如果用超级电容电源做主电源,再用锂电池做副电源给主电源充电电动车会不会跑得远点

市场研究机构IDTechX预测超级电容电源终将掠夺的锂离子等电池技术;该机构认为,在接下来的20年将会有80家左右的超级电容电源制造商崛起那么,未来锂离子等电池技术的哋位会就此被超级电容电源取代吗?

超级电容电源器(supercapacitor)正向取代电池的方向前进对比锂离子等电池技术,超级电容电源能提供安全性快速充电与尺寸上的优势,同时有助于为汽车电网与IT等多种应用复杂的电池管理系统。

特别看好此一能源储存与充电新兴技术的市場研究机构IDTechX预测超级电容电源终将取缔目前的锂离子等电池技术。该机构认为在接下来20年将会有80家左右的超级电容电源制造商崛起,供应一般车辆大型巴士,磁浮列车等以电机取代引擎的应用

值得一提的是,中国大陆市场因为电动车业者持续增加预期到2041年大约将會有30家左右的超级电容电源制造商,有望先进于其他国家

IDTechX指出,“通过改善的超级电容电源及衍生技术将实现庞大的商机相关应用包括微型电网,货车电车,卡车重型越野车,以及使用能量收集技术的物联网(IoT)不断供电或是医疗电子与数据中心使用的1MWh(兆瓦/小時)大型电源。”

汽车产业资深分析师Egil Juliussen曾在《 EE Times》美国版的某些集播客节目中解释了超级电容电源技术的潜在优势:“关于电容的好消息是你能很快速地为它们充电,因为只需要将倒一点电流到里面一下子就充满了;”他将这种能源技术比喻为缓冲存储器,可以设置于充電站与电网之间

不过关于超级电容电源技术究竟何时或是否能发挥其潜力,Juliussen的预测相当保守;他坦承上述的应用情境可能是“遥不可及”但又表示:“你永远不知道会发生什么事。”

IDTechX的看法就此前景乐观该机构预测的超级电容电源技术将进行分类,物联网与数据中心應用需求不断增长而起飞而既然任何东西都离不开电力,电动车快速充电也会是一大卖点超级电容电源技术的成功在望。

预测2041年的各區域市场超级电容电源制造商数量

举例来说IDTechX预测未来的超级电容电源将使城市轻轨交通以及公交车网路在20秒完成充电,并减少替换昂贵電池的次数从而回收昂贵材料的需求。

因为能量密度仍是电力电子应用中非常关键的设计考量,目前这方面电池仍然胜过超级电容电源;以每公斤瓦特-小时(Wh / kg)表现来看现今超级电容电源的能量密度接近低阶电池技术,仅高于10 Wh / kg一点点;“负重(承重)超级电容电源的嫆量密度最差但有很大的利用空间。”

目前来看 比起被取代,未来电池技术和超级电容电源的组合使用趋势会更明显

IDTechX也预测了一系列混合性的组合的可能,例如电容与超级电容电源的组合或者电池与超级电容电源的组合,将实现快速无线充电等应用

到目前为止,IDTechX估计超级电容电源已经取代了约10%的昂贵锂离子电池而且将很快让铅酸电池送上灭绝之路;“超级电容电源技术的改善以及市场推展目湔速度很快,在接下降20年将会有很多大规模的进展与颠覆

}

推荐于 · TA获得超过4409个赞

锂电池可鉯说是现代生活中必不可少的动力之

源广泛应用于交通、信息、能源等领域

给我们带来了便捷、轻松、高效的现代化生活方式。而在电動自行车上的应用由于其最符 合普通老百姓,带来了切实的好处而成为最实用的需求之一 通过7年多对消费者骑行体验的关注,通过对丠京、南京、天津、济南、无锡、苏州等 地的消费者使用效果跟踪分析锂电池电动自行车在满足轻的基础上,随着人们生活半径的 扩大里程和一定的载重也是必须满足的必要条件。小容量的锂电池已不能满足这些需求 导致一大批想购买锂电池电动车的消费者犹豫不决。 为攻克这一难题苏州星恒电源有限公司与南京嘉速车辆连锁在充分调研市场需求和骑 行习惯的基础上,推出了精心之作48V12Ah 锂电池电动自荇车这款车在轻的基础上,能 够跑得更远之所以能够做到这样,得益于:星恒的技术源于中科院物理所中科院物理所 1982年开始研究锂離子导体,至今已经具备了30年的基础技术研究储备依托物理所的强 劲技术实力,目前星恒已取得了一系列的成就 这次全新推出的48V12Ah 锂电池电动自行车,有三个的法宝:1、骑行50公里没问题 突破传统锂电池40公里极限。2、负载比传统锂电车多20%更适应爬坡、急停等条件下的 使鼡。3、在符合国标的基础上速度更快,不再被人一路超车

你对这个回答的评价是?

下载百度知道APP抢鲜体验

使用百度知道APP,立即抢鲜體验你的手机镜头里或许有别人想知道的答案。

}

超级电容电源器充放电效率高( 大於90 %) 寿命超长( 可以达到百万次) ,适用温度范围宽可在-40 ~ 70℃范围内正常工作。功率密度大可以达到每千克十几千瓦;能量密度非常低,均在每千克10瓦时以内对比现在锂电池的参数看一下,国家补贴的入门标准是电池系统级能量密度大于90wh/kg可见超级电容电源,主要在于功率特性上的优势下表是几个主流超级电容电源厂家的大容量超级电容电源主要参数。

1 超级电容电源的几个特点

超级电容电源对过充过放的反应不像锂电池那样敏感;

电压电量曲线近似一次函数曲线但也跟具体设计有关,并受温度影响明显;

由于工作原理的不同双电層超级电容电源能获得更长的循环寿命,而赝电容则容易得到更高的能量密度

2 超级电容电源的类型和原理

超级电容电源主要包含两大类,双电层电容和赝电容虽然都叫做超级电容电源,但他们的工作原理存在着本质上的不同双电层超级电容电源器电荷移动过程,吸附莋用是主要作用方式存在少量化学变化,是非法拉第过程;而赝电容充放电以氧化还原反应为主,是法拉第过程遵循法拉第原理。

法拉第 过程是指在电极表面发生氧化还原反应的过程并且在电极与溶液界面上有电子转移(跃迁)的过程。这一过程遵守法拉第定律即:因电流通过而引起的化学反应的量与所通过的电量成正比。

非法拉第 过程是指在电极-溶液界面间没有电荷转移,但是随着电势变化由于吸附和脱附过程发生,以及双电层的充放电导致电极-溶液界面结构发生变化,并引起电流流动这种电流流动过程称为非法拉第過程。不遵循法拉第定律

双电层电容器,如上图所示结构上包含正负极集电器,多孔碳电极隔膜和电解液几个组成部分。隔膜在正負极之间将两者分开,但允许电解液中阴、阳离子自由通过电荷可以穿越隔膜移动。电解液用于传导电荷;电荷分别在正、负电极接觸面形成双电层结构充电时,给电容两端加载电压由于静电力作用,电荷向正负两极汇集在电极与电解液接触面上形成双电层结构,实现电荷与能量存储;当超级电容电源作为电源放电电荷则离开电极回到电解液中。电荷的汇集、扩散在外电路形成电流,实现充電和放电过程

双电层电容器能量密度和功率密度的高低,一个主要的影响因素是集电极的性能目前超级电容电源器研究和应用较多的昰碳材料,包括活性炭、石墨烯、碳纳米管、模板碳等不同碳材料的微观形貌和理化性质不同,电化学储能性能有所差别不同碳材料嘚比电容不同。下面图中展示了不同种类的碳应用到超级电容电源电极中,实现的能量密度的对比关系

图中英文缩写说明在文末

集电極技术发展到现在,发现了具有纳米级孔径的多孔碳电极能够有效促进电解液离子的去溶剂化显著增加超级电容电源的电容量。去溶剂囮的大体含义是去掉离子表面附着的溶剂提高离子吸附到电极上的能力。但纳米材料的具体工作机制还在研究中

赝电容器,也称法拉苐电容器其基本工作原理: 赝电容器主要以金属氧化物或导电聚合物作为电极。充电时在电极和电解液表面发生快速的氧化还原反应戓法拉第过程,因电极材料的氧化还原电位发生改变两电极之间产生电势差;放电时,电极又与电解液发生与充电过程相反的逆反应兩电极间电势差降低,实现放电

目前研究较多的赝电容器材料包括,金属氧化物、金属氢氧化物、导电聚合物等然而,赝电容材料大哆受限于循环稳定性相对较差的缺点往往需要与碳材料形成复合物以提高循环寿命和充放电性能。

超级电容电源应用领域挺多主要发揮其瞬时大功率的优点。大的领域包括供配电行业交通领域,重型机械领域等等

电力行业的应用,主要包括平抑发电功率波动风机變桨后备电源。

新能源发电比如风力发电,光伏发电等受自然条件影响较大,发电功率极其不稳定被大电网认为是垃圾电,限制其仩网规模超级电容电源组被设置在新能源发电站入口处,发电功率大时将一部分高于平均的电量存储下来;发电功率低时,则将存储電能补充到上网功率中去如同一个缓冲器,起到平抑上网功率波动的作用改善新能源上网电力的质量。在微电网中的作用形式也跟噺能源发电站类似,起到蓄水池的作用

风机变桨,风力发电机在发电过程中需要随时根据风力和风向调节风车叶片的角度,进而实现穩定发电功率的目的叶片的调整,需要外部电源作为动力如果出现风力骤增而风机叶片不能及时调整角度的情形,则风机或者风机发電系统可能会遭受大的扭力和冲击发电功率的考验因此变桨电源需要稳定可靠。超级电容电源作为后备电源一方面冲击电容寿命长,哽换周期长;另一方面超级电容电源对工作环境要求不高,环境温度变动范围宽

交通领域的应用,也有较多应用是我们最关心的领域,后面单列一个章节

重型机械领域的应用,主要是起重机和电梯这类工作过程中势能变化比较大的场景。上升过程中放电给系统啟动提供大功率动力;系统下降过程,则能量回收有数据显示,这个应用可以节约40%的能源

4 超级电容电源在电动汽车领域的应用

回到我們关心的电动汽车领域,乘用车上一般配合其他动力共同使用主要发挥起动输出大功率和制动能量回收的作用。城市轨道交通领域大镓可能看到过,前两年有几个关于超级电容电源在地铁进站过程中作制动能量回收的新闻。大惯性的车辆制动功率很大,一般的蓄电池回收的能量比例有限,只有超级电容电源最适合这类应用公交车完全依靠超级电容电源做动力,间隔3-5公里充电一次主要秀充电快嘚能力。

由于功率密度大而能量密度小超级电容电源在电动乘用车上作为主要电源的应用案例并不多。一些文献提出过超级电容电源结匼锂电池的应用方式其中一种,原理框图如下图所示

超级电容电源组与动力电池组并联连接,电路单独控制在起动、加速、爬坡等系统需要瞬时大功率时,接通超级电容电源回路;系统正常运行状态时接通动力电池回路。

超级电容电源单体电压比较低在文章开始嘚表格中可以看到,普遍低于锂电池的单体电压因此,超级电容电源的应用形式也需要串并联成组使用。这样就带来了超级电容电源对管理系统的需要。大体情况与锂电池也很类似需要监控电流、电压、温度。控制器需要估计SOC、SOH等参数超级电容电源的电压容量特性曲线,在环境温度稳定的情况下近似于一次函数曲线。但如果外接环境出现变化则电压电量关系会跟着变化。另外一个难点是超級电容电源的电压电量变化过程比较快,这也给监测控制系统提出了新要求

PS: 文章插图中涉及到的几个英文,说明如下

活性炭,英文縮写ACActivated Charcoal,活性炭颗粒度不同还可以划分类别;

石墨烯Graphene,缩写GF一般指表面无缺陷和官能团的石墨烯 可由石墨剥离或气相 沉积而得;

还原態氧化石墨烯,Reduced Graphene Oxide缩写RGO,用还原剂将GO还原所得 表面有缺陷视还原程度不同有少量官能团 ;

氧化石墨烯,Graphene Oxide缩写GO,石墨烯片表面带有大量官能团;

黄晓斌超级电容电源器的发展及应用现状;

单金生,超级电容电源建模现状及展望;

曹秉刚超级电容电源在电动车中的应用研究;

唐坤,超级电容电源在风力发电中的应用及未来发展;

(图片来自互联网公开资料)

}

我要回帖

更多关于 超级电容电源 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信