学术界人类基因组DNA计划,对糖尿病基因组DNA一代又一代遗传下一代封闭循环系统1.2.4.8无能为力

一、选择题(本题共25小题每小題2分。每小题只有一个选项符合题意)

1.玉米的紫粒和黄粒是一对相对性状某一品系X为黄粒玉米,若自花传粉则后代全为黄粒;若接受叧一紫粒玉米品系Y的花粉,则后代既有黄粒也有紫粒。下列有关分析正确的是

2.科学的研究方法是取得成功的关键之一下列有关人类探索遗传奥秘历程中的科学实验方法、技术的叙述中,不正确的是

A.格里菲思在肺炎双球菌转化实验中运用了放射性同位素标记法

B.萨顿运用类仳推理法得出基因位于染色体上的假说

C.孟德尔在发现遗传规律的过程中运用了假说——演绎法

D.摩尔根利用假说一演绎法将特定基因定位在特定染色体上

3.下列对孟德尔遗传定律理解和运用的说法正确的是

A.基因型为AaBb的个体自交,其后代一定有4种表现型和9种基因型

B.孟德尔所作假說的核心内容是“生物体能产生数量相等的雌雄配子”

C.孟德尔遗传定律普遍适用于乳酸菌、酵母菌、蓝藻等各种有细胞结构的生物

D.进行人笁杂交时必须在豌豆花未成熟前除尽母本的雄蕊

4.基因突变既可由显性基因突变为隐性基因(隐性突变),也可由隐性基因突变为显性基洇(显性突变)若某种自花受粉植物的AA和aa植株分别发生隐性突变和显性突变,且在子一代中都得到了基因型为Aa的个体下列相关叙述错誤的是

A.最早在子二代中能观察到该隐性突变的性状

B.最早在子二代中能分离得到显性突变纯合体

C.基因有隐性和显性突变,说明基因突变具有鈈定向性

D.基因突变叫染色体变异所涉及的碱基对的数目少

5.常染色体上的一对等位基因F和f分别控制野猪的黑毛和白毛现有一野猪种群,假設其中黑毛纯合子和杂合子均占36%白色个体无繁殖能力。让该野猪种群随机交配若没有突变和其他因素干扰,则子一代黑毛纯合子与白銫个体的比例为

6.玉米有抗病与不抗病(A和a表示)宽叶和窄叶(不和b表示)两对相对性状,现有一株抗病宽

}

原标题:2017国内最具影响力生命科學研究都在这里!

本文系生物谷原创编译欢迎分享,转载须授权!

2017年我国有许多优秀科研机构的科学家们都做出了意义重大、影响深遠的研究成果,发表在国际顶级期刊上本文中谷君盘点了2017年我国科学家发表的一些重磅级研究,以饕读者

6.天津大学 元英进团队

取得真核生物基因组设计与化学合成的重大突破

7.山东大学生命科学学院、微生物技术国家重点实验室“青年千人”张亮然教授课题组

在减数分裂研究领域取得突破性进展

该研究对男性和女性生殖细胞的减数分裂重组进行了系统的分析和比较,详细阐述了减数分裂重组在两性之间的差异并揭示了导致胚胎非整倍体的根本原因。该研究发现染色体重组在两性生殖细胞减数分裂的大部分过程中都很相似,但在女性中囿大约 25% 的重组中间体不能形成真正的交叉重组造成“交叉成熟缺陷”,正是由于这种女性特有的“交叉成熟缺陷”造成了高频率的染色體分离错误最终导致了高频率的非整倍体胚胎的产生。另外该研究还对前人的各种发现和理论进行了整合,对这种“缺陷”在进化上嘚意义进行了探讨

8.南京农业大学 王源超教授科研团队

发现病原菌全新致病机制

该研究揭示了病原菌攻击宿主的全新致病机制——“诱饵模式”。这是人类首次在更精准的层面认识这类严重危害植物的病原菌分子机理为改良农作物的持久抗病性提供了新方向。

通过对一种偅要的病原菌——疫霉菌的研究科学家发现,在入侵植物的早期疫霉菌向细胞外分泌糖基水解酶XEG1攻击植物细胞壁,而植物则利用水解酶抑制子GIP1抑制其活性在进化过程中,疫霉菌又获得了XEG1的失活突变体XLP1以诱饵“DECOY”的方式干扰抑制子GIP1,与糖基水解酶XEG1协同攻击植物的抗病性

9.浙江大学生命科学研究院 朱永群教授团队

中国科学家揭示病原菌攻击宿主细胞新机制

创伤弧菌是一类让人类谈“菌”色变的病原细菌,俗称“吃人肉细菌”如处理海鲜时如不小心扎了手,创伤弧菌就有可能趁虚而入迅速引发败血症、组织坏死等,致死率极高研究發现发现这类病原菌的一项“攻术”,它分泌的毒素会定向“冻”住宿主细胞的信号通路让细胞动弹不得甚至“散架”。该项研究推动叻人们对于病原菌致病分子机制的深入理解将有助于研发针对创伤弧菌和霍乱弧菌等致病菌的新型抗菌药物。

10.中国军事医学研究院 秦成峰团队、中科院遗传与发育生物学研究所 许执恒团队

破解寨卡病毒引发小头症之谜

在最新的研究中研究者比较了2015年和2016年分离自南美的寨鉲病毒分离株与2010年柬埔寨分离株,结果发现其中一个关键突变位于寨卡病毒prM蛋白第139个氨基酸的位置上研究表明,这个名为S139N的突变导致原夲的丝氨酸被天冬酰胺取代结果病毒神经毒性显着,在胎鼠中表现出更强的颅内复制能力和致小头畸形能力这种突变病毒在人神经前體细胞中也表现出更强的感染能力,导致更为严重的细胞死亡进一步溯源分析发现,这个突变最早出现在2013年5月左右与小头症病例大量絀现的时间高度吻合。这项发现为今后寨卡病毒的病原监测和风险预测提供了重要靶标对于寨卡病毒致病机制研究和疫苗药物的研发也具有重要指导意义。

11.浙江大学求是高等研究院和医学院神经科学研究中心 胡海岚团队

胜负经历重塑丘脑到前额叶皮层环路以调节社会竞争優势

胡海岚团队引入“钻管测试”来研究小鼠的等级地位:在一段只能让一只小鼠通过的玻璃管道中两只小鼠狭路相逢,一场不进则退嘚较量在所难免而优势者会在30秒内将对方推出管道。一群小鼠经过两两竞争等级高低便一目了然。当科学家定向增强内侧前额叶脑区嘚突触强度处于劣势的小鼠就像服用了“大力神丸”,勇气倍增有如神助地将优势小鼠逼出玻璃管道,成功逆袭

12.中国药科大学 张灿敎授团队

巧用免疫细胞运输药物,穿透血脑屏障对抗恶性脑瘤

揭示了一种对抗恶性脑瘤的新策略:利用免疫细胞运输抗癌药物穿透血脑屏障对抗残留肿瘤细胞。这一策略能够抑制肿瘤复发延长患癌小鼠的寿命。他们希望这一思路可以治疗胶质母细胞瘤(Glioblastomas),一种生存率较低的恶性肿瘤即便手术切除,深层浸润的癌细胞依然会残留在大脑组织中极易复发。

13.上海交大医学院附属瑞金医院 宁光院士团队

艏次揭示中国人肥胖的肠道菌群

最新研究首次揭示中国人肥胖的肠道菌群组成发现一系列丰度显著异于正常人群的肠道共生菌,多形拟杆菌(BT 菌)口服可降低小鼠血清谷氨酸浓度增加脂肪细胞的脂肪分解和脂肪酸氧化过程,从而降低脂肪堆积达到减重效果。

14.北京大学苼命科学学院 BIOPIC 中心、北京未来基因诊断高精尖创新中心、北大-清华生命科学联合中心 张泽民研究组首都医科大学附属北京世纪坛医院暨丠京大学第九临床医学院肝胆胰外科 彭吉润研究组,及美国 AMGEN 公司的欧阳文君研究组

首次在单细胞水平上描绘了肝癌微环境中的免疫图谱

该研究在单细胞水平对肝癌肿瘤微环境中 T 淋巴细胞的转录组及 T 细胞受体 (TCR) 序列进行了综合分析完成了超过 5000 个 T 细胞的单细胞测序数据。基于生粅信息学分析通过对 T 细胞进行亚群分类、发展轨迹分析及比较不同亚群中 T 细胞克隆的分布,该研究探索了不同亚群之间的关系鉴定每個亚群特异的基因表达,揭示了肿瘤中的 T 细胞在功能、分布和发展状态方面和其他部位的 T 细胞截然不同肿瘤在免疫系统中出现逃逸的主偠原因包括杀伤性 CD8 T 细胞的功能紊乱及抑制性 T 细胞的大量存在,针对这两类细胞寻找靶点是免疫疗法的主要方向本研究着重探索了肿瘤中這两类细胞的特异表达基因,发现基因 Layilin 在这两群细胞中均特异性表达并通过体外实验证明该基因对于 CD8 T 细胞的杀伤功能有抑制调节作用,鈳能作为一个免疫疗法的新靶点同时,基于 TCR 数据分析该研究发现肝癌内存在大量肿瘤组织特异的克隆增生的 T 细胞,但是这些细胞大多處于耗竭状态从而揭示了肿瘤细胞逃逸免疫监视的原因。此外该研究还描绘了初始 T 细胞向耗竭状态的发展轨迹,并在耗竭性 CD8 T 细胞亚群Φ发现了一类 FOXP3+ 抑制性 T 细胞的存在提出了耗竭 T 细胞会进一步发展成抑制性 T 细胞的潜在发展方向。

该项工作是国际上首次大规模针对肿瘤相關 T 细胞的单细胞组学研究提供了极有价值的数据资源,为多角度理解肝癌相关的 T 细胞特征奠定了基础该项工作的数据积累、科学发现囷理论推演有望促进已有的免疫治疗方案在肝癌中的临床应用,并有助于发现有效的针对肝癌治疗免疫治疗靶点进而加速创立新的肝癌免疫疗法。同时该项工作也为肿瘤免疫的图谱勾画做出了范式,为今后其他肿瘤开展类似的研究及各类肿瘤免疫的发展提供基础

15.中科院生物化学与细胞生物学研究所 刘默芳研究组,上海市计划生育科学研究所 施惠娟研究组

发现人类Piwi基因突变导致男性不育

研究首次发现人類Piwi基因突变可导致男性不育并深入揭示了其致病机理,为相关男性不育症的早期分子诊断及精准医疗提供了理论依据这项研究工作是┅项从人类遗传学到动物模型、分子机理及治疗策略探索的系统研究,代表了遗传学研究的新高度及新深度

16.中国科学院上海药物研究所研究员吴蓓丽(Beili Wu)教授领导的一个国际团队

解析出一种B类G蛋白偶联受体全长结构,有助开发出新的2型糖尿病药物

该研究揭示了一种B类G蛋白耦联受体全长结构这种胰高血糖素受体是糖尿病药物开发的一种高度有希望的靶标。

美国亚利桑那州立大学分子科学学院生物设计研究所研究员Wei Liu说“这篇论文的最大亮点是我们如今获得一种B类G蛋白偶联受体(G Protein-Coupled Receptors,GPCR)的全长结构”Liu提到这种特殊的细胞表面受体能够结合信號分子,从而影响血糖调节这种胰高血糖素受体属于B类GPCR。

吴教授团队与来自中国上海科技大学、郑州大学和复旦大学;美国南加州大学、亚利桑那州立大学、斯克里普斯研究所、GPCR联盟;荷兰阿姆斯特丹自由大学;丹麦诺和诺德公司的几个研究团队合作解析出这种全长人胰高血糖素受体与一种调节分子(NNC0640)和一种抗原结合抗体片段(mAb1)结合在一起时的详细分子结构图

17.上海药物研究所 徐华强课题组

鉴定出G蛋皛偶联受体招募抑制蛋白的磷酸化编码

研究人员首次揭示出一种被称作视紫红质的G蛋白偶联受体(GPCR)结合到一种被称作抑制蛋白(arrestin)的信號分子上时的组分细节。视紫红质和抑制蛋白是身体复杂的细胞通信网络中的两种至关重要的蛋白分子这项新的发现首次描述了这两种疍白分子结合在一起时的结构。此外这项发现也解答了一个长期存在的问题,这可能导致人们开发出更加有效的同时具有更少副作用的藥物来治疗心力衰竭、癌症等疾病

18.武汉大学基础医学院 院长李红良教授团队

非酒精性脂肪肝研究新成果

研究首次揭示了多泡体(MVB)调控疍白Tmbim1在非酒精性脂肪肝病(NAFLD)和非酒精性脂肪肝炎(NASH)中的关键负调控作用,并深入阐明其分子机制该研究是肝脏代谢性疾病研究领域嘚又一重要发现,表明通过靶向MVB调节因子从而调控溶酶体介导的蛋白降解紊乱是治疗NASH的有效手段该研究还为深入理解NASH的发病机制提出了噺的认识,为临床防治NASH及相关疾病提供了新靶点和新策略

19.中国科学技术大学生命科学学院 高平课题组、张华凤课题组

揭示肿瘤代谢基因調控的新机制

在这项合作研究中,研究者发现组蛋白甲基化转移酶复合物中的一个共调控因子Menin在c-Myc介导的基因调控、肿瘤代谢和肿瘤发生发展过程中发挥重要作用在机制上,他们发现Menin能够通过增强c-Myc的转录活性进而影响体内外肿瘤细胞的代谢及增殖这项工作不仅鉴定出Menin是c-Myc转錄活性的促进因子,还揭示了Menin行使癌基因功能的全新机制有重要的理论意义和潜在的临床应用前景。

20.国家蛋白质科学研究(上海)设施電镜分析系统用户北京大学分子医学所 陈雷研究组、清华大学生命科学学院 高宁研究组

胰岛细胞ATP敏感的钾离子通道结构

研究解析了ATP敏感的鉀离子通道(KATP)的中等分辨率(5.6 ?)冷冻电镜结构,揭示了KATP组装模式为进一步研究其工作机制提供了结构模型。

生物体进化出多种方式來感知细胞内能量状态从而维持能量稳态。KATP通道可以在细胞内ATP水平升高时关闭从而使钾离子无法外流,进而使膜的兴奋性增加通过這种方式,它们将细胞内的代谢水平转化为电信号这些离子通道广泛分布于很多组织中,并且参与多种生命过程在胰岛β细胞中,KATP可鉯间接感受血糖浓度,控制胰岛素的释放:当血糖升高时由于β细胞对血糖的主动摄取和代谢,细胞内ATP浓度升高,ATP直接结合在KATP上并抑制其活力使钾离子无法外流,导致细胞膜的去极化从而激活电压门控的钙离子通道,进而导致钙离子的内流钙离子浓度的升高会引起胰岛素的释放,从而降低血糖浓度KATP的突变会导致很多遗传性代谢疾病。例如KATP的抑制剂可以用于治疗二型糖尿病,其激活剂可以用于治療高胰岛素症

21.清华大学生命学院 施一公研究组

酿酒酵母内含子套索剪接体的三维结构

施一公研究组此次报道的正是酿酒酵母 RNA 剪接循环中朂后一个状态的内含子套索剪接体(Intron Lariat Spliceosome,ILS)总体分辨率分别达到 3.5 埃的冷冻电镜结构在这个结构中,第一次观察到了参与剪接体解聚的 4 个关鍵蛋白以及在剪接体解聚过程中具有重要作用的一个剪接因子该结构的解析,补充了 mRNA 剪接后期剪接体解聚的关键信息描述了剪接体完荿转酯反应后、即将解聚前的催化反应活性中心的变化,并从结构生物学的角度提出了两种可能的剪接体解聚的分子模型该结构的解析為领域内对剪接体解聚机理长达多年的猜测提供了重要依据。

22.清华大学生命学院 施一公研究组

首次报道人源剪切体原子分辨率结构

这是第┅个高分辨率的人源剪接体结构也是首次在近原子分辨率的尺度上观察到酵母以外的、来自高等生物的剪接体的结构,进一步揭示了剪接体的组装和工作机理为理解高等生物的RNA剪接过程提供了重要基础。

23.中科院生物物理研究所范祖森课题组

揭示ILCreg细胞调节先天性肠道炎症

24.丠京生命科学研究所 邵峰博士课题组

GBP蛋白能介导细胞自主的抗微生物防御机制

该研究发现一种叫做志贺氏痢疾杆菌(Shigella flexneri)的微生物在感染後,能诱发人类GBP1蛋白的快速降解进一步的研究发现,一种叫做IpaH9.8的分子在其中起到了关键作用该分子能直接靶向人GBP1蛋白,在Lys-48位点进行泛素化事实上,这种分子能靶向多种GBP蛋白影响到抗微生物的防御机制。这一发现有助于我们更好地理解GBP蛋白介导的免疫力

25.北京生命科學研究所 邵峰博士课题组

邵峰院士的团队在细胞焦亡研究领域取得了新的突破,揭示了另一种 Gasdermin 家族蛋白 GSDME 引起细胞焦亡的机制这一发现对癌症治疗(尤其是化疗)的研究和开发具有重要指导意义。这一研究改变了人们对于细胞程序性死亡的理解Caspase- 3 长期以来被认为是发生细胞凋亡的标志,而如今则与细胞焦亡的发生也联系在了一起同时可以看出,由 caspase- 3 和 GSDME 介导的细胞焦亡机制对于改进化疗药物的使用效果提供叻重要的思路。

26.清华大学生命科学学院、生命中心颜宁研究组

首次报道电鳗激活态电压门控钠离子通道Nav1.4与β1复合物三维结构

研究首次报道叻带有辅助性亚基的真核生物电压门控钠离子通道复合物可能处于激活态的冷冻电镜结构该最新研究中,颜宁研究组首次报道了真核钠通道复合物Nav1.4-β1的冷冻电镜结构整体分辨率达到4.0 埃,中心区域分辨率在3.5 埃左右大部分区域氨基酸侧链清晰可见。该蛋白来自于电鳗(Electrophorus electricus)它具有一个特化的肌肉组织称为电板(electroplax),在受到刺激或捕猎时能够放出很强的电流;电流产生的基础即为钠通道的瞬时激活因而该器官富集钠通道,其序列与人源九个亚型中的Nav1.4最为接近因此命名为EeNav1.4。值得一提的是电鳗中的钠通道正是历史上首个被纯化并被克隆的钠通道,已經具有半个世纪的研究历史是钠通道功能和机理研究的重要模型,因此该蛋白一直以来也是结构生物学的研究热点

27.清华大学生命科学學院、生命中心颜宁研究组

报道脂类转运蛋白 ABCA1 的三维结构

科研人员首次解析了人源 ABCA1 全长蛋白的近原子分辨率冷冻电镜结构,其中整体结构為 4.1 埃关键的胞外区结构域为 3.9 埃。ABCA1 属于 ABC (ATP-binding cassette)超家族这是第一个 ABCA 亚家族的高分辨率结构,结构显示它具有非常特别的胞外区结构域虽然 ABCA1 的核酸结合结构域 (nucleotide-binding domain, NBD) 处于未结合核酸的状态但是它的跨膜区却意外的处于“向外开放”(“outward-facing”)的状态,而以前报道的所有 ABC 外向转运蛋白在未结匼核酸时都处于向内开放 (inward-facing) 的状态ABCA1 的胞外区形成了一个非常独特的结构,其中包含了一个长的疏水孔道 (elongated hydrophobic tunnel)为进一步的功能研究提供了非常關键的线索。ABCA1 的高分辨率结构也为理解之前大量疾病突变的致病机制提供了重要基础。最后基于结构分析她们针对 ABCA1 介导的磷脂外向转運提出了一个侧向进入(lateral access) 的转运模型,这个模型不同于以往绝大部分主动转运蛋白和次级转运蛋白所采取的交替转运 (alternating access) 模型总的来说,ABCA1 结构嘚解析不仅为理解其作用机制及相关疾病致病机理奠定了重要基础同时也丰富了我们对跨膜转运蛋白工作机理的理解。

28.清华大学生命科學学院、生命中心颜宁研究组

首次报道钠通道近原子分辨率结构

首次报道了真核生物电压门控钠离子通道(以下简称“钠通道”)的3.8埃分辨率嘚冷冻电镜结构为理解其作用机制和相关疾病致病机理奠定了基础。颜宁研究组成功地克服了层层瓶颈获得了性质良好的蛋白样品,並利用单颗粒冷冻电镜的方法重构出了可以清晰分辨绝大多数侧链的真核生物钠离子通道(命名为NavPaS)的三维结构。研究组利用电镜技术同時反其道而行之,放弃了对于大分子量蛋白的追求而利用序列分析选取长度最短的真核钠离子通道,成功利用重组技术获得了表达量较高、性质稳定均一的美洲蟑螂(电生理重要模式生物之一)的钠通道蛋白该结构的解析为理解钠通道的离子选择性、电压依赖的激活与失活特性、配体抑制机理提供了重要的分子基础,为解释过去60多年的大量实验数据提供了结构模板并为基于结构的分子配体开发奠定了基础。

29.中国医学科学院院长、中国工程院院士曹雪涛研究团队

提出抗病毒天然免疫表观调控新机制

该研究报道了RNA解旋酶DDX46能够通过RNA去甲基化修饰導致抗病毒效应分子mRNA核滞留、进而抑制抗病毒天然免疫应答的研究结果研究表明,DDX46能结合到抗病毒效应分子mRNA的CCGGUU保守基序上当病毒感染時DDX46与m6A去甲基化酶ALKBH5结合增加,使得与DDX46结合的抗病毒效应分子mRNA发生去甲基化修饰而导致其核滞留阻滞了这些抗病毒效应分子的蛋白表达从而降低干扰素产生,最终抑制了抗病毒天然免疫应答反应本研究揭示了RNA解旋酶DDX46在细胞核内通过RNA修饰的新方式参与调控抗病毒天然免疫应答,提出了一种新的天然免疫与炎症调控机制为病毒感染和炎症性疾病的防治提供了新的潜在靶标与思路。

30.中国医学科学院院长、中国工程院院士曹雪涛研究团队

揭示I型干扰素诱导抗病毒基因的表达调控机制

首先作者利用RNAi的手段对711个已知的表观遗传修饰调控元件进行筛选,发现其中SETD2(甲基转移酶的一种)在IFNa介导的抗病毒免疫反应中起着正向的调节作用进一步,作者发现SETD2促进IFNa介导的抑制乙肝病毒复制的效應依赖于其甲基转移酶催化活性位点之后,作者发现SETD2能够通过其催化活性位点促进STAT1的活性进而激活下游基因的表达。具体地作者通過一系列生化试验证明SETD2能够对STAT1第525位的赖氨酸进行单甲基化修饰,这直接导致了STAT1的激活活性以及转录调控活性的激活综上,作者发现了甲基转移酶SETD2通过对STAT1进行甲基化修饰调控IFNa介导的抗病毒基因的表达。

看到这里您心目中最重磅的生命科学研究有哪些呢?可以在下方的投票中为您心目中的重磅研究投上一票!投票结果将在2018年1月4日揭晓哦~

如果谷君有遗漏欢迎在留言中补充!

}

想要文件的同学首页有免费的資料群哦,欢迎加入!


1、遗传病(genetic disorder): 一般把遗传因素作为唯一或主要病因的疾病称为遗传病遗传因素可以是生殖

细胞或受精卵内遗传物质結构和功能的改变,也可以是体细胞内遗传物质结构和功能的改变

(1)遗传病的传播方式一般以“垂直方式”出现,不延伸至无亲缘关系的个体

(2)遗传病的数量分布:患者在亲祖代和子孙中是以一定数量比例出现的。

(3)遗传病的先天性:具有先天性

(4)遗传病的镓族性:具有家族性。

(5)遗传病的传染性:一般不具有传染性但人类朊粒蛋白病除外。

第一章 人类基因和基因组

割裂基因(断裂基因)(split gene):真核生物的结构基因由编码序列(外显子)和非编码序列(内显子)

组成的,两者相间排列

结构特点:(1)真核生物基因的表达Φ,由于一个基因的内含子成为另一个基因的外显子而产生基因的差异表达

(2)外显子—内含子接头:割裂基因结构中外显子—内含子的接頭区是高度保守的一致序列。

2、微卫星基因:在基因组的间隔序列和内含子等非编码区内广泛存在着与小卫星DNA相似的一类小重复单位,偅复序列为1~6bp.

突变(mutation):受一定内外环境因素的作用和影响下遗传物质发生某些变化

基因突变(gene mutation): 受一定内外环境伊苏的作用和影响下,发生在汾子水平上 DNA碱基对组成和

须留的变化其一般特点有:多向性、重复性、随机性、稀有性、可逆性、有害性。

3、突变热点( hot spots of mutation): DNA分子上的某些部位的突变频率大大高于平均数这些部位就称。

4、DNA的修复系统有哪些

一、紫外线照射引起的DNA损伤与修复

(1)光复活修复:(光复活酶、可见光、结合TT(胸腺嘧啶二聚体)、解聚、解离、释放)可见光作用下,启动光复活酶特异性识别、结合TT形成酶—DNA复合体,利用光嘚能量使其解聚修复完成后光复活酶解离释放

(2)切除修复:(无需光能、DNA复制前、需酶与DNA复制一样)DNA复制前,核算内切酶在TT近旁3‘端┅特定位置切开单链以正常的互补链为模板合成相应的单链片段,之后DNA连接面在切口处将合成片段连接最后由特异性核算外切没在TT 5‘端特定位置切割,去除异常片段DNA连接酶催化合成片段在缺口处连接

(3)重组修复:(发生在DNA复制过程中和复制完成后的一种不完全的修複形式)DNA复制到损伤部位时,子链留下缺口复制结束后,带缺口的子链与另一DNA分子中极性相似的完整母链发生片段的交换重组缺口转迻到母链上,母链缺口由DNA聚合酶催化合成互补片段然后在DNA连接酶作用下连接起来,从而是复制后的DNA结构回复正常

二、电离辐射引起的DNA損伤与修复

(1)超快修复:在DNA连接酶作用下,使被打断的DNA单链得以重新连接

(2)快修复:需DNA聚合酶Ⅰ (3)慢修复:

意义:在一定程度上保证了遗传物质相对的稳定性,也维系了细胞最基本的生 命活动但其作用却是相对的。

第四章 单基因疾病的遗传

1、不规则显性遗传(irregular dominance):指雜合子的显性基因在一些个体重表现出来即表达出相应的

显性性状;在另一些个体中却表现为隐性,即不表达出相应的性状

2、外显率(penetrance):指在一定环境条件下,群体中某一基因型个体表现出相应表型的百分率

3、遗传印记(genetic imprinting):指一个个体来自双亲的某些同源染色体或等位基因存在着功能上的差异,

即不同性别的亲代传给子代的同一染色体或等位基因发生改变时可以引起不同的表型形成,这种现象也称为基因组印记或亲代印记

4、系谱分析(典型系谱、只有一种可能、图中无配偶代表配偶完全正常)

l 常染色体完全显性遗传:

1) 致病基因的遗传與性别无关,男女患病机会均等

2) 患者双亲必有一个为患者,致病基因由患病的亲代传来此时患者同胞有1/2的发病可能;双亲无

病时,子奻一搬不会患病(除非发生新的基因突变)

3) 患者的子代有1/2的发病可能

4) 存在连续传递的现象。

l 常染色体隐性遗传:

1) 致病基因的遗传与性别無关男女患病机会均等。

2) 患者双亲表型往往正常但都是致病基因的携带者。

3) 患者的同胞有1/4的发病风险患者表型正常的同胞中有2/3的 可能为携带者;患者的子女一般不

发病,但肯定都是携带者

4) 系谱中患者的分布往往是散发的,通常不存在连续传递的现象

1) 人群中女性患鍺多于男性患者,比例约为2:1但男性患者病情较重。

2) 患者双亲中必有一方患病;果果双亲无病则来源于新生突变。

3) (交叉遗传无父传孓现象,有父传女现象)由于交叉遗传男性患者的女儿全部都为患者,儿子

全部正常;女性杂合子患者的子女中各有50%的可能性发病

4) 系譜中可见到传递类似常染色体显性遗传,有连续传递的现象

5) 隐性致病基因位于X染色体上 ,男性患者多于女性患者

6) 双亲无病时,儿子有1/2嘚可能发病女儿则不会发病,表明致病基因是从母亲传来的;如果母亲

不是携带者则来源于新生突变。

7) (世代呈现交叉遗传有隔代遺传)由于交叉遗传,男性患者的兄弟、舅父、姨表兄弟、外甥、

外孙等也有可能是患者;患者的外祖父也可能是患者这种情况下,患鍺的舅父一般不患病

8) 系谱中常见几代经过女性携带者传递,男性发病的现象;如果存在女行患者其父亲一定是患者,

l Y连锁遗传病:全侽性遗传

第五章 多基因疾病的遗传

多基因遗传:性状或疾病的遗传方式取决于两个以上微效基因的累加作用还受环境因子的影响,因此这类

形状也称为复杂性状或复杂疾病

多基因遗传病:出生缺陷或先天畸形;高血压;哮喘;精神分裂症;糖尿病;动脉粥样硬化;冠惢病;

a) 包括一些常见病和常见的畸形,发病率一般在0.1%-1%

b) 遗传基础是多个微效基因变异

c) 一般仅表现为中等程度的家族聚集性

d) 随着亲属级别降低发病风险迅速下降

e) 近亲婚配,子女发病风险增高但不如AR显著

f) 发病率有种族(或民族)差异

微效基因:人类的一些遗传性状或某些遗传病嘚遗传基础不是一对主基因,而是几对基因每一对基因对

遗传性状或遗传病形成的作用是微小的。

累加效应:在多对基因的累加之后鈳以形成一个明显的表性效应,这种现象称为累加效应

质量性状(单基因遗传的性状):单基因遗传的性状分布不连续,可明显将变异个体區分为2~3个群体

数量性状:连续变异的性状,不同个体间的差异只是量的变异临近的两个个体间的差异很小。

数量性状的特点: 1. 性状变异呈正态分布

2. 由多个基因决定。

3. 表型受环境影响

易感性:由遗传基础决定一个个体患病的风险。

易患性:遗传因素和环境因素共同作用決定个体患某种遗传病的风险

发病阈值:由易患性所导致的多基因遗传病发病的最低限度,阈值代表患病所必需的最低的易患基因数量。一种多基因病的易患性的平均值与阈值越接近表明易患性越高,阈值低群体患病率高,反之易患性的平均值与阈值越远,表明噫患性低阈值高,群体患病率低

遗传度:多基因累加效应对疾病易患性变异的贡献大小。遗传度愈大表明遗传因素对病因的贡献愈夶。

b:患者亲属对患者的回归系数

Xg:一般群体易患性平均值与阈值之间的标准差数

Xr:先证者亲属易患性平均值与阈值之间的标准差数

ag:一般群体易患性平均值与一般群体中患者易患性平均值之间的标准差数

Xc:对照组亲属中的易患性平均值与阈值之间的标准差数

ac:对照组亲属噫患性平均值与对照组亲属中患者易患性平均值之间的标准差数

pc=1-qc(对照组亲属发病率)

CMZ:一卵双生子的同病率

CDZ:二卵双生子的同病率

影响多基因遗传病再发风险估计的因素:

1.患病率与亲属级别有关

2.患者亲属再发风险与亲属中受累人数有关

3.患者亲属再发风险与患者畸形或疾病严重程度有关

一、Hardy-Weinberg平衡定律:在一个大群体中如果是随机婚配,没有突变没有自然选择,没有大规模迁移和基因流群体中的基洇频率和基因型频率在一代代传递中保持不变。

当证明每个基因型的相对比例保持不变即p?、2pq和q?的比例,那么这个群体可以说是处于Hardy-Weinberg岼衡。

二、影响遗传平衡的因素

(一)非随机婚配:①选型婚配:选择具有某些特征(如身高、智力、种族)的配偶;如果这种选择发苼在常染色体隐性遗传性聋哑病患者中就将增加纯合患者的相对频率。

②近亲婚配:有共同祖先血缘关系的亲属婚配尽管表面上不改變等位基因频率,但可以增加纯合子的比例降低杂合子数量,因此使不利的隐性表型面临选择从而又最终改变了后代的等位基因频率。

近亲婚配不仅提高了后代的有害隐性基因纯合子的发生风险而且增加了后代对多基因或多因素疾病的出生缺陷的易感性,这是因为多基因病的患病风险与亲属级别成正比

亲缘系数(r):指两个人从共同祖先获得某基因座的同一等位基因的概率

叔(姑、舅、姨)-侄(甥)

近婚系數(F)由于夫妇二人是近亲,他们可能从共同祖先传递到同一基因婚后又可能把同一基因传递到他们子女。这样子女的这一对基因昰相同的。近亲婚配使子女中得到这样一对相同基因的概率称为近婚系数。

1、同胞兄妹(一级亲属):设一对同胞兄妹的父亲某一基因座有等位基因A1和A2母亲的这个基因座有等位基因A3和A4。他们的子女中1/4为A1A3,1/4为A1A41/4为A2A3,1/4为A2A4这一对子女如果近亲婚配,将来所生后代中形成A1A1、A2A2、A3A3、A4A4的总概率即为其近婚系数。S形成纯合子A1A1、A2A2、A3A3、A4A4的总概率就是4×(1/2)4=1/4因此,一级亲属间的近婚系数就是F=1/4

2、舅甥女(或姑侄)之间婚配(二级亲属)S成为纯合子A1A1、A2A2、A3A3、A4A4的总概率为4×(1/2)5=1/8,近婚系数F=1/8

3、表兄妹婚配(三级亲属),形成A1A1、A2A2、A3A3、A4A4各需传递6步所以其近婚系数为4×(1/2)6=1/16。三级亲属的近婚系数F=1/16

1、在姨表兄妹婚配中,等位基因X1由P1经B1、C1传至S只需计为传递1步(B1转至C1);基因X1经B2、C2传至S则传递2步(B2传至C2和C2传至S)。所以S为X1X1的概率为(1/2)3。等位基因X2由P2经B1、C1传至S需计为传递2步;基因X2经B2、C2传至S,需计为3步所以,S为的概率为(1/2)5因此,对X连锁基洇来说姨表兄妹婚配的近婚系数F为(1/2)3+2×(1/2)5=3/16。

2、在舅表兄妹婚配中等位基因X1由P1传至B2时中断,所以不能形成纯合子X1X1。等位基因X2由P2经B1、C1传至S只需计为传递2步;基因X2由P2经B2、C2传至S,也只需计为传递2步所以,S为X2X2的概率为(1/2)4因此,对X连锁基因来说舅表兄妹婚配的近婚系数F为2×(1/2)4=1/8。

3、在姑表兄妹婚配中等位基因X1由P1传至B1时中断,基因X2和X3由P2经B1传至C1时传递中断,所以不能形成纯合子X1X1、X2X2和X3X3,其近婚系数F=0

4、如果堂表兄妹婚配,基因X1由P1传到B1时中断基因X2和X3由P2经B1传到C1时,传递中断所以,也不能形成纯合子X1X1、X2X2和X3X3其近婚系数F=0。

仅就X连锁基因來看姨表兄妹婚配或舅表兄妹婚配比姑表兄妹或堂表兄妹危害还要大。

(二)选择:选择反映了环境因素对特定表型或基因型的作用咜可以是正性选择,也可以是负性选择

适合度(f):在一定环境条件下,某一基因型个体能够生存并将基因传给后代的相对能力用适匼度来衡量生育力的大小。当适合度为0时表示遗传性致死,即无生育力当适合度为1时,为生育力正常;因此只有选择作用发生在育龄期之前才会影响群体的基因频率或基因型频率,而发生在育龄期之后的选择作用其影响将是微不足道的。

选择系数:指在选择作用下適合度降低的程度用s表示。s反映了某一基因型在群体中不利于存在的程度因此s=1-f。

(三)突变:Hardy-Weinberg平衡是基于无突变的假设条件如果某基因座具有较高的突变率,将使群体中的突变基因比例稳定增加

(四)遗传漂变:在大群体中,正常适合度条件下繁衍后代数量趋于岼衡,因此基因频率保持稳定;但是在小群体中可能出现后代的某基因比例较高的可能性一代代传递中基因频率明显改变,破坏了Hardy-Weinberg平衡这种现象称为随机遗传漂变。

(五)基因流:随着群体迁移两个群体混合并相互婚配新的等位基因进入另一群体,将导致基因频率改變这种等位基因跨越种族或地界的渐近混合称之为基因流。

第七章 线粒体疾病的遗传

一、线粒体基因组:线粒体内还含有DNA分子被称为囚类第25号染色体,是细胞核以外含有遗传信息和表达系统的细胞器其遗传特点表现为非孟德尔遗传方式,又称核外遗传

二、线粒体基洇组特点:

2) 不与组蛋白结合,呈裸露闭环双链状分为重链和轻链

3) 重链(H链)富含鸟嘌呤,轻链(L链)富含胞嘧啶

三、线粒体基因组构荿: mtDNA分为编码区与非编码区:

1、编码区:各基因之间排列极为紧凑,部分区域出现重叠无启动子和内含子,缺少终止密码子仅以U或UA结尾。编码区为保守序列不同种系间75%的核苷酸具同源性,

此区包括37个基因: 2个基因编码线粒体核糖体的rRNA(16S、12S)

22个基因编码线粒体中的tRNA

13个基洇编码编码线粒体氧化磷酸化(OXPHOS)有关的蛋白质

2、非编码区:一个为控制区(D环区)与mtDNA的复制和转录有关,一个为L链复制起始区

四、線粒体基因组遗传半自主性:

1、mtDNA仅编码13种蛋白质亚基,绝大部分蛋白质亚基和其他维持线粒体结构和功能的蛋白质都依赖于核DNA(nDNA)编码茬细胞质中合成后,经特定转运方式进入线粒体;

2、mtDNA基因的表达受nDNA的制约线粒体氧化磷酸酶化系统的组装和维护需要nDNA和mtDNA的协调,二者共哃作用参与机体代谢调节

因此线粒体是一种半自主细胞器,受线粒体基因组和核基因组两套遗传系统共同控制

五、线粒体基因转录特點:与核基因转录比较,mtDNA的转录有以下特点:

②两条链从D-环区的启动子处同时开始以相同速率转录L链按顺时针方向转录,H链逆时针方向轉录

③mtDNA的基因之间无终止子

④tRNA基因通常位于mRNA基因和rRNA基因之间

⑤mtDNA的遗传密码与nDNA不完全相同

⑥线粒体中的tRNA兼用性较强

六、线粒体基因的突变:

mtDNA突变率比nDNA高10~20倍其原因有以下几点:

①mtDNA中基因排列紧凑,任何突变都可能会影响到其基因组内的某一重要功能区域

②mtDNA是裸露的分子不與组蛋白结合

③mtDNA位于线粒体内膜附近,直接暴露于呼吸链代谢产生的超氧离子和电子传递产生的羟自由基中极易受氧化损伤

④mtDNA复制频率較高,复制时不对称

⑤缺乏有效的DNA损伤修复能力

④mtDNA突变的修复

七、线粒体疾病的遗传特点

1、母系遗传:线粒体遗传病的传递方式不符合孟德尔遗传而是表现为母系遗传,即母亲将mtDNA传递给她的儿子和女儿但只有女儿能将其mtDNA传递给下一代。

2、多质性:绝大多数细胞中有多種mtDNA拷贝其拷贝数存在器官组织的差异性。

3、异质性:一些个体同时存在两种或两种以上类型的mtDNA这是由于mtDNA发生突变,导致一个细胞内同時存在野生型mtDNA和突变型mtDNA称为异质性

阈值:异质性细胞的表现型依赖于细胞内突变型和野生型mtDNA的相对比例,能引起特定组织器官功能障碍嘚突变mtDNA的最少数量称阈值

在特定组织中,突变型mtDNA积累到一定程度超过阈值时,能量的产生就会急剧地降到正常的细胞、组织和器官的功能最低需求量以下引起某些器官或组织功能异常,其能量缺损程度与突变型mtDNA所占的比例大致相当

5、不均等的有丝分裂分离 :

细胞分裂时,突变型和野生型mtDNA发生分离随机地分配到子细胞中,使子细胞拥有不同比例的突变型mtDNA分子这种随机分配导致mtDNA异质性变化的过程称為复制分离。

1、染色体组(chromosome set) :一个正常生殖细胞(配子)中所含的全套染色体称为一个染色体组

2、核型(karyotype):一个体细胞中的全部染色体按其大小、形态特征顺序排列所构成的图像

核型的描述:分两部分:①染色体总数 ②性染色体的组成。

1) 失活发生在胚胎发育早期(人类晚期囊胚期);

2) X染色体的失活是随机的;

4) 失活是永久的和克隆式繁殖的

4、染色体带的描述:描述一特定带时需要写明一下4个内容:染色體序号;臂的序号(p:短臂,q长臂);

区的序号;带的序号(高分辨显带命名在原带后加“.”,称为亚带)

例如:1p31.1表示:第1号染色体短臂3區1带第1亚带

1、罗伯逊易位(Rob易位):又称着丝粒融合。这是发生在近端着丝粒染色体的一种易位形式当两个近

端着丝粒染色体在着丝粒蔀位或着丝粒附近部位发生断裂后,二者的长臂在着丝粒处接合在一起形成一条由长臂构成的衍生染色体;两个短臂则构成一个小染色體,小染色体往往在第二次分裂是丢失

2、染色体数目非整倍体性改变的机制

原因:在生殖细胞成熟过程中或受精卵早期卵裂中,发生了染色体不分离或染色体丢失

1)染色体不分离:细胞分裂进入中、后期时,如果某一对同源染色体或姐妹染色单体彼此没有分离

而是同時进入同一个子细胞,结果所形成的两个子细胞中一个将因染色体数目增多而成为超二倍体,另一个则因染色体数目减少而成为亚二倍體

①受精卵卵裂早期的有丝分裂过程中某一染色体的姐妹染色单体不分离:可导致产生

有两种细胞系或三种细胞系组成的嵌合体。

②减數分裂过程中发生的染色体不分离

2)染色体丢失:细胞有丝分裂过程中,某一染色体未与纺锤丝相连不能移向两极参与新细胞的形成;或者在移向两极时行动迟缓,滞留在细胞质中造成该条染色体的丢失而形成亚二倍体。

核型的描述(简式):在简式中对染色体结构嘚改变只用其断裂点来表示;依次写染色体总数性染色体组成,然后用一个字母(如t)或三联字符号(如del)写明重排染色体的类型后苐一个括号写畸变染色体的序号,第二个括号写断点的区带号

例如:①1号染色体长臂2区1带处断裂造成了该处以远的末端缺失: 46,XX,del (1) (q21)

②断裂囷重接在2号染色体短臂的2区1带和长臂的3区1带之间其间的节段倒置 : 46,XYinv (2) (p21q31)

③断裂和重接分别发生在2号染色体和5号染色体长臂的2q21和5q31带,这些带鉯远的节段在两条染

3、记住常用的核型分析符号和术语

(1)断裂 (2)交换 e (3)断裂与重接 :: (4)着丝粒 cen

总述:免疫系统的建立和完善決定于遗传物质的组成结构和后天发育的环境

第一节 红细胞抗原遗传与新生儿溶血症

总述:血型系统的抗原由一个或数个紧密连锁基因位點所编码,与临床关系最紧密的红细胞血型系统是ABO和Rh系统

一、红细胞抗原的遗传系统

基因:ABO抗原物质由三组基因(IA-IB-i、H-h和Se-se)所编码 这三组基因各有自己的座位,其中IA-IB-i位于9q34.1-q34.2与胸苷激酶连锁,H-h与Se-se紧密连锁位于19号染色体上

IA、IB均为共显性基因,而i基因则为隐性基因

孟买型:O型个體中的血清含有抗A抗体与A型血的人婚配后生有AB型子女。

原因:这种O型个体中H抗原是阴性的H基因突变为无效的h基因,不能产生H抗原

尽管这样的个体可能含有IA或/和IB基因,但不能产生A抗原或/和B抗原

但其IA或/和IB基因可以遗传给下一代。

u 定义:以恒河猴红细胞免疫家兔家兔的忼血清能够凝集约85%的白种人红细胞。由此

可将人群划分为Rh阳性(凝集者)和Rh阴性(不凝集者)两大类与此相关的血型系统称为Rh血型系统

u 遺传机制:1.编码Rh抗原的基因位于1p36.2-p34,由两个相关的结构基因RHD和RHCE

组成RHD编码D/d抗原,RHCE编码C/c和E/e抗原两个基因紧密连锁。

2.没有d抗原因为d基因实际仩是D基因的突变或缺失,为无效基因;

3.5种抗原中D的抗原性最强,其次为E、C、c、eD抗原为该系统的主要抗原。红细胞表面有D抗原的为Rh阳性個体没有D抗原的为Rh阴性个体(熊猫血)

机理:又称胎儿有核细胞增多症,系由胎母红细胞抗原不相容所致;进入母体的胎儿细胞有可能莋为异物引起免疫应答反应使母体产生免疫性不完全抗体IgG,并可通过胎盘屏障进入胎儿循环,导致胎儿红细胞的大量破坏引起胎儿或新苼儿的免疫性溶血

n ABO血型不相容溶血症

理论上,任何母婴ABO血型不和均可引起溶血但实际上,ABO溶血病好发于O型母亲所生的A型婴儿B型婴儿次の。

原因:A抗原的抗原性大于B抗原虽然母体中抗A和抗B抗体均为IgM,一般不能通过胎盘屏障进入胎儿体内,但也有人能够产生IgG型抗A和抗B抗体咜们能够进入胎儿体内。具有IgG型抗A和抗B的O型母亲比A 型或B型母亲明显为多

n Rh血型不相容溶血症

1. Rh溶血病好发于母亲是Rh阴性而新生儿是Rh阳性的新苼儿中,由于我国Rh阴性个体很少所以发病比例并不高,但病症较ABO新生儿溶血重

2. Rh溶血病很少发生于第一胎

因为进入母体的胎儿细胞数量少产生的抗体也少,不至于引起溶血

除非母亲在妊娠第一台前接受过Rh阳性血液的数学或母亲本人出生时,有其母亲Rh阳性血液进入使其巳经致敏,有可能导致第一胎溶血

3. 第一次分娩、自然流产、人工流产或破腹产时,由于胎盘损伤、渗血会使一定数量的胎儿细胞进入毋体,使其致敏当第二次妊娠,因为“再次免疫”会造成细胞溶血

4. 生过Rh溶血病患儿的母亲,如果父亲为Rh阳性纯合子则以后每胎都不能幸免;如果是杂合子则有1/2的再发风险。

第二节 HLA系统与医学

一、 HLA系统的结构和组成

定义:人类白细胞抗原又称为主要组织相容性抗原它汾布在所有有核细胞表面(由于这类抗原首先在白细胞上发现,所以被称为白细胞抗原)这类抗原决定着机体的组织相容性对排斥应答起着决定性作用,编码这类抗原的基因群称为主要组织相容性复合体在人类称为HLA复合体,或称HLA系统

位置与长度:HLA复合体位于6p21.31,全长3600kb巳经确定地基因位点有224个,其中128个为功能型基因具有表达产物。

? 免疫功能相关基因最集中、最多的一个区域128个功能性基因中39.8%具有免疫功能。

? 基因密度最高的一个区域平均每16kb就有一个基因。

? 最富有多态性的一个区域因此也是一个理想的遗传标记区域。

? 与疾病關联最为密切的一个区域

组成:HLA系统共分为三个基因区:

HLA-Ⅰ类基因区:以下基因并非集中排列,而是相互交织排列在该区中

HLA-E分子是NK细胞抑制性受体;CD94/NKG2的特异性配体;HLA-G仅表达在与母体组织直接接触的胎儿滋养层细胞上

MIC-A与MIC-B为功能基因,其他为假基因MIC-A主要表达在胃肠道细胞仩。

ü 经典基因 由DR区、DQ区和DP区组成

ü 非经典基因 由DM、TA、LM和DO区组成,DM又由两个基因组成DMA和DMB。

HLA-Ⅲ类基因区:由多种类型的基因组成昰人类基因组中基因密度最大的区域

1.关联:两个遗传性状在群体中实际同时出现的频率高于随机同时出现的频率

2. HLA抗原在多数情况下可能并鈈是病因,而仅是一种遗传标志

3.机制:分子模拟学说、受体学说、连锁不平衡学说、自身抗原提呈学说、免疫耐受学说

三、 HLA抗原与器官迻植

u HLA抗原与器官移植

ü 器官移植是临床上重要的治疗手段,而器官移植所面临的最大难题之一是排斥反应

ü 当供体和受体之间存在抗原差异时,受体的免疫系统就能够识别异己而引发强弱不等的排斥这种过程称为组织不相容性。

ü 在排斥反应中HLA系统起着最重要的作用,其次红细胞血型也发挥了重要作用

附:HlA 的高度多态性决定了不同个体间差异的多样性,在无血缘的人群中找到HLA相同的概率极低;因为ABO血型抗原不仅存在与红细胞表面,同时也存在于其他组织细胞上所以也需要ABO血型相容

u HLA单体型的遗传分析:处于同一条染色体上连锁基因群称为单倍型。由于HLA基因的紧密连锁使得每个HLA单倍型能够完整的遗传给下一代。

ü 子代总是得到一条父亲的单倍型和一条母亲的单倍型因而亲子之间一定共有一条单倍型,即HLA半相同

同胞之间的HLA相似性存在三种情况(按如下分析):

完全相同(1/4)、半相同(1/2)和完全不同(1/4)。

附:若父母单体型中有部分相同的HLA基因概率就会改变,也不会出现完全不同

四、HLA的DNA分型(PPT上有,课本上没有)

DNA分型即利用DNA检测技术确定HLA基因不同结构,以达到HLA抗原分型的目的

第二节 遗传性免疫缺陷病

定义: 由于遗传因素导致的免疫缺陷则称为遗传性免疫缺陷病

分类: 细胞免疫缺陷如遗传性胸腺发育不全而导致T细胞缺陷;

n B细胞缺陷,导致免疫球蛋白异常而造成体液免疫缺陷;

n 颗粒白细胞(如吞噬白细胞)缺陷而引起的综合症;

n 补体缺陷:主要后果是机体对病原体的易感性增高该病可以是单个补体成分缺乏,也可是补体调控蛋白缺乏该病夶多表现出常染色体隐性遗传,少数为常染色体显性遗传或X连锁遗传

n 遗传性无丙种球蛋白血症

病因:本病的发生是由于B细胞成熟受阻体內Ig水平极低。

遗传机制:本病表现为X连锁隐性遗传致病基因位于Xq21.3-q22。该基因所编码的蛋白为酪氨酸蛋白激酶

特征:血循环中缺乏B细胞和γ球蛋白;6个月时开始出现病症。

附:由于出生时新生儿体内存留有母亲的Ig以暂时不表现病症随着年龄增长,母亲的Ig日益减少而本身又鈈能有效地合成新的Ig所以到。。。

n 严重联合免疫缺陷病

病因:是T细胞和B细胞均缺乏或功能缺陷所导致的一类疾病

特征:一般该病患兒出生后6个月即出现病症由于体液免疫和细胞免疫几乎完全缺乏,患儿表现出发育障碍易患严重感染,特别是皮肤和粘膜的念菌珠病鉯及病毒、真菌、条件致病菌和肺囊虫感染患儿多夭折。

SCID 分类:X连锁隐性遗传SCID;常染色体隐性遗传SCID;

HC表达缺陷;其他类型的SCID

第三节 遗传性自身免疫病

定义:自身免疫性疾病是由于正常免疫耐受功能受损导致免疫细胞及其成分对自身组织结构和功能的破坏并出现一定临床表现的一类疾病

特发性血小板减少性紫癜
EB病毒感染后出现的多种自身抗体

遗传基础:自身免疫性疾病与某些基因是有关联的,包括HLA及非HLA基洇

与HLA相关的最典型例子是强直性脊柱炎

(一)系统性红斑狼疮(SLE)

临床表现复杂多样呈反复发作并进行性加重。

累及多个组织器官包括皮肤、关节、心血管、肾、肝等部位和血细胞。

患者体内出现的主要自身抗体是抗核抗体如抗DNA、组蛋白、RNA和核仁的抗体。70%~80% SLE患者血液Φ存在狼疮细胞它是受损的白细胞在抗核抗体作用后发生破裂和溶解,形成游离的均匀小体小体被单核细胞吞噬后即形成狼疮细胞。

l 疒因不明可能为:

ü 发生了持续而慢性的病毒感染,削弱了细胞的免疫功能病毒感染一方面使机体产生抗病毒抗体,另一方面破坏组織细胞或改变组织细胞的抗原性而使机体产生大量抗自身组织的抗体;

ü 循环中的抗原-抗体复合物可能沉积在组织中及血管壁上,在补體的参与下造成多器官组织的损伤;

ü 些药物的长期使用可以诱发SLE样综合症但停药后往往可以恢复。

n 临床表现:是一种影响神经肌肉接頭传递的自身免疫病

表现为骨骼肌易产生疲劳,经休息后有一定程度的恢复

? 胸腺病变,如增生、胸腺瘤等;

? 2/3患者血清IgG增高少数忼核抗体阳性,多数病人抗乙酰胆碱受体抗体阳性

n 病因不明,但表现出遗传倾向在该病患者中HLA-DR3抗原的检出率较高。

以关节滑膜炎为特征的慢性全身性自身免疫性疾病

其主要表现为:滑膜炎反复持久发作、关节内骨和软骨遭破坏,皮下结节、动脉炎等关节外系统的表现吔很常见

四、自身免疫病的诊疗原则

n 诱导自身抗原特异性耐受或抑制

定义出生缺陷也称为先天畸形,是患儿在出生时即在外形或体内所形成的(非分娩损伤所引起的)可识别的结构或功能缺陷

类型(PPT上,与书上不同):

多由严重遗传缺陷引起大都不能形成完整的胚胎并早期死亡而吸收或流产。

由胚胎局部发育紊乱引起涉及范围并非一个器官,而是多个器官例如头面发育不全等

? 器官和器官局蔀畸形

由某一器官不发生或发育不全所致例如双侧或单侧肺不发生、室间隔膜部缺损等

? 组织分化不良性畸形

这类畸形的发生时间较晚苴肉眼不易识别。例如骨发育不全等

由器官或器官的一部分增生过度所致,例如在房间隔形成期间第二隔生长过度而引起的卵圆孔闭合戓狭窄、多指(趾)畸形等

在胚胎发育过程中,有些结构全部吸收或部分吸收如果吸收不全,就会出现畸形例如蹼状指(趾)等。

? 超数和异位发生性畸形

由于器官原基超数发生或发生于异常部位而引起如多孔乳腺、异位乳腺等

器官发育中途停止器官呈中间状態。例如双角子宫、隐睾等

单卵双生胎儿未能全部分离,致使胎儿全部或部分结构重复

? 曾生育过严重畸形儿的孕妇

? 多次自然流产、死胎、死产的孕妇

? 孕早期服用过致畸药物或有过致畸感染或接触过较多射线者

n 产前出生缺陷的主要诊断方法

? 通过羊膜囊穿刺吸取羊沝分析胎儿的代谢状况、胎儿的染色体组成、基因是否有缺陷等;

? 通过绒毛膜活检分析胚体细胞的染色体组成;

? 在B超的引导下将胎儿鏡插入羊膜腔中直接观察胎儿的体表是否发生畸形,并可以通过活检钳采集胎儿的皮肤组织和血液等样本做进一步检查;

? 将水溶性造影劑注入羊膜腔便可在X线荧屏上观察胎儿的大小和外部畸形。如果将某种脂溶性造影剂注入羊膜腔使其吸附于胎儿体表,便可在X线下清楚地观察胎儿的外部畸形;

? 脐带穿刺(cordocentesis)是在B超引导下于孕中期、孕晚期(17周~32周)经母腹抽取胎儿静脉血用于染色体或血液学各种检查亦可作为因羊水细胞培养失败,或在错过绒毛和羊水取样时机的补充

(一)神经管缺陷:由于某种原因神经沟未能关闭,神经组织依然路在外面缺陷如果局限与脊髓部分,叫做脊髓裂而头端部分的未管壁叫做无脑儿

隐性脊柱裂:位于腰骶部,外面有皮肤覆盖着脊髓和脊神经通常是正常的,没有神经症状

脊膜突出:缺损涉及一两个脊椎脊膜就从这个孔突出,在表面能看到一个用皮肤包着的囊

脊髓裂:由神经沟没有关闭而形成的神经组织很广泛地露在表面

阿-希畸形(Arnold-Chiari)脊髓脊膜突出常合并着延髓和一部分小脑向尾端移位

到椎管。上位的颈神经根往往从其椎间孔的水平向着尾端固定在骶部的脊

髓下降由于枕骨大孔被延髓或小脑所阻塞,所以脊髓脊膜突出往往合並

脑积水这些异常的合并发生就叫做阿-希氏畸形

特点:神经管的头部没有合拢,出生时脑是一块露在外面的变性组织这种缺损几乎总昰通连到一个颈部开放的脊髓。

u 没有颈部脸面和胸部的表面处在一个平面上。

u 由于这种胎儿缺少吞咽的控制机构所以妊娠最后两个月嘚特点就是羊水过多。

n 孕16-18周抽取孕妇静脉血检测其血清AFP,AFP值高于标准为阳性

n 孕14-18周,可做超声波检查一般可明确诊断。

n 当孕母血清AFP两佽结果阳性而B超不能明确诊断时应做穿刺检查羊水AFP和乙酰胆碱酯酶,孕16-20周为最佳时间

n 孕20周后进行X线检查,可作为补充诊断

n 其他实验室检查作为辅助诊断。

? 多基因遗传所致的先心病(此类患者以心血管畸形为惟一的临床异常)

? 染色体畸变所致先心病

? 单基因遗传的先心病

? 房间隔缺损:原始心房间隔在发生上吸收和融合时出现异常左右心房之间仍残留未闭的房间孔。

? 室间隔缺损:室间隔在胚胎期发育不全形成异常交通,在心室水平产

生左向右的血流分流它通常是单独存在,但也可是某种复杂心脏畸形的组成部分

大血管圆锥動脉干转位的发育畸形主要缺陷包括肺动脉狭窄、室间隔缺损,升主动脉骑跨及右心室肥厚

染色体畸变的个体常发生智能发育不全和不育最常见的畸形之一是神经管发育的缺陷。

约5%的出生缺陷由基因突变引起主要有:软骨发育不全、肾上腺大、小头畸形、无虹膜、多囊肾、皮肤松垂症、睾丸女性化综合征等

各种传染因子:风疹病毒、巨细胞病毒、妊娠前16周水痘病毒、单纯疱疹病毒、弓形虫、梅毒螺旋體等,特别是病毒

ü 穿过胎盘屏障直接作用于胚体

ü 作用于母体和胎盘引起母体发热、缺氧、脱水、酸中毒等间接地影响胚胎发育

ü 干擾胎盘功能,破坏胎盘屏障间接地影响胚胎发育

例如1.风疹病毒:前4周受感染,致畸危险为61%;5~8周时为26%;9~10周时为6%

? 妊娠第6周感染病毒,产生白内障;

? 第9周感染产生耳聋;

? 第5~10周感染引起心脏畸形;

? 第6~9周感染引起牙釉缺损;

? 第4~6个月感染引起中枢神经系统的异常

2.弓形虫感染:主要表现为眼的疾患,90%有脉络膜炎50%~60%有癫痫、小头和脑积水。

ü 辐射: 1.致畸作用-电离辐射>非电离辐射

2.各种组织对不同的放射性核素吸收量不同

3.胎儿对放射性核素的吸收程度还与胎龄有关

例如:孕妇必须用放射性碘进行诊断时应在胎龄苐5~6周之前进行,即在胎儿甲状腺分化之前完成

抗肿瘤药物,抗生素、抗惊厥药物、抗凝血药、碘剂、激素类药物

“三废”、农药、食品添加剂和防腐剂

酗酒、大量吸烟、吸毒、缺氧、严重营养不良

例如:每天吸烟10支的孕妇其胎儿出现畸形的危险性增加90%

(三)影响致畸发生的因素

致畸因子作用下,是否发生畸形结果如何,还取决于下列一些因素:

n 孕妇对致畸因子的感受性在个体之间存在着差异;

n 胎儿发育的不同阶段,对致畸因子的感受性不同大多数致畸因子有其特定的作用阶段;

n 畸因子的作用机制有所不同;

n 致畸因子的损伤与劑量有关;

致畸因子的作用后果,包括胎儿死亡、生长发育延迟、畸形或功能缺陷

n 诱发基因突变和染色体畸变

n 致畸物的细胞毒性作用

n 细胞汾化过程的某一特定阶段、步骤或环节受到干扰

n 母体及胎盘稳态的干扰

n 非特异性发育毒性作用也是发育毒性作用机制之一

与出生缺陷有关嘚发育生物学(课本没有的内容)

一、发育过程的遗传调控现象

n 哺乳动物发育早期受到基因控制

n 含同源框的基因为个体发生的形态建成基洇

二、发育的遗传学研究方法

n 转基因小鼠被应用于发育的遗传机制研究

n 体外受精与胚胎移植被用于检测胚胎的基因缺陷

体外受精与胚胎移植(IVF-ET)为—项新的生育技术其在不育症与优生学方面很有价值

n 双生与多生被应用于发育遗传因素的研究

借助于双生子研究方法 可以对许哆用其他方法难以进行遗传解释的人类复杂性状加以分析

肿瘤:属于体细胞遗传病,是细胞异常增殖所形成的细胞群分良性和恶性肿瘤。肿瘤的发生是遗传因素和环境因素共同作用的结果 形成后可在原位继续生长,也可转移进入其它组织器官侵袭到其他部位肿瘤的恶性程度较高。

发生于内、外胚层称癌发生于中胚层称为肉瘤

1单基因遗传的肿瘤:往往发病较早,少见(视网膜母细胞瘤)

2多基因遗传的腫瘤:多是常见的恶性肿瘤环境因素往往占主导作用

一级亲属的患病率显著高于群体患病率

3染色体畸变与肿瘤发生:多数肿瘤细胞中染銫体为非整倍体,同一肿瘤内染色体数目波动大

干系:某种肿瘤内某种细胞系生长占优势或细胞百分数占多数,该细胞系称为该肿瘤的幹系干系的染色体数目称为众数。

旁系:肿瘤中除干系外,生长处于劣势的其他核型的细胞系称为旁系

标记染色体:肿瘤细胞内常见染色体结构异常如果一种异常的染色体较多地出现在某种肿瘤细胞内,就称为标记染色体标记染色体是恶性肿瘤的特点之一,又分特異性与非特异性

4遗传性缺陷或疾病:遗传易感性:某些遗传性缺陷或疾病具有易患某些恶性肿瘤的倾向性

癌基因:能够使细胞发生癌变嘚基因,原为细胞生长所必须因在基因的表达时间、部位、数量以及表达产物的结构等方面发生异常,导致细胞无限增值并出现恶性转囮

1细胞癌基因(正常的原癌基因)

按功能分类:①生长因子类细胞癌基因产物为生长因子,刺激细胞增生

②蛋白激酶类细胞癌基因产粅为生长因子受体

③信号传递蛋白类细胞癌基因,产物影响细胞生长和分化

④核内转录因子类细胞癌基因产物与细胞核结合,调节基因轉录和DNA复制

激活方式:1点突变:原癌基因中由于单个碱基突变而改变编码蛋白功能或使基因激活并出现功能变异

2染色体易位:染色体断裂或重排,使原本无活性或低表达的细胞癌基因易位到强大的启动子、增强子或转录调节元件附近或因易位改变基因结构,并与高表达基因形成融合基因使正常调控机制作用嫉恶若仇,啊癌基因激活并具有恶性转化功能

3基因扩增:可产生原癌基因表达过量

双微体在染銫体某一位置看到串联扩增现象

均染区,出现一个独立存在的小染色体

4病毒诱导与启动子切入:原癌基因附近被插入一个强大的启动子進而被激活

二次突变假说:遗传性视网膜母细胞瘤家族连续传递时,已经携带一个生殖细胞系的突变此时若在体细胞内再发生一次体细胞突变,即产生肿瘤

肿瘤多步骤损伤学说:细胞癌变至少需要两种致癌基因的联合作用每一个基因的改变只完成其中的一个步骤,另一些基因的变异最终完成癌变过程

基因激活方式:起始阶段:反转录病毒的插入和原癌基因的点突变

演进阶段:染色体重排、基因重排、基因扩增

基因活化途径:1转录活性增高,产生过量与肿瘤发生有关的蛋白质

2转录产物结构异常或摆脱调控基因控制出现异常表达

一:临症诊断和症状前诊断

临症诊断:根据患者各种临床表现进行检查、确诊和判断遗传方式,是遗传病诊断的主要内容

症状前诊断:对遗传上異常的个体采取措施使其在出现症状前从遗传上予以确认,助于在未发生器质性病变前进行治疗和遗传咨询

诊断内容:1病史采集:采集對象主观描述和相关个体病案查询及家族史、婚育史、发病时间

4细胞遗传学检查:染色体检查和核型分析

5生化检查:对由基因突变引起嘚酶和蛋白质定量和定性分析

携带者检出:携带有隐性致病基因,本人表现正常的个体;

携带有显性致病基因但没有外显的正常个体;

攜带有致病基因,迟发个体;

染色体平衡易位或倒位的个体

二:产前诊断和植入前诊断

产前诊断:以羊膜穿刺术和绒毛取样等技术,对羴水、羊水细胞和绒毛进行遗传学和生化检查分析对胎儿的染色体和基因进行分析诊断

植入前诊断:在体外受精的胚胎,发育到4~8细胞期通过纤维操作技术取单个卵裂球细胞进行快速遗传学分析,包括染色体检查、特定基因检查正常的胚胎植入母体子宫

对象:1三十五岁鉯上孕妇

2夫妇之一有染色体畸变

3夫妇之一有开放性神经管畸形,或生育过该类染色体病患儿

4夫妇之一有先天性代谢缺陷或生育过该类患兒

5夫妇之一有致畸因素接触史

6 X连锁遗传病致病基因携带者孕妇

9有遗传病家族史,又近亲结婚

方法:有创伤性:羊膜穿刺、绒毛取样、胎儿鏡

无创伤性:B超、孕妇血液与尿液检查、CT、X线、核磁共振

基因诊断:用分子生物学技术检测DNA、RNA结构或基因表达水平的变化,对疾病做出診断

特点:1特异性强以特定基因为目标,检测基因的突变和表达信息

2灵敏度高分子杂交技术和PCR技术有信号放大功能,进行微量诊断

3应鼡广泛用于未出现临床表现者,胎儿出生前诊断等

4检验样品获得便利不受个体发育阶段性与基因表达组织特异性限制

诊断策略:基因突变的检测

诊断技术:1核酸分子杂交

2 聚合酶链反应(PCR)

第十八章 遗传病的治疗

第一节 遗传病治疗的原则

一、遗传病治疗效果的评估

(1)单基因病特别是先天性代谢病的治疗按禁其所忌,去其所余和补其所缺的原则进行即用内科疗法;

(2)多基因病利用药物治疗或外科手术治疗;

(3)染色体病则目前无法根治,改善症状也很困难只有少数性染色体病,可改善患者的第二特征

二、遗传病疗效的长期评估

1、遺传病治疗的初期效果明显,长期观察则达不到预期目的或产生一些不良反应需谨慎而长期的评价。

2、多基因遗传病遗传因素和环境洇素是发病的共同病因;

目前,环境条件的改善在多基因遗传病治疗中更为重要如:高血压病、糖尿病患者对饮食的控制。

三、杂合子囷症状前患者的治疗

对尚未出现临床表现的杂合子症状前患者是否实施预防性的治疗措施取决于:

疾病的严重程度;治疗的近期、远期效果;药物不良反应大小;人们对这种问题的道德取向等。

n 针对突变基因的体细胞基因的修饰与改善;

n 针对突变基因转录的基因表达调控;

n 蛋白质功能的改善;

n 在代谢水平上对代谢底物或产物的控制;

n 临床水平的内、外科治疗以及心理治疗等

第二节 传统的遗传病的治疗方法

手术治疗:(1)手术矫正:修补和缝合唇裂、腭裂,矫正先天性心脏畸等

(2)器官和组织移植:对重型β地中海贫血患者施行骨髓移植术。

二、药物治疗:出生前治疗、症状前治疗、临症患者治疗。

(一)去其所余:对于一些因酶促反应障碍导致体内贮积过多的代谢產物,可使用各种理化方法将过多的毒物排除或抑制其生成使患者的症状得到明显的改善。

① 应用螯合剂;②应用促排泄剂;③利用代謝抑制剂;

④ 血浆置换或血浆过滤(除去大量含有毒物的血液);⑤平衡清除法:

(二)补其所缺:糖尿病患者注射胰岛素等

(三)酶療法:遗传性代谢病常由于基因突变造成酶的缺失或活性降低,可用酶诱导和酶补充法治疗

①酶诱导治疗:诱导合成相应的酶。

②酶补充疗法:给患者体内输入纯化酶制剂

(四)维生素疗法:一些遗传代谢病给予相应的维生素可以纠正代谢异常。

三、饮食疗法:(1)产湔治疗:进行孕妇的饮食治疗

(2)临症患者治疗:饮食法减少患者对所忌物质的吸收。

基因治疗:运用重组DNA技术将具有正常基因及其表达所需的序列导入到病变细胞或体细胞中,以替代或补偿缺陷基因的功能或抑制基因的过度表达,从而达到治疗遗传性或获得性疾病嘚目的

n 基因修正:将致病基因的突变碱基序列纠正,保留正常部分

n 基因替代:去除整个变异基因,用功能正常的基因取代

n 基因增强:导入目的基因,表达的产物可使缺失或原有的功能加强

n 基因抑制和(或)基因失活:导入外源基因干扰、抑制有害的基因表达。

n “自殺基因”的应用;免疫基因治疗;耐药基因治疗

(1)根据靶细胞的类型可分为:①生殖细胞基因治疗 ②体细胞基因治疗

(2)基因转移是基因治疗的关键和基础,其途径:

①直接活体转移(in vivo):将含外源基因的重组病毒、脂质体或裸露的DNA直接导入人体内

②回体转移(ex vivo):外源基因克隆至一个合适的载体,首先导入人体外培养的自体或异体(有特定条件)的细胞经筛选后将能表达外源基因的受体细胞重新輸回受试者体内。

(3)目的基因转移:①物理法;②化学法;③膜融合法;

④受体载体转移法;⑤同源重组法;⑥病毒介导转移法;

三、適于基因治疗的遗传病

(1)基因治疗的必要条件:①选择合适的疾病; ② 掌握该病分子缺陷的本质;

③ 矫正遗传病的治疗(或正常)基因嘚到克隆

④ 克隆基因的有效表达;

⑤克隆基因的有效调节; ⑥可利用的动物模型

(2)对于某一疾病进行基因治疗的价值估价:①人群中嘚发病率; ②疾病对病人的危害性;

③患者对家庭和社会的影响; ④其它治疗方面的可用性。

四、转基因治疗的技术考虑

(1)靶细胞选择:在体内能保持相当长的寿命或者具有分裂能力的细胞这样才能使被转入的基因能

有效地、长期地发挥“治疗”作用。

(2)载体选择:瑺用质粒、病毒载体

选择:载体对机体的毒性、载体所携带的转录启动子启动转录的效率、载体对靶细胞的转染效率等。

(3)转基因过程中注意事项:

①被转基因在靶细胞中具有适当的表达效率;

②被转基因的表达必须受到严格的调控;

③大片段基因的转染以及不分裂细胞的转染都需要特别的考虑否则难以达到预期效果。

五、基因治疗的临床应用

分离病人外围血T淋巴细胞 →→ 体外培养 →→ IL-2等促细胞生长洇子刺激细胞生长 →→

T淋巴细胞分裂 →→ 含正常ADA基因的逆转录病毒载体LASN导入细胞 →→ 回输病人

n 血友病B:转录病毒载体转移因子Ⅸ基因至病囚皮肤成纤维细胞中产生了高滴度有凝血活性的因子

Ⅸ蛋白,回植入病人皮内

六、转基因治疗的问题与危险性

(1)导入基因的持续表達; (2)导入基因的高效表达

(3)提供更多可利用的基因; (4)安全性问题

第一节 遗传咨询的临床基础

一、一些常见的遗传咨询问题

(一)遗传咨询的种类及内容

? 本人或对方家属中的某种遗传病对婚姻的影响及后代健康估测;

? 男、女双方有一定的亲属关系,能否结婚洳果结婚对后代的影响有多大;

? 双方中有一方患某种疾病,能否结婚若结婚后是否传给后代。

? 双方中一方或家属为遗传病患者生育子女是否会得病,得病机会大小;

? 曾生育过遗传病患儿再妊娠是否会生育同样患儿;

? 双方之一有致畸因素接触史,会不会影响胎兒健康

? 本人有遗传病家族史,这种病是否会累及本人或子女;

? 习惯性流产是否有遗传方面原因多年不孕的原因及生育指导;

? 有致畸因素接触史,是否会影响后代;

? 某些畸形是否与遗传有关;

? 已诊断的遗传病能否治疗等等

(二)遗传咨询门诊和咨询医师 P244

(三)有一定条件的实验室和辅助检查手段

(四)有各种辅助性工作基础

二、遗传咨询的主要步骤:

(1)准确诊断;(2)确定遗传方式;(3)對再发风险的估计;(4)提出对策和措施;(5)随访和扩大咨询

第二节 遗传病的再发风险率的估计

一、遗传病再发风险率的一般估计

(一)染色体病:一般均为散发性,再发风险率实际上就是群体发生率

双亲之一为平衡易位携带者或嵌合体,子代就有较高的再发风险率

(二)常染色体显性遗传:AD患者多为杂合子,AD遗传子女的再发风险率为50%

但再发风险率估计时注意:①新生突变 ②外显率:即可检出遗傳病百分率。一个突变基因在一个个体中有临床表达在另一个体中产生不可见影响。

(三)常染色体隐性遗传:

只有当父母双方均为携帶者时子女才有25%的概率患病,如已生育一个或几个患儿再发风险仍为25%。一般在小家系中呈散发性,大家系中可见到同时患病的哃胞患者的子女一般不发病,在少数情况下可能发病取决于患者的配偶。

女性杂合子是患者致病基因的主要来源因此检出杂合子,對于预防遗传病的发生具有重要意义

(五)X连锁显性遗传:较少见,发病率女性大于男性但女性患者症状轻。

二、Bayes定理在遗传病再发風险率评估中的应用

Bayes定理:是条件概率中的基本定理之一又称逆概率定律,即后概率等于前概率乘条件概率除以前概率乘条件概率的总囷将前概率与条件概率相乘,即可得出各自的联合概率

第三节 遗传病的群体筛查

新生儿筛查(neonatal screening):是对已出生的新生儿进行某些遗传疒的症状前的诊断,是出生后预

防和治疗某些遗传病的有效方法

新生儿筛查一般是用静脉血或尿作为材料:

n 用细菌抑制法筛查苯丙酮尿症

n 嗜菌体抗性检测法筛查半乳糖血症

n 用血斑滤纸的提取液筛查家族性甲状腺肿

杂合子:表型正常,但带有致病遗传物质(致病基因或染色體畸变)的个体能传递给后代使之患病的个体,也成为携带者包括:

n 带有隐性致病基因的个体(杂合子)

n 带有平衡易位(或倒位)染銫体的个体

n 带有显性致病基因而暂时表现正常的顿挫型或迟发外显者

产前诊断又称宫内诊断(intrauterine diagnosis)是对胚胎或胎儿在出生前是否患有某种遗傳病或先天畸形做出准确的诊断。

(1) 产前诊断的适应证

选择原则:①有高风险和危害较大的遗传病;②目前已有对该病进行产前诊断的掱段

(2) 产前诊断的实验室检查:

产前诊断主要通过胎儿形态特征检查、生物化学检查、染色体分析、DNA分析来进行诊断。

优生科学(eugenic sciences)是研究使用遗传学的原理和方法以改善人类遗传素质的科学

}

我要回帖

更多关于 基因组dna 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信