}【我的问题是】List2.c如何编写?
这款游戏可以体验洪荒之力!我露出了迷之微笑
你添加一个头文件。比如t1.h
然后在头文件t1.h中声明要调用的函数名(如上图),在t1.c中定义实现的代码。比如p函数要输出helloworld
然后在t2.c文件中引入#include "t1.h"头文件,调用p函数
很感谢你的回答!请问这些知识属于c语言哪部分的,我想找找教材,详细了解一下。
额。。我貌似在我们的c语言书上也没找到。。如果想深入了解一下的话,建议看一本深一点、厚一点的书。(初学者不建议这样)一般这内容在 “函数”相关的章节吧。这是我看《c++ primer》大概了解到的。试了一下。可以。暂时不知道还有没有其他解决办法。
还有,我不知道你为什么要分开写两个源文件、如果,不是必须的话,完全可以在一个xx.c文件中写所有的函数。说简单点,就是一个程序是由很多函数构成,在main函数中调用其他各种函数。哈,说的有点跑题。
因为我正在学数据结构,我想把线性表、树、图的一些操作单独编写出来保存,方便以后写程序引用。再次感谢啊!
目测你用的VC6.0
登录百度帐号推荐应用
为兴趣而生,贴吧更懂你。或三角函数_百度百科
[sān jiǎo hán shù]
6类基本初等函数之一。三角函数是以角度(数学上最常用弧度制,下同)为,角度对应终边与交点坐标或其比值为的函数。也可以等价地用与有关的各种线段的长度来定义。三角函数在研究三角形和等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是值。常见的三角函数包括、和。在、、等其他学科中,还会用到如、、、、、、等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做。常见的双曲函数也被称为、等等。三角函数(也叫做)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为或特定微分方程的解,允许它们扩展到任意和值,甚至是值。
三角函数发展历史
三角函数起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个,是一个附属品,但是的内容却由于印度数学家的努力而大大的丰富了。
三角学中””和””的概念就是由印度数学家首先引进的,他们还造出了比更精确的正弦表。
我们已知道,托勒密和造出的弦表是的全表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应(如图五 ),这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
称连结(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,被转译成拉丁文,这个字被意译成了”sinus”。[1]
三角函数古希腊历史
早期对于三角函数的研究可以追溯到古代。三角术的奠基人是公元前2世纪的。他按照人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。在他的著作《球面学》中使用了正弦来描述球面的。古希腊三角学与其天文学的应用在埃及的时代达到了高峰,托勒密在《》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。
古希腊文化传播到后,古印度人对三角术进行了进一步的研究。公元5世纪末的数学家提出用弧对应的弦长的一半来对应半弧的正弦,这个做法被后来的古印度数学家使用,和现代的正弦定义一致了。阿耶波多的计算中也使用了余弦和正割。他在计算弦长时使用了不同的单位,重新计算了0到90度中间隔三又四分之三度(3.75°)的三角函数值表。然而古印度的数学与当时的中国一样,停留在计算方面,缺乏系统的定义和演绎的证明。阿拉伯人也采用了古印度人的正弦定义,但他们的三角学是直接继承于古希腊。阿拉伯天文学家引入了和、和的概念,并计算了间隔10分(10′)的正弦和正切数值表。到了公元14世纪,阿拉伯人将三角计算重新以算术方式代数化(古希腊人采用的是建立在几何上的推导方式)的努力为后来三角学从天文学中独立出来,成为了有更广泛应用的学科奠定了基础。
三角函数阿拉伯历史
进入15世纪后,文化开始传入欧洲。随着欧洲商业的兴盛,航行、历法测定和地理测绘中出现了对三角学的需求。在翻译阿拉伯数学著作的同时,欧洲数学家开始制作更详细精确的表。的学生乔治·约阿希姆·瑞提克斯制作了间隔10秒(10″)的正弦表,有9位精确值。瑞提克斯还改变了正弦的定义,原来称弧对应的弦长是正弦,瑞提克斯则将角度对应的弦长称为正弦。16世纪后,数学家开始将有关球面三角的结果和定理转化为平面三角定理。给出了托勒密的不少结果对应的平面三角形式。他还尝试计算了多倍角正弦的表达方式。
18世纪开始,随着解析几何等分析学工具的引进,数学家们开始对三角函数进行分析学上的研究。牛顿在1669年的《分析学》一书中给出了正弦和余弦函数的表示。Collins将牛顿的结果告诉了詹姆斯·格列高里,后者进一步给出了正切等三角函数的无穷级数。在1673年左右也独立得到了这一结果。的《无穷小量分析引论》(Introductio in Analysin Infinitorum,1748年)对建立三角函数的分析处理做了最主要的贡献,他定义三角函数为无穷级数,并表述了,还有使用接近现代的简写sin.、cos.、tang.、cot.、sec.和cosec.。
三角函数弦表的发明
根据认识,弦表的制作似应该是由一系列不同的角出发,去作一系列,然后一一量出AC,A’C’,A’’C’’…之间的距离。然而,第一张弦表制作者希腊文学家希帕克 (Hipparchus,约前180~前125)不是这样作,他采用的是在同一个固定的内,去计算给定度数的圆弧AB所对应的弦AB的长(如图三)。这就是说,希帕克是靠计算,而不是靠工具量出弦长来制表的,这正是他的卓越之处。希帕克的原著早已失传,我们所知关于希帕克在三角学上的成就,是从公元二世纪希腊著名天文学家托勒密的遗著《天文集》中得到的。虽然托勒密说他的这些成就出自希帕克,但事实上不少是他自己的创造。
据托勒密书中记载,为了度量圆弧与弦长,他们采用了巴比伦人的60进位法。把360等分,把它的半径60等分,在圆周和半径的每一等分中再等分60份,每一小份又等分为60份,这样就得出了托勒密所谓的第一小份和第二小份。很久以后,罗马人把它们分别取名为”partes minutae primae”和”partes minutae secundae”;后来,这两个名字演变为”minute”和”second”,成为角和时间的度量上””和””这两个单位得起源。
建立了半径与圆周的度量单位以后,和先着手计算一些特殊所对应的弦长。比如 60°弧(1/6圆)所对的弦长,正好是内接的边长,它与半径相等,因此得出60°弧对应的弦值是60个半径单位(半径长的1/60为一个单位);用同样的方法,可以算出120°弧、90°弧以及72°弧所对应的弦值(如图四)。有了这些弧所对应的弦值,接着就利用所称的””,来推算两条已知所对弦长的弧的”和”与”差”所对的弦长,以及由一条弧所对的弦长来计算这条弧的一半所对的弦长。正是基于这样一种几何上的推算。他们终于造出了世界上第一张弦表。
三角函数传入中国
输入中国,开始于明4年(1631年),这一年,、和合编《大测》,作为的一部份呈献给朝廷,这是我国第一部编译的三角学。在《大》中,首先将sine译为”正半弦”,简称””,这就成了“正弦”的由来。[2]
三角函数定义
三角函数直角三角形三角函数定义
在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个,其中∠ACB为。对∠BAC而言,(opposite)a=BC、(hypotenuse)c=AB、邻边(adjacent)b=AC,则存在以下关系:
∠A的对边比斜边
∠A的邻边比斜边
∠A的对边比邻边
∠A的邻边比对边
∠A的斜边比邻边
∠A的斜边比对边
注:正切函数、余切函数曾被写作tg、ctg,现已不用这种写法。
三角函数变化规律
随角度增大(减小)而增大(减小),在
随角度增大(减小)而减小(增大);
随角度增大(减小)而增大(减小),在
随角度增大(减小)而减小(增大);
随角度增大(减小)而增大(减小);
随角度增大(减小)而减小(增大);
随着角度的增大(或减小)而增大(或减小);
随着角度的增大(或减小)而减小(或增大)。
注:以上其他情况可类推,参考第五项:几何性质。
除了上述六个常见的函数,还有一些不常见的三角函数:
函数名与常见函数转化关系 
三角函数任意角三角函数定义:
如图:在中设O-x为α的始边,在角α终边上任取一点不与点O重合的点P(x,y),令OP=r。
三角函数单位圆定义
六个三角函数也可以依据半径为1中心为原点的来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于。但是单位圆定义的确允许三角函数对所有和辐角都有定义,而不只是对于在 0 和 π/2之间的角。它也提供了一个图像,把所有重要的三角函数都了。根据,
单位圆的是:对于圆上的任意点(x,y),x?+y?=1。
图像中给出了用度量的一些常见的角:逆时针方向的度量是,而顺时针的度量是。设一个过的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的x和y坐标分别等于cosθ和sinθ。图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sinθ=y/1 和 cosθ=x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。
对于大于 2π 或小于等于2π 的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为 2π的:对于任何角度θ和任何k。
周期函数的叫做这个函数的“”。正弦、余弦、正割或余割的基本周期是全圆,也就是 2π弧度或 360°;正切或余切的基本周期是半圆,也就是 π 弧度或 180°。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。
在的图像中,在角kπ 附近变化缓慢,而在接近角 (k+ 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k+ 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k+ 1/2)π 的时候函数接近,而从右侧接近 (k+ 1/2)π 的时候函数接近负无穷。
另一方面,所有基本三角函数都可依据中心为O的单位圆来定义,类似于历史上使用的几何定义。特别 是,对于这个圆的AB,这里的 θ 是对向角的一半,sinθ是AC(半弦),这是印度的介入的定义。cosθ是水平距离OC,versinθ=1-cosθ是CD。tanθ是通过A的的AE的长度,所以这个函数才叫。cotθ是另一个切线段AF。 secθ=OE和 cscθ=OF是割线(与圆相交于两点)的线段,所以可以看作OA沿着 A 的切线分别向水平和垂直轴的投影。DE是 exsecθ= secθ-1(正割在圆外的部分)。通过这些构造,容易看出和正切函数在 θ 接近 π/2的时候发散,而余割和余切在 θ 接近零的时候发散。
依据单位圆定义,我们可以做三个()来表示正弦、余弦、正切的值。如图所示,圆O是一个单位圆,P是α的与单位圆上的交点,M点是P在x轴的投影,A(1,0)是圆O与x轴的交点,过A点做过圆O的。
那么向量MP对应的就是α的,向量OM对应的就是余弦值。OP的(或)与过A点的切线的交点为T,则向量AT对应的就是。向量的起止点不能颠倒,因为其方向是有意义的。
借助线三角函数线,我们可以观察到α的正弦值为正,值为负,值为负。
三角函数级数定义
只使用几何和的性质,可以证明正弦的是余弦,余弦的导数是负的正弦。(在中,所有角度都以来度量)。我们可以接着使用的理论来证明下列对于所有x都成立:
这些恒等式经常被用做正弦和余弦函数的定义。它们经常被用做三角函数的严格处理和应用的起点(比如,在中),因为的理论可从的基础上发展而来,不需要任何几何方面的考虑。这样,这些函数的可微性和便可以单独从级数定义来确立。
其他级数可见于:
注:Un是n次上/下数, Bn是n次伯努利数,∣x∣&π/2。
三角函数三角学
“”,英文Trigonometry。现代三角学一词最初见于希腊文。最先使用Trigonometry这个词的是( Bartholomeo Pitiscus,),他在1595年出版一本著作《三角学:解三角学的简明处理》,创造了这个新词。它是由τριγωυου(三角学)及μετρει υ(测量)两字构成的,原意为三角形的测量,或者说解三角形。古希腊文里没有这个字,原因是当时三角学还没有形成一门独立的科学,而是依附于天文学。因此解三角形构成了古代三角学的实用基础。
早期的是因天文观测的需要而引起的。还在很早的时候,由于垦殖和畜牧的需要,人们就开始作长途迁移;后来,贸易的发展和求知的欲望,又推动他们去长途旅行。在当时,这种迁移和旅行是一种冒险的行动。人们穿越无边无际、荒无人烟的草地和原始森林,或者经水路沿着海岸线作长途航行,无论是那种方式,都首先要明确方向。那时,人们白天拿太阳作路标,夜里则以星星为指路灯。太阳和星星给长期跋山涉水的商队指出了正确的道路,也给那些沿着遥远的异域海岸航行的人指出了正确的道路。
就这样,最初的以太阳和星星为目标的天文观测,以及为这种观测服务的原始的三角测量就应运而生了。因此可以说,三角学是紧密地同天文学相联系而迈出自己发展史的第一步的。
问题的提出:三角学理论的基础,是对三角形各元素之间相依关系的认识。一般认为,这一认识最早是由希腊天文学家获得的。当时,希腊天文学家为了正确地测量天体的位置。研究天体的运行轨道,力求把天文学发展成为一门以精确的观测和正确的计算为基础之具有定量分析的科学。他们给自己提出的第一个任务是,因为进行天文观测时,人与星球以及大地的位置关系,通常是以直角三角形边角之间的关系反映出来的。在很早以前,希腊天文学家从天文观测的经验中获得了这样一个认识:星球距地面的高度是可以通过人观测星球时所采用的角度来反映的;角度(∠ABC)越大,星球距地面(AC)就越高。然而,星球的高度与人观测的角度之间在数量上究竟怎么样呢?能不能把各种不同的角度所反映的星球的高度都一一算出来呢?这就是天文学向数学提出的第一个课题-制造表。所谓弦表,就是在保持AB不变的情况下可以供查阅的表 (如图二),AC的长度与∠ABC的大小之间的对应关系。
独立三角学的产生:虽然后期的阿拉伯数学家已经开始对三角学进行专门的整理和研究,他们的工作也可以算作是使三角学从天文学中独立出来的表现,但是严格地说,他们并没有创立起一门独立的三角学。真正把三角学作为数学的一个独立学科加以系统叙述的,是德国数学家雷基奥蒙坦纳斯。
雷基奥蒙坦纳斯是十五世纪最有声望的德国数学家约翰·谬勒的笔名。他生于,年轻时就积极从事欧洲作品的收集和翻译工作,并热心出版古希腊和阿拉伯著作。因此对阿拉伯数学家们在三角方面的工作比较了解。
1464年,他以雷基奥蒙坦的名字发表了《各种三角形》。在书中,他把以往散见在各种书上的知识,系统地综合了起来,成了三角学在数学上的一个分支,
现代三角学的确认:直到十八世纪,所有的三角量:、、、、和,都始终被认为是已知圆内与同一条弧有关的某些线段,即三角学是以几何的面貌表现出来的,这也可以说是三角学的古典面貌。三角学的现代特征,是把三角量看作为函数,即看作为是一种与角相对应的。这方面的工作是由作出的。1748年,欧拉发表著名的《无穷小分析引论》一书,指出:”三角函数是一种函数线与圆半径的比值”。具体地说,任意一个角的三角函数,都可以认为是以这个角的顶点为圆心,以某定长为半径作圆,由角的一边与的交点P向另一边作PM后,所得的线段OP、OM、MP(即函数线)相互之间所取的比值(如图八),sinα=MP/OP,cosα=OM/OP,tanα= MP/OM等。若令半径为单位长,那么所有的六个三角函数又可大为简化。
欧拉的这个定义使三角学从静态地只是研究三角形解法的狭隘天地中解脱了出来,使它有可能去反映运动和变化的过程,从而使三角学成为一门具有现代特征的分析性学科。正如欧拉所说,引进三角函数以后,原来意义下的正弦等三角量,都可以脱离去进行自由的运算。一切三角关系式也将很容易地从三角函数的定义出发直接得出。这样,就使得从希帕克起许多数学家为之奋斗而得出的三角关系式,有了坚实的理论依据,而且大大地丰富了。严格地说,这时才是的真正确立。
三角函数特殊角
在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单,计算中可以直接求出具体的值。
这些函数的值参见下表格:
角度0°15°30°45°60°90°120°135°150°180°270°弧度
[(√6)-(√2)]/4
[(√6)+(√2)]/4
三角函数几何性质
三角函数函数图象
函数对称轴对称中心图象y=sin x
x=kπ+π/2(k∈Z)
(kπ,0)(k∈Z)
x=kπ(k∈Z)
(kπ+π/2,0)(k∈Z)
无(kπ/2+π/2,0)(k∈Z)
无(kπ/2,0)(k∈Z)
x=kπ(k∈Z)
(kπ+π/2,0)(k∈Z)
x=kπ+π/2(k∈Z)
(kπ,0)(k∈Z)
三角函数最小正周期
如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期(minimal positive period).例如,的最小正周期是2π.
对于y=sin x, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得正弦函数和的最小正周期是2π。
三角函数诱导公式
三角函数公式内容
三角函数十组诱导公式  公式一  公式二sin(2kπ+α)=sin α
cos(2kπ+α)=cos α
tan(2kπ+α)=tan α
cot(2kπ+α)=cot α
sec(2kπ+α)=sec α
csc(2kπ+α)=csc α
sin(π+α)=-sin α
cos(π+α)=-cos α
tan(π+α)=tan α
cot(π+α)=cot α
sec(π+α)=-sec α
csc(π+α)=-csc α
公式三公式四sin(-α)=-sin α
cos(-α)=cos α
tan(-α)=-tan α
cot(-α)=-cot α
sec(-α)=sec α
csc(-α)=-csc α
sin(π-α)=sin α
cos(π-α)=-cos α
tan(π-α)=-tan α
cot(π-α)=-cot α
sec(π-α)=-sec α
csc(π-α)=csc α
公式五公式六  sin(α-π)=-sin α
cos(α-π)=-cos α
tan(α-π)=tan α
cot(α-π)=cot α
sec(α-π)=-sec α
csc(α-π)=-csc α
sin(2π-α)=-sin α
cos(2π-α)=cos α
tan(2π-α)=-tan α
cot(2π-α)=-cot α
sec(2π-α)=sec α
csc(2π-α)=-csc α
公式七公式八sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sec(π/2-α)=cscα
csc(π/2-α)=secα
公式九公式十sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sec(3π/2+α)=cscα
csc(3π/2+α)=-secα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sec(3π/2-α)=-cscα
csc(3π/2-α)=-secα
三角函数推导方法
90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为。90°的倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”。
将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。
在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。看原函数中α所在的正负号。关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。
比如:90°+α。定名:90°是90°的倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~
还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。
三角函数三角恒等式
三角函数两角和与差
取直角坐标系,作;取一点A,连接OA,与X轴的夹角为α; 取一点B,连接OB,与X轴的夹角为β, 则OA与OB的夹角即为α-β
∵A(cosα,sinα),B (cosβ,sinβ),O(0,0)
∴OA=(cosα,sinα),OB=(cosβ,sinβ)()
∴OA·OB=|OA| |OB| cos (α-β) =cos α cos β + sin α sin β
∵|OA| = |OB| = 1
∴cos(α-β)=cosαcosβ+sinαsinβ
取β=-β,可得cos(α+β)=cosαcosβ-sinαsinβ
以上内容来自:[3]
三角函数和差化积
三角函数积化和差
三角函数二倍角公式
三角函数三倍角公式
sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)
cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan^3α)/(1-3tan?α) = tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot^3α-3cotα)/(3cot?α-1)
三角函数n倍角公式
根据欧拉公式(cosθ+isinθ)^n=cosnθ+isinnθ
将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式
sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…
cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α
三角函数半角公式
sin(α/2)=±√[(1-cosα)/2]
cos(α/2)=±√[(1+cosα)/2]
tan(α/2)=±√[(1-cosα)/(1+cosα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotα
cot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotα
sec(α/2)=±√[(2secα/(secα+1)]
csc(α/2)=±√[(2secα/(secα-1)]
三角函数辅助角公式
(其中φ满足
三角函数万能公式
sina=[2tan(a/2)]/[1+tan?(a/2)]
cosa=[1-tan?(a/2)]/[1+tan?(a/2)]
tana=[2tan(a/2)]/[1-tan?(a/2)]
三角函数降幂公式
sin?α=[1-cos(2α)]/2
cos?α=[1+cos(2α)]/2
tan?α=[1-cos(2α)]/[1+cos(2α)]
三角函数三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
三角函数幂级数
c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
它们的各项都是幂的, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数。
三角函数泰勒展开式
泰勒展开式又叫幂级数展开法
f(x)=f(a)+f&#39;(a)/1!*(x-a)+f&#39;&#39;(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……
实用幂级数:
e^x = 1+x+x?/2!+x^3/3!+……+x^n/n!+…… (-∞&x&∞)
ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|&1)
sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。 (-∞&x&∞)
cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞&x&∞)
arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k+1)/(2k!!*(2k+1))+……(|x|&1) !!表示双阶乘[4]
arccos x = π/2 -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|&1)
arctan x = x - x^3/3 + x^5/5 -……(x≤1)
sinh x = x+x^3/3!+x^5/5!+……+(x^(2k-1))/(2k-1)!+…… (-∞&x&∞)
cosh x = 1+x^2/2!+x^4/4!+……+(x^(2k))/(2k)!+……(-∞&x&∞)
arcsinh x =x - x^3/(2*3) + (1*3)x^5/(2*4*5) -1*3*5(x^7)/(2*4*6*7)……(|x|&1)
arctanh x = x + x^3/3 + x^5/5 + ……(|x|&1)
在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数、面积等等。
三角函数傅里叶级数
傅里叶级数
又称三角级数
f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)
a0=1/π∫(π..-π) (f(x))dx
an=1/π∫(π..-π) (f(x)cosnx)dx
bn=1/π∫(π..-π) (f(x)sinnx)dx
三角函数概念
三角函数定义域和值域
sin(x),cos(x)的定义域为R,值域为[-1,1]。
tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。
cot(x)的定义域为x不等于kπ(k∈Z),值域为R。
y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a&sup2;+b&sup2;) , c+√(a&sup2;+b&sup2;)]
周期T=2π/ω
三角函数函数图象画法
以y=sinx的图像为例,得到y=Asin(ωx+φ)的图像:
y=sinx→【左移(φ&0)/右移(φ&0) ∣∣∣φ∣个单位】 →y=sin(x+φ)→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sin(ωx+φ)
y=sinx→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sinωx→【左移(φ&0)/右移(φ&0)∣φ∣/ω 个单位】→y=sin(ωx+φ) →【纵坐标变为原来的A倍(伸长[A&1] / 缩短[0&A&1])】→ y=Asin(ωx+φ)
三角函数导数
三角函数图象
y=sinx---y&#39;=cosx
y=cosx---y&#39;=-sinx
y=tanx---y&#39;=1/cos?x =sec?x
y=cotx---y&#39;= -1/sin?x= - csc?x
y=secx---y&#39;=secxtanx
y=cscx---y&#39;=-cscxcotx
y=arcsinx---y&#39;=1/√(1-x?)
y=arccosx---y&#39;= -1/√(1-x?)
y=arctanx---y&#39;=1/(1+x?)
y=arccotx---y&#39;= -1/(1+x?)
三角函数倍半角规律
如果角a的余弦值为1/2,那么a/2的余弦值为√3/2.
三角函数三角函数的反函数
三角函数的,是多值函数。它们是反正弦arcsin x,arccos x,反正切arctan x,反余切arccot x等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制为,将的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的,记为y=arcsin x;相应地,y=arccos x的主值限在0≤y≤π;y=arctan x的主值限在-π/2&y&π/2;y=arccot x的主值限在0&y&π。
反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).
反三角函数主要是三个:
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;
y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;
sinarcsin(x)=x,定义域[-1,1],值域 [-π/2,π/2]
证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代入上式即可得
其他几个用类似方法可得。
三角函数推广
中三角函数的表示(由易得):
sinz=[e^(iz)-e^(-iz)]/(2i)
cosz=[e^(iz)+e^(-iz)]/2
tanx=[e^(iz)-e^(-iz)]/[ie^(iz)+ie^(-iz)]
泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z?/2!+z^3/3!+z^4/4!+…+z^n/n!+… ≦
此时三角函数已推广至整个集。
·三角函数作为方程的解:
对于微分方程组 y=-y&#39;&#39;;y=y&#39;&#39;&#39;&#39;,有通解Q,可证明
Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。
补充:由相应的指数表示我们可以定义一种类似的函数--,其拥有很多与三角函数的类似的性质,二者相映成趣。
三角函数复数性质
(1)对于z为y来说,复数域内正余弦函数的性质与通常所说的正余弦函数性质是一样的。
(2)复数域内正余弦函数在z平面是解析的。
(3)在复数域内不能再断言|sinz|≦1,|cosz|≦1。
(4)sinz、cosz分别为,,且以2π为周期。
复数三角函数
sin(a+bi)=sinacosbi+sinbicosa
=sinachb+ishbcosa
cos(a-bi)=cosacosbi+sinbisina
=cosachb+ishbsina
tan(a+bi)=sin(a+bi)/cos(a+bi)
cot(a+bi)=cos(a+bi)/sin(a+bi)
sec(a+bi)=1/cos(a+bi)
csc(a+bi)=1/sin(a+bi)
三角函数相关定理
三角函数,正如其名称那样,在中是十分重要的,
正、余弦定理
主要是因为正弦定理与余弦定理。
同时在解决物理中的力学问题时也很重要,主要在于力与力之间的转换,并列出平衡方程。
三角函数正弦定理
对于边长为a,b和c而相应角为A,B和C的三角形,有:
sinA / a = sinB / b = sinC/c
也可表示为:
a/sinA=b/sinB=c/sinC=2R
变形:a=2RsinA,b=2RsinB,c=2RsinC
其中R是三角形的外接圆半径。
它可以通过把三角形分为两个直角三角形并使用上述正弦的定义来证明。在这个定理中出现的公共数 (sinA)/a是通过A,B和C三点的圆的直径的倒数。正弦定理用于在一个三角形中(1)已知两个角和一个边求未知边和角(2)已知两边及其一边的对角求其他角和边的问题。这是三角测量中常见情况。
三角函数正弦定理可用于求得三角形的面积:
S=1/2absinC=1/2bcsinA=1/2acsinB
三角函数余弦定理
对于边长为a、b、c而相应角为A、B、C的三角形,有:
a? = b? + c?- 2bc·cosA
b? = a? + c? - 2ac·cosB
c? = a? + b? - 2ab·cosC
也可表示为:
cosC=(a? +b? -c?)/ 2ab
cosB=(a? +c? -b?)/ 2ac
cosA=(c? +b? -a?)/ 2bc
这个定理也可以通过把三角形分为两个直角三角形来证明。余弦定理用于在一个三角形的两个边和一个角已知时确定未知的数据。
如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。要小心余弦定理的这种歧义情况。
物理力学方面的平行四边形定则中也会用到相关知识。
延伸定理:第一余弦定理(任意三角形射影定理)
设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有
a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A
三角函数正切定理
对于边长为a,b和c而相应角为A,B和C的三角形,有:
(a+b)/(a-b) = tan[(A+B)/2]/tan[(A-B)/2]
三角函数广义射影定理
三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC
三角函数三角恒等式
对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
已知(A+B)=(π-C)
所以tan(A+B)=tan(π-C)
则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ。
三角函数三角函数记忆口诀
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
莫里斯·克莱因 著,张理京,张锦炎,江泽涵 译. 《古今数学思想》第一册. 上海科学技术出版社. 2002.
R. P. Brent, &Fast Multiple-Precision Evaluation of Elementary Functions&, J. ACM 23, 242 (1976).
高中数学(人教版)必修四
.stackexchange&#91;引用日期&#93;
企业信用信息}

我要回帖

更多关于 matlab 隐函数求解 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信