电池电量计笔记本保护板可自主报告并计算 再运行多久电量耗尽/电量充满

在多节电池组应用中使用DS2755电池电量计
在多节电池组应用中使用DS2755电池电量计
发布: | 作者: | 来源:
| 查看:1345次 | 用户关注:
介绍  DS2755高精度电池电量计的工作电压范围适合于单节锂离子/聚合物电池,或2到3节镍氢电池组。但是,还有很多应用需要更多节的串连电池组。只要将多节电池的电压降到一个适当的水平,DS2755仍能在这些应用中用作电量计IC。采用这种方法后,DS2755的所有功能仍然有效,包括快照模式、可编程中断、温度/电压/电流测量、电流累计(库仑计数)、96字节EEPROM及1-Wire通信接口等。概述  
介绍  DS2755高精度的工作电压范围适合于单节锂离子/聚合物电池,或2到3节镍氢电池组。但是,还有很多应用需要更多节的串连电池组。只要将多节电池的电压降到一个适当的水平,DS2755仍能在这些应用中用作电量计IC。采用这种方法后,DS2755的所有功能仍然有效,包括快照模式、可编程中断、温度/电压/电流测量、电流累计(库仑计数)、96字节EEPROM及1-Wire通信接口等。概述  正如应用笔记Lithium-Ion Fuel Gauging with Dallas Semiconductor Battery Monitor ICs中所描述的,尽管对于基本的电量计量功能而言不是必需的,DS2755在2节电池的应用中仍然可以被用来测量电池电压。图1给出了可能的解决方案,其中PIO用来切换的输出,驱动电阻分压网络至比较器的电源电压或地。PIO为低时,VIN上的电压为双节电池电压的一半;PIO为高时,VIN为0V。为了向DS2755提供恒定电源,需要一个低压差线性稳压器(LDO)来使双节电池电压降到一个合适的电平。还需要一个双节电池来保护电池组,避免故障状态危及电池安全。如原理图所示,所有电路应该安排在保护器的外侧(相对于电池侧)。图1. 在2节锂离子/聚合物电池组中使用DS2755电量计详细说明  DS2755的建议电源电压范围是2.5V至5.5V,可据此来选择LDO的输出电压。LDO必须具有低静态电流,且还要能够处理多节电池组提供的输入电压。5V输出的MAX1726 LDO可满足所有这些条件,它支持12V最大输入电压,仅消耗2&A电源电流。采用5V输出是因为当输入电压超过输出电压并上升时,LDO的效率随之降低。因此,对于7.6V的额定输入电压,5V输出电压是最佳选择。为防止DS2755中的数据丢失,MAX1726的SHDN引脚应连接到输入电压,如图1所示,以确保MAX1726不进入关断模式,关掉DS2755的电源。数据手册中推荐的输入和输出电容是1&F。特定应用中电容的选择请参考MAX1726数据资料。    DS2755电压寄存器(地址0CH和0DH)可报告的最大电压为4.99V。因此有必要采用一个分压电路来将电池组电压降到一个可测量的水平。为此,用了两个100k精密电阻将电池组电压衰减一半。在依靠电池供电的应用中,通常不允许分压电阻连续不断地消耗电池电流,所以用比较器来接通和关断分压器电流。在这里我们采用纳安级比较器TLV3701来实现这种开关,因为它可承受高达16V的电源电压,且据称只有560nA的典型电源电流。DS2755的开漏输出PIO引脚被用作比较器开关的控制引脚。若DQ线处于低电平超过2秒,或DS2755进入休眠状态,PIO引脚自动变换成高阻状态。上拉至LDO输出的100k电阻可确保在此状态中PIO为逻辑高电平。比较器的另一个输入被连接到电池组中底部电池的正端。无论PIO处于何种状态,这种连接方式均能保证在比较器的输入端有一个差分电压。既然PIO被用于控制比较器,它就不能再用于产生中断信号。置位ISO位(bit 2,地址31h)可禁止PIO的中断功能。DQ引脚仍能用于产生中断。  比较器输出为低电平时,VIN上的电压为0V。因此,欠压休眠功能(UVEN)必须被禁止,否则,DS2755将无法被激活。向地址31h的bit 3写入0可以禁止UVEN。需要测量电压时,设置特殊功能寄存器中的PIO位(地址08h,bit 6)为0,随后,至少延迟6.8ms。这个延迟是DS2755更新电压寄存器为新的VIN引脚电压所必需的。读完电压寄存器后,再将PIO位设置回1。将电压寄存器的值乘以二可得到电池组的总电压。实验结果表明,将电压寄存器的值乘二后再加0.1V,可得到1%精度的电池组总电压测量精度。这个额外的0.1V用来补偿比较器正电源到输出的电压降。对于&快照&工作模式,在发出&Sync&功能指令[D2h]之前,PIO必须保持为低。以确保在&快照&中记录下真实的电压值。  电池组保护可采用基于nMOS或pMOS的任何独立式多节保护器。独立式保护器被安排在DS2755靠近电池的一侧,如图1所示。在这种结构中,若有故障发生,保护FET将切断供给所有外部元件的电源。故障解除后,放电FET接通,所有元件的供电恢复。只要UVEN功能已被禁止,DS2755就能返回激活模式。在UVEN被禁止时,只有在PMOD位被设置为1(推荐),且DQ保持逻辑低电平的时间超过2秒(电池组断开),DS2755才会进入休眠模式。进入低功耗休眠模式时,DS2755停止对温度、电压、电流和累计电流的测量。重新连接电池组并将DQ拉至高电平,可使DS2755返回激活模式。图1中的配置包含了最低要求的ESD保护。若需更可靠的ESD电路,请参考DS2755数据资料。总结  尽管DS2755是专为单节锂离子/聚合物电池或2至3节NiMH电池组的应用设计的,它也可以被用在包含更多电池的电池组中,作为监视和电量计量元件。需要增加一个比较器和LDO来实现完整的方案,不过,推荐元件仅增加了2.6&A的电源电流。除了UVEN功能被禁止外,DS2755的大多数功能仍可以用在多节电池组应用中。其中包括:高精度库仑计,96字节的EEPROM,温度、电压及电流测量,唯一的64位ROM地址,快照模式,以及单线串行通信接口等。
本页面信息由华强电子网用户提供,如果涉嫌侵权,请与我们客服联系,我们核实后将及时处理。
应用与方案分类
&&& 目前,处理器性能的主要衡量指标是时钟恩智浦半导体大中华区产品市场经理陈筠仪表示,恩智浦AC/DC快充解决方案在充...
智能汽车会刊
如今,物联网浪潮已然席卷至汽车电子产业,发动机控制系统、底盘...
当我们想要到达某个目的地时,只要坐上车,车子就会带着我们去翱翔四海,这...
智能后视镜产品方案对接会
中国LED智能照明高峰论坛
第三届·无线通信技术研讨会
第二届·中国IoT大会
ETFo智能安防技术论坛
成都&智能工业创新应用论坛
移入鼠标可放大二维码
充电电池电量计原理及计算方法
来源:本站整理
作者:佚名日 11:34
[导读] 充电电池简介
  目前大量应用的充电电池包括铅酸蓄电池、镍镉/镍氢电池、锂离子/锂聚合物电池。这几种电池的特性如表1所示。
  铅酸蓄电池容量大,内阻低(一般4
充电电池简介
  目前大量应用的充电电池包括铅酸蓄电池、镍镉/镍氢电池、锂离子/锂聚合物电池。这几种电池的特性如表1所示。
  铅酸蓄电池容量大,内阻低(一般400Ah的2V蓄电池内阻大约为0.5mΩ),可进行大电流放电,但是笨重且体积庞大、不便于携带,常用在汽车和工业场合。其电极材料含铅,可对环境造成极大污染。铅酸蓄电池对充电控制的要求不高,可以进行浮充。
  镍镉电池容量较大,内阻低、放电电压平稳,适合作为直流电源。与其他种类的电池相比,镍镉电池耐过充电和过放电,操作简单方便,但是具有记忆效应,应尽量在完全放电之后进行充电。电极材料含有剧毒重金属镉,随着环保要求的提高,其市场份额越来越小。
  镍氢电池是在镍镉电池的基础上发展而来的,采用金属化氢替代有毒的镉,在大部分场合可以替代镍镉电池。其容量约为镍镉电池的1.5~2倍,且没有记忆效应。相对于镍氢电池,它对充电控制的要求较高,目前大量使用在一些便携电子产品中。
  锂离子电池是目前最常见的二次锂电池,拥有高能量密度,与高容量镍镉/镍氢电池相比,其能量密度为前者的 1.5~2倍。其平均使用电压为3.6V,是镍镉电池、镍氢电池的3倍。它的内阻较大,不能进行大电流充放电,并且需要精确的充放电控制,以防止电池损坏并达到最佳使用性能。锂离子电池广泛使用在各种便携电子产品中,包括手机、笔记本电脑、mp3等。
  锂聚合物电池是一种新型的二次锂电池,具有更大的容量;内阻较低,允许10C充放电电流。它和锂离子电池一样需要精确的充放电控制。目前,锂聚合物电池主要用于一些需要大电流充放电的应用中,如动力/模型汽车等。充电电池容量估算方法
  在多数便携应用中,都需要随时了解电池剩余容量以估算电池使用时间。
  图1 简化的电池电量计框图
  最早应用的方法是通过监视电池开路电压来获得剩余容量。这是因为电池端电压和剩余容量之间有一个确定的关系,测量电池端电压即可估算其剩余容量。这种方法的局限是:1)对于不同厂商生产的电池,其开路电压与容量之间的关系各不相同。2)只有通过测量电池空载时的开路电压才能获得相对准确的结果,但是大多数应用都需要在运行中了解电池的剩余容量,此时负载电流在内阻上产生的压降将会影响开路电压测量精度。而电池内阻的离散性很大,且随着电池老化这种离散性将变得更大,因此要补偿该压降带来的误差将十分困难。综上所述,通过开路电压来实时估算电池剩余容量的方法在实际应用中无法达到足够的精度,只能提供一个大致的参考值。
  另一种大量应用的方法是通过测量流入/流出电池的净电荷来估算电池剩余容量。这种方法对流入/流出电池的总电流进行积分,得到的净电荷数即为剩余容量。电池容量可以预置,也可在后续的完整充电周期中进行学习。在补偿电池自放电、不同温度下的容量变化等因素后,这种方法可以获得令人满意的精度,因此广泛运用于笔记本电脑等高端应用中。
  电池电量计工作原理
  电池电量计对流入/流出电池的总电流持续进行积分,并将积分得到的净电荷数作为剩余容量。
  简化的电池电量计如图1所示。其中,RSNS为mΩ级检流电阻,RL为负载电阻。电池通过开关、RSNS对RL放电时的电流IO在RSNS两端产生的压降为VS(t)=IO(t)×RSNS。电量计持续检测RSNS两端的压差VS,并将其通过ADC转换为N位的数字量Current(简称CR),之后以时基确定的速率进行累加,M位累加结果Accumulated_Current(简称ACR)的单位为Vh(伏时)。对量化后的VS进行累加相当于对其进行积分,结果为。
电池电量 。因此,将ACR值除以检流电阻RSNS的阻值即得到以Ah(安时)为单位的电池容量。ADC转换结果和累加后的结果都带有符号位,按照图1中的连接方式,充电时CR为正,ACR递增;放电时CR为负,ACR递减。外部微控制器可以读取CR和ACR值,经过换算得到真实的充放电电流和电量值。
  实际的电量计还包括一些控制和接口逻辑,通常还能检测电池电压和温度等参数。一些智能电量计可以自动完成电池自放电的修正,还可保存电池特性曲线,允许用户定制电池电量计算法。
  电池电量计的计算
  通常,在电量计数据资料中CR的单位为mV,ACR的单位为mVh。
  根据前文的说明,CR值为取样电阻两端的电压值,典型的12bit CR如表2所示。
  其中,S为符号位,20为LSB。如果CR的满偏值为F,则其LSB的计算公式如下:
  若CR的读数为M,取样电阻为值RSNS,则实际的电流值为:
  电流方向由S位确定。若满偏值F为±64mV,则LSB为±15.625μV;RSNS为10mΩ时最大电流为±6.4A。若M为768,则实际电流为 。
  ACR为取样电阻两端电压的累积值,典型的16bit ACR如表3所示。
  其中,S为符号位,20为LSB。如果ACR的满偏值为F,则LSB的计算公式如下:
  净电荷量由S位确定。若满偏值F为±204.84mVh,则LSB为±6.25μVh;RSNS为10mΩ时最大电量为±20.48Ah。若M为7680,则实际电量为 。
  本文在介绍了电池电量计的原理之后,给出了一些简单的计算公式。设计者可以方便的从电量计读数中计算出真实电量,从而加快设计过程。
电量计相关文章
电量计相关下载
充电电池相关文章
充电电池相关下载
技术交流、积极发言! 发表评请遵守相关规定。
新思第二代TetraMAX II测试工具采用的新型ATPG引擎将运行时速度提高至少一个数量级,一个大型SoC样片的验证测试时间从过去的数天降低到数小时,划时代的...
IoT将会在未来10年内创造出500亿个联网设备,如何确保这些巨量联网设备的安全性和连接性,正是今天业界面临的2大主要挑战,本文重点将讨论基于ARM的...
创新实用技术专题
Copyright &
.All Rights Reserved消除对于电池电量计的误解―精确的电池监测可以提高无线手机和其_电池_中国百科网
消除对于电池电量计的误解―精确的电池监测可以提高无线手机和其
    电池“电量计”监测无线和蜂窝电话、PDA以及MP3播放器等便携式产品中的可充电电池的剩余电量。精确的电量计量可使手持充分利用其电池,并允许系统设计人员采用小型电池,降低了数据丢失的风险,提高了客户满意度。结合了PDA与蜂窝电话的新型设备即从精确的电量计中获益良多。与笔记本电脑等大型设备不同,他们虽然不使用包含电量计的智能电池标准,但却倾向于使用电量计来延长两次充电之间的工作时间,保护有效数据。使用DS276x、DS277x、DS274x和DS275x系列产品可以很容易地实现有效电池寿命的精确监测。 误解1:精确的电池信息不会增加运行时间无线手持系统不断增加的存储容量要求意味着应用程序和用户文件将被保存在易失型RAM存储器中。电池功率的丧失会给用户生成或购买的文件造成损毁。一些系统采用可充电钮扣电池在主电池放空或断开时给存储器供电,但是,即使是这种电池中最大号的也仅有25mAh的容量,保护存储器的时间不会长于1天。而且,一般钮扣电池持有的电量通常低于5mAh,只消数个小时就会耗尽。因此,以数据为中心的无线手持设备必须在主电池完全放尽前及时关闭,以确保电池中有足够的剩余电量来保护存储器中的内容,直到有充电器接入。多数用户要求电池至少能够使用5天,10天以上更好。理想情况下,多功能手机或无线PDA中的电池在停止使用时应该从其900mAh至2000mAh的总电量中留出100mAh至200mAh的剩余电量。举例来讲,假定某应用要求150mAh的剩余电量。图1中的+20°C曲线表明,选择3.5V的截止电压就能给电池保留适当的剩余电量。然而,0°C和+40°C曲线却并非如此。如果电池比较冷(0°C曲线),电压会有所下降。采用3.5V截止电压将导致400mAh的剩余电量, 而用于工作的还不到600mAh。与此相反,电池较热时电压会上升。此时的剩余电量将不足100mAh (+40°C曲线)。图1. 放电电压曲线随温度而变。如果电池较冷,电压会下降。如果电池较热,电压将上升。负载电流变化所造成的影响也很显著。图2中的曲线显示了三种不同放电速率下的电压变化曲线:C/2,C/5和C/10,其中C等于电池的电荷容量。曲线表明,到达3.5V 截止电压时,剩余电量由C/10的100mAh变化至C/2的&200mAh。如果将截止电压提升至3.6V,以确保C/10负载条件下有足够的剩余电量,那么三种放电速率下的剩余电量将在150mAh至400mAh间变化。因此,试图通过提升截止电压来增加剩余电量的做法将遭受巨大的损失。图2. 电压曲线随放电速率而变,增加截止电压将降低储备电量。尽管不太明显,电池的老化也会使放电曲线发生变化。老化效应因电池而异,并且不同制造商的产品会有显著差异。而且,程度较浅的放电循环和深度放电循环所造成的老化效应各不相同。图3显示,电池经过500次循环后,总容量中的150mAh永久地丧失了。这只是在此特定应力条件下某个电池的一个实例。重复性深度放电所致的老化效应给剩余电量带来的影响大约在50mAh至75mAh。图3. C/2放电电压曲线随老化而变。本例显示了一个在此应力条件下特别好的一个电池特性。 漏洞百出的电量测量手段通过查询表格的办法可以补偿温度、放电速率和老化效应所造成的终止电压的大幅变化。然而,这种方法很容易出错,而且还要求测量温度和电流。为保证精度,电流和电压应同时测量,以确保终止电压数据与一定的放电速率相符合。正是由于这个原因,许多基于电压的电量检测手段并未考虑放电速率。如果只考虑电压和温度,需要建立一个二维查询表格来保存额定电池参数,以便用来估计剩余电量。这种方法在整个温度范围内会产生20%至40%的误差。由于基于电压的检测手段精度有限,一个常用的替代方案是采用比实际需求更大的电池。这会影响手持设备的尺寸,而对于这些设备来讲,尺寸却是一项很关键的竞争因素。还有另外一些替代方案使用小电池,但或者缩短了运行时间,或者增加了数据丢失的风险。最佳选择是采用一个智能电池监视器(例如DS276x和DS277x系列),这种方案在不增加手持设备尺寸和数据丢失风险的条件下有效延长了运行时间。 智能电池监视器如何工作智能电池监视器通常不是根据电压、温度和电流去查询电量。它所测量的是流入和流出电池的电荷。利用库仑计数器跟踪电池的电荷量。通过测量温度和放电速率,基于一个保存了电池特性参数的小型查询表,对电池供出电荷的能力加以补偿。DS276x和DS277x系列提供所有必要的测量和数据存储,再利用主系统提供的算法计算出最终结果。当温度+15°C时,由满充状态放电时的最大测量误差有望达到3%以内。在各种温度、负载和老化状态下的综合测量误差可达5%。如果两次满充的时间间隔超过了两周,输入失调误差的影响将变得显著。不过,大多数使用者会每周充满电池。表1列出了电池监视器的主要功能和特性。表1. 电池监视器的功能和特性 DS2761V, T, I ±64±1532 bytes EEPROMLi+ protectorDS2770V, T, I±51±1.640 bytes EEPROMLi+/NiMH charger*V = 电压、T = 温度、 I = 电流 误解2:精确显示电池信息不会给使用者带来好处制造商们普遍认为,和简单的条形图或带有三块斜纹块的简化电池图标相比,更精确的电池电量显示并不被用户赏识,甚至可能会使他们感到困惑。许多制造商相信,用户满足于简单的条形图显示,尽管它粗糙的无法反映真实的运行时间变化情况。对于许多只有语音业务的蜂窝系统用户来讲的确如此,但是对于那些全功能无线数据设备的用户来讲事实并非如此。后者通常是过去的笔记本PC用户,他们已经习惯于用数字百分比显示的剩余电量、预期运行时间、待机和充电时间等。一些制造商不太情愿显示预期的电池容量,因为任何对于剩余运行或通话时间的估计都需要视当前使用情况而定。他们无法在随时变化的状态中在事前做出估计。设备制造商也不希望因错误地预报运行时间而使用户失望,而这种错误常常是由于用户从低功耗模式切换到了高功耗模式。但是,不应过低估计无线数据设备的用户群。他们中的大多数对于不同使用模式间的差异已相当了解,正如他们已了解了每箱汽油能使汽车在高速路上比在城市里跑更长的路一样(或者轻载情况较之重载情况)。当他们在今天的手持系统上运行下载的第三方软件或CompactFlash?插入硬件时,很少有人会对运行时间的变化感到困惑。电池电量的不确定性在电池的后半段尤其显得突出。当你在手持设备上所看到的是普通的三或四段电池显示时,你能想象得出电池还能工作多长时间吗? 突然的掉话、数据交换的中断、数据文件的丢失等等这些经验已教会用户不要相信所显示的数据。因此,有些用户往往是在电池显示用完一或两段后就开始给手持设备充电。由于过差的精度和过少的电池显示段,用户常常更多地返回到有线业务。用户为了给以后的紧急通话保留足够的电池能量,又有多少无线数据业务被放弃了呢? 但是智能电池监视器能够显示预算的运行时间,这样用户能够对不同功耗模式有所察觉。DS276x和DS277x所提供的定量功率预算使用户能够自由决定如何消耗储存在电池中的每一个电荷。 误解3:电池监视器需要在长达数月的待机模式下保持准确这是一个安装电池到新设备时出现的问题。电池从工厂运抵最终用户常常需要3到9月的时间。电池监视器的失调特性通常在1.6mV至30mV的范围,很小的失调误差经过数月以上(数千小时) 的积累后等同于一个大百分比的电池电量损耗。制造商担心监视器可能会指示电池为空或满,
实际的电池电量可能为30%。除非失调误差能够降低至一微伏以内,否则这种现状仍将持续下去。在使用之前用户应该彻底充满电池。首次满充是“熟化”电池的一个重要步骤,并被强烈推荐以获得最优的电池性能。用户手册中的免责条款已清晰地指示用户初次使用前要充满电池。如果电池已数月未用,通常也是建议用户充满电池。无论何时只要充满电池,电池监视器内的库仑计数器―DS276x和DS277x系列器件中的电流累积寄存器(ACR)―就会与电池保持同步。. 误解4:智能电池监视器成本过高当第一个电池监视器方案进入市场的时候,无线通信仅限于语音手机、PDA到PC的短程红外或串行链路。Bluetooth?、Wi-Fi?和3G网络技术正处于开发阶段。智能电池监视器既无成本效益又非关键部件。由于数据现在已变得极富价值且非常敏感,情况已发生了变化。利用智能电池监视器可以增加运行时间、开发出更小的设备、为用户提供更有价值的体验、并激励用户进行更多的无线活动。如果用户支付200美元至600美元购买无线手持数据设备,再每月花费40美元至100美元用于服务费用,那么由于精确显示所增加的工作时间的价值又如何呢? 对于激烈角逐于尺寸、性能和成本的手持设备制造商来讲,它对于新型号产品尺寸的缩减,其价值应如何估量呢? 对于极力想促使用户使用数据服务的无线运营商来讲,如果能使用户相信电池不会迅速耗尽,其价值又有几许呢? 仅有少数业界领先者理解,智能电池监视器的价值远远超出了其成本。就在现在,他们的产品在运行时间和用户满意度方面已将竞争对手抛在了身后。因此,在某种意义上,他们是在收获酬金而非支付价格。 结论创新性的产品功能往往是从“具备更好”的附加属性向“必须具备”的核心或启用功能演化。智能电池监视器便是这样一种功能。随着手持运算和通信用户的增加,他们将越来越难以容忍数量有限的电池段图标所提供的、具有极大不确定性的电池电量估计。基于电压的方案所伴随的,将是更大的电池、更大的手持设备、过早的停机和很低的用户信任度。不过,幸运的是对于电池能量的预测现在已非常可靠。智能电池监视器诸如DS276x和DS277x产品线使无线手持设备也能够象PC那样演化,降低尺寸的同时提升性能和用户信任度。
Copyright by ;All rights reserved.}

我要回帖

更多关于 直流电量计芯片 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信