workbench mechanical水动心理压力测试图传递

ANSYS Mechanical在焊接仿真中的应用详细解析
焊接作为现代制造业必不可少的工艺,在材料加工领域一直占有重要地位。焊接是一个涉及到电弧物理、传热、冶金和力学等各学科的复杂过程,其涉及到的传热过程、金属的融化和凝固、冷却时的相变、焊接应力和变形等是企业制造部门和设计人员关心的重点问题。焊接过程中产生的焊接应力和变形,不仅影响焊接结构的制造过程,而且还影响焊接结构的使用性能。这些缺陷的产生主要是焊接时不合理的热过程引起的。由于高能量的集中的瞬时热输入,在焊接过程中和焊后将产生相当大的残余应力和变形,影响结构的加工精度和尺寸的稳定性。因此对于焊接温度场合应力场的定量分析、预测有重要意义。
传统的焊接温度场和应力测试依赖于设计人员的经验或基于统计基础的半经验公式,但此类方法带有明显的局限性,对于新工艺无法做到前瞻性的预测,从而导致实验成本急剧增加,因此针对焊接采用数值模拟的方式体现出了巨大优势。
ANSYS作为世界知名的通用结构分析软件,提供了完整的分析功能,完备的材料本构关系,为焊接仿真提供了技术保障。文中以ANSYS为平台,阐述了焊接温度场仿真和热变形、应力仿真的基本理论和仿真流程,为企业设计人员提供了一定的参考。
2 焊接数值模拟理论基础
焊接问题中的温度场和应力变形等最终可以归结为求解微分方程组,对于该类方程求解的方式通常为两大类:解析法和数值法。由于只有在做了大量简化假设,并且问题较为简单的情况下,才可能用解析法得到方程解,因此对于焊接问题的模拟通常采用数值方法。在焊接分析中,常用的数值方法包括:差分法、有限元法、数值积分法、蒙特卡洛法。
差分法:差分法通过把微分方程转换为差分方程来进行求解。对于规则的几何特性和均匀的材料特性问题,编程简单,收敛性好。但该方法往往仅局限于规则的差分网格(正方形、矩形、三角形等),同时差分法只考虑节点的作用,而不考虑节点间单元的贡献,常常用来进行焊接热传导、氢扩散等问题的研究。
有限元法:有限元法是将连续体转化为由有限个单元组成的离散化模型,通过位移函数对离散模型求解数值解。该方法灵活性强,适用范围广,因此广泛地应用于焊接热传导、焊接热弹塑性应力、变形和焊接结构的断裂分析等领域。
数值积分法:该方法采用辛普生法则等方式对很难求得原函数的问题进行积分求解,通过该方法避免了求解复杂的原函数问题,同时使用较少的点即可获得较高的精度。
蒙特卡洛法:该方法基于随机模拟技术,对随机过程的问题进行原封不动的数值模拟。
焊接模拟通常基于以上几种理论对焊接热传导、热弹塑性应力等问题进行模拟,而合理的选择热源函数和计算焊后应力等问题则需要设计人员选择合适的数学模型。
2.1 焊接数值模拟常用热源模型
焊接热过程是影响焊接质量和生产率的主要因素之一,因此焊接热过程的准确模拟,是准确进行焊接应力变形分析的前提。早期对于焊接热过程的解析,前人做了大量的理论研究工作,提出了多种热源分布模型:
集中热源:Rosenthai-Rykalin公式
该方法作为典型的解析方法,认为热源集中于一点,此方式仅对于研究区域远离热源时较为适用,同时此方法无法描述热源的分布规律,对于熔合区和热影响区影响较大。
平面分布热源:高斯分布热源、双椭圆分布热源
高斯分布热源
高斯热源分布假设焊接热源具有对称分布的特点,在低速焊接时,效果良好,焊接速度较高时,热源不再对称分布,误差较大。此方法适合于电弧挺度较弱及电弧对熔池冲击较小的情况。
高斯分布虽然给出了热源分布,但没有考虑焊枪移动对热源分布的影响。实际上,由于焊缝加热和冷却的速度不同,因此电弧前方的加热区域比后方的加热区域小。
双椭圆分布热源
体积分布热源:半椭球分布热源、双椭球分布热源
半椭球分布热源
对于熔化极气体保护电弧焊或高能束流焊,焊接热源的热流密度不光作用在工件表面上,也沿工件厚度方向作用。此时,应该将焊接热源作为体积分布热源。为了考虑电弧热流沿工件厚度方向的分布,可以用椭球体模式来描述
实际上,由于电弧沿焊接方向运动,电弧热流是不对称分布的。由于焊接速度的影响,电弧前方的加热区域要比电弧后方的小;加热区域不是关于电弧中心线对称的单个的半椭球体,而是双半椭球体,并且电弧前、后的半椭球体形状也不相同
双椭球分布热源
2.2 焊接变形模拟常用方法
由焊接产生的动态应力应变过程及其随后出现的残余应力和残余变形,是导致焊接裂纹和接头强度与性能下降的重要因素,因此针对焊接变形与残余应力的计算发展出了以下几种理论:
解析法:一维残余塑变解析法
该方法以焊接变形理论为基础,确定焊接接头收缩的纵向塑变与焊接工艺参数、焊接条件的关系,需要大量经验积累,此方法对规则等截面的梁型结构,较为适用
固有应变法:固有应变可以看成是残余应力的产生源
焊接时的固有应变包括包括塑性应变、温度应变和相变应变。焊接构件经过一次焊接热循环后,温度应变为零,固有应变就是塑性应变和相变应变残余量之和。焊接时,固有应变存在于焊缝及其附近,因此了解固有应变的分布规律就能仅用一次弹性有限元计算来预测残余应力大小及结构变形,但此方法同样着重与焊后结构的变形,属于近似方法,没有考虑整个焊接传热过程
热弹塑性有限元法:记录焊接传热过程,描述动态过程的应力和变形
热弹塑性有限元法首先进行焊接热过程分析,得到焊接结构瞬态温度场,再以此为结果,进行焊接应力和变形计算。由于该计算为非线性计算过程,因此计算量大,一般用来研究焊接接头的力学行为,而不用来进行大型复杂结构的整体研究
3 焊接仿真案例
3.1 基于ANSYS Workbench平台的焊接仿真
针对如下部件采用激光焊,以ANSYS Workbench为平台,模拟该模型的温度场变化和应力场变化情况。
ANSYS Workbench作为统一的多场分析平台,支持数据协同,因此在Workbench中建立该焊接分析的项目,如下图所示。
在本例中,仅以说明焊接仿真流程为例,因此材料假定为线弹性结构钢,在EngineerData中输入材料参数如下:
ANSYS Workbench以ANSYS Meshing为基础对模型进行网格划分,对于此模型中的两个焊接件和焊缝均以六面体方式进行划分,除此之外,软件还提供了大量的size funcon、局部控制等功能,针对不同特征的几何模型进行高质量的网格划分。
以Workbench平台以基础对焊接过程进行瞬态热分析需要用到基于ANSYS Workbench开发的Moving_Heat_Flux插件。该插件嵌入在Workbench界面中,提供了以平面高斯热源法为基础的移动热源分布方式,在该插件中用户可以指定焊枪移动速度、焊接电流、功率,焊接时间等参数。除此之外,进行传热过程分析,还需要输入瞬态热分析所需的其他边界条件如Convecon等。此案例中输入的焊接相关参数如下所示:
针对此类大规模仿真问题,建议使用HPC高性能计算,可以充分发挥计算机硬件性能,大幅度提高求解效率。最终针对该参数下的焊接瞬态热分析结果如下:
基于瞬态热分析之上,可以进行焊后应力分析。通过前述建立的ANSYS Workbench的耦合分析流程,通过import load方式将热分析温度场传递给结构场进行应力分析。
同时根据实际工况对该构件施加约束,进行应力分析,最终得到某一时刻应力云图如下所示:
3.2 基于ANSYS经典界面的焊接仿真
如前所述,在以Workbench为平台进行焊接仿真时存在诸多限制,例如无法选择其他形式的热源模型,因此用户可以基于ANSYS经典版进行焊接仿真。基于ANSYS经典版进行焊接仿真时,可以以命令流的方式进行,将焊接参数以参数方式读入,对于优化焊接分析,十分方便。
本例中,焊接温度场模拟采用焊板尺寸为200mmX200mmX6mm,试件材料为Q235A,材料参数如下表所示。为保证焊透,两块钢板开45&坡口。焊接方式采用电弧焊,焊接参数为:焊接电流180A,电弧电压20V,焊接速度4.8mm/s,焊接热输入0.75kJ/mm,焊接效率&=0.825,结构与空气的换热系数为15W/(m^2*℃)。
在ANSYS经典版中建立该构件的几何模型,采用solid70,建立好的模型如下图所示:
通过MP命令建立完整的材料参数表,如下图所示:
通过esize等命令,对该模型进行局部网格控制,生成六面体网格,并达到较高的网格质量。有限元模型如下:
本例中同样采用高斯热源方式进行模拟,相关焊接工艺以参数方式表达,为后期优化提供基础,典型的命令流如下:
对该模型底部施加固定约束,根据APDL中设定的求解参数进行迭代计算,迭代曲线如图所示:
经过求解计算后可以得到该焊接件的温度场分布云图,如下图提出的某时刻温度场分布云图:
通过以上介绍,以ANSYS软件为基础可以方便的进行焊接过程的温度场和应力场仿真,目前在Workbench中仅支持以插件的形式进行焊接仿真,并且只能考虑平面高斯热源的热源分布方式,如需考虑其他方式的热源方式,需要以ANSYS经典版为基础进行APDL编程,除此之外,用户还可以采用生死单元的方式进行焊接仿真,需要注意的是,生死单元的方式即通过控制单元生死的方式来模拟焊缝填充过程,采用该方式可以模拟较为复杂的热输入情况,由于热源分布与生死单元是两种不同的计算方式,因此不能叠加使用。
ANSYS软件通过完整的材料本构关系、求解能力,为焊接仿真提供了强有力的技术保障,因此设计人员可以以此进行焊接仿真,为电流、电压等焊接工艺参数的设置提供参考依据,从而合理优化焊接工艺。
关注电子发烧友微信
有趣有料的资讯及技术干货
下载发烧友APP
打造属于您的人脉电子圈
关注发烧友课堂
锁定最新课程活动及技术直播
仪表引压管、风管、穿线管的安装位置,应避免将来妨碍工艺生产操作,应避开高温腐蚀场所,应固定牢固;从上...
现时可穿戴装置、移动装置与及其他尖端产品越来越流行,要制造这些产品往往需要在柔性电路板上进行直接晶圆...
PCB表面需要焊接元件,就要求有一部分铜层暴露在外用于焊接。这些暴露在外的铜层被称为焊盘,焊盘一般都...
焊接工作岗位多为男士,而眼前这位长着一张娃娃脸、温婉秀气的“80后”女士,却是一名航天“焊将”。
掌握好焊接的温度和时间。在焊接时,要有足够的热量和温度。如温度过低,焊锡流动性差,很容易凝固,形成虚...
本文开始介绍了焊接原理及焊接工具,其次介绍了PCB双面回焊制程介绍及注意事项,最后介绍了双面电路板的...
本文开始介绍了电路板焊接技巧与焊接注意事项,其次介绍了双面电路板特性,最后详细介绍了双面电路板焊接方...
缝焊,焊件装配成搭接并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻...
超声波焊接是一种固相焊接方法,焊件之间的连接是通过声学系统的高频弹性振动以及在工件之间静压力的加持作...
重庆市安全生产监督管理局了解到,4月11日晚,重庆长安汽车五厂焊接车间桁架施工时发生倒塌,目前已导致...
FPC,柔性电路板。一根FPC的电路数量可以超过100根,但只占据了0.2mm的厚度。虽然比排线贵,...
很长一段时间以来,ARC公司无数的用户在使用公司的等离子焊接装置。等离子焊接法与激光焊接法相比很经济...
焊接:被焊工件的材质(同种或者异种),通过加热、加压,或两者并用,用或不用填充材料,使工件的材质达到...
针对此问题,研发了一种铜镍复合电极片,分别开有对应的通孔,通孔处有镍凸片用于与极柱进行焊接,从而兼具...
焊接厂本身无法逾越的环节就是PCB画图的环节。由于做电路设计的人往往不焊电路板从而无法获得直接的焊接...
波峰焊接是让插件板的焊接面直接与高温液态锡接触达到焊接目的,其高温液态锡保持一个斜面,并由特殊装置使...
从PCB设计到所有元件焊接完成为一个质量很高的电路板,需要 PCB设计工程师乃至焊接工艺、焊接工人的...
万用电路板是一种按照标准IC间距(2.54mm)布满焊盘、可按自己的意愿插装元器件及连线的印制电路板...
从制造的角度看,这款车的生产方式与其他汽车有着根本不同。由于铝合金材料对热较敏感,如果采用传统焊接工...
近年来,柔性电路板(FPC)成为印刷电路板行业增长最快的子行业之一。据IDTechEx公司预测,到2...
 在无铅波峰焊中我们常见的焊接缺陷与产生原因如下所述(只列举我们在生产中经常碰到的,大家在现实生产中...
波峰焊是将熔融的液态焊料,借助与泵的作用,在焊料槽液面形成特定形状的焊料波,插装了元器件的PCB置与...
从历史上看,电阻焊接一直有效地用于连接高电阻金属,例如,铁和镍合金,铜合金的导电导热性较高,使其焊接...
激光加工作为一种先进的制造技术,具有应用范围广、工艺灵活性好、加工精度高、质量好、生产过程清洁以及便...
贴片加工中电路板应能承受安装和工作中所受的各种外力和震动。为此电路板应具有合理的形状,板上的各种孔(...
有时候需要焊接家里的物品,或者是想要进行烙画时,就会需要用到一个电烙铁。要是正好家里没有呢?那就使用...
如何确保PP-R管材焊接质量呢?要选择质量合格的热熔焊机,热熔焊机的温度控制要正确,恒温时间要长。要...
本文为您介绍波峰焊平常使用会碰到的焊接问题,以及对应的焊接解决方法。
最近很多厂家都在拿车身工艺、焊接水平等等来提升自身的品牌和形象,消费者也越来越多的关注到除了动力、性...
最近,我很既伤心又彷徨,既震惊又恐惧,总言之,可谓百感交集。到底是什么原因使得作为一向以聪明自居的电...
进行贴片焊接有效的方式是拖焊。如果熟悉了拖焊,你基本可以使用一把烙铁 + 松香完成所有贴片的焊接。
采用红外测温仪可以实现在线焊接温度测量,并且可以进一步构成焊接温度自动控制系统。
Maxim的吉比特(千兆)多媒体串行链路(GMSL)方案可以对数字视频和音频数据进行串行转换,然后通...
图文教程:手把手教你焊接贴片元件,首先来张全部焊接一个点的PCB图
有数据显示,78% 的硬件失效是由于焊接问题导致,该文章主要分析主要由于焊接问题所导致的硬件失效及分...
你是否长时间纠缠于线路板的失效分析?你是否花费大量精力在样板调试过程中?你是否怀疑过自己的原本正确的...
PCB和元器件在焊接过程中产生翘曲,由于应力变形而产生虚焊、短路等缺陷。翘曲往往是由于PCB的上下部...
万用电路板俗称“洞洞板”。相比专业的PCB制版,洞洞板(万用电路板)具有以下优势:使用门槛低,成本低...
在网上看到的完美万能板制作,简直是艺术品。下面是作品,欣赏下吧,让你的眼睛舒缓下,同时也学习一下。
在实际操作中,还有一种非常简单适用的焊接方法:就是在 D15 两端的 5~10 脚焊接在一起做公共地...
对于贴片元件,可能有不少人仍感到“畏惧”,特别是部分初学者,觉得它不象传统的引线元件那样易于把握。这...
本文针对结构光主动视觉采集到的焊缝表面的激光条纹特征进行研究,提出了通过直线拟合和二次曲线拟合准确获...
在用波峰焊进行线路板组装的过程中,焊接桥连是经常出现的缺陷之一,要解决这一问题,除了改进工艺参数外,...
本系统专为焊接设计工作定制,对从事焊接构件设计的技术人员来说,可从繁琐的设计中解放出来,实现焊接设计...
压接工艺 无锡焊接是焊接技术的组成部分,其特点是不需要焊料和助焊剂即可获得可靠的连接,解决了被焊件清...
实用IGBT焊接电源方案及炸管对策!逆变电焊机=逆变焊接电源+焊接装置.只要做好逆变焊接电源,那么系...
白光(蓝光、绿光同白光)LED二极管在焊接的过程中请严格遵守以下要求操作:
1 沾锡作用2 表面张力3 金属合金共化物的产生4 沾锡角
插装元件的减少以及表面贴装元件的小型化和精细化,推动了回流焊工艺的不断进步,目前已取代波峰焊成为一种...
一、搭焊:两种被焊物搭接在一起,直接焊接。这种方法最常用,效率高、省时省事。但必须焊牢,若脱焊,被焊...
  本文介绍的智能控制单元采用数字信号处理器(DSP)及嵌入式实时操作系统完成各种数据的处理、通信和...
如何焊接VGA头
公头背面焊接点的顺序
适合激光焊接的材质
适合激光焊的材质有如下几种:
  1、模具钢。  S136,SKD-11...
光纤激光机器人切割焊接技术
1 系统的特点
  激光机器人切割焊接系统是在上海团结普瑞玛激光设...
常用手机焊接工具使用方法
主要学习以下几点
1、掌握热风枪和电烙铁的使用方法。2、掌握手机小元件
印刷电路板焊接缺陷研究&【摘 要】分析了印刷电路板(PCB)在焊接过程中产生缺陷的原因,提...
贴片元件焊接方法
1.1在焊接之前先在焊盘上涂上助焊剂,用烙铁处理一遍,以免焊盘镀锡不良或被氧化,...
焊接原理与焊锡性术语手册
1、Abietic Acid松脂酸是天然松香(Rosin)的主要成份,占...
焊接技术详细分析
&&&& &焊接实质上是将元...
电子管功放的焊接技术要领
由于电子管功放的零部件尺寸较大,而且接地线又与金属底板直接相通,焊接时的...
无铅技术现状及过渡阶段应注意的问题
摘要: 本文简要简绍了无铅技术发展的现状、国内军工企业面临的有...
表面贴装元件的手工焊接技巧
现在越来越多的电路板采用表面贴装元件,同传统的封装相比,它可以减少电路...
电子元器件的焊接要点及方法
用电烙铁焊接元件是基本的装配工艺,它对保证电子产品的质量起着关键的作用...
焊接机理完整版
润湿:在焊接过程中,我们把熔融的焊料在被焊金属表面上形成均匀、平滑、连续并且付...
焊接原理与焊锡性
1、Abietic Acid松脂酸是天然松香(Rosin)的主要成份,占其重量比...
半导体激光器在电子焊接领域的应用
高密度互连随着电子器件和集成电路的微型发展,使得传统的软熔焊接方...
贴片元件焊接图解教程
CO2焊接逆变电源及其智能模糊控制
摘要:在分析CO2焊接过程控制特点的基础上,设计了恒流型IGB...
一种更有效的焊接漆包线的钎焊工艺
日本日立高科技公司开发出一项钎焊技术可有效地焊接漆包线。工艺开始...
灰口铸铁焊接工艺综合实验一、实验内容1、实验理论方面不同的焊接线能量产生的焊接HAZ的组织不同,不同...
铝的焊接方法
1.铝及铝合金的焊接特点&&&&(1)铝在空...
选择性焊接的工艺流程及特点
插装元件的减少以及表面贴装元件的小型化和精细化,推动了回流焊工艺的不断...
如何解决PCB组装中焊接桥连缺陷
印刷线路板组装包含的技术范围很广,从单面通孔插装到复杂的双面回焊...
链条焊接控制电路
什么叫焊接?什么是焊接?
焊接的定义:
焊接是通过加热、加压,或两者并用,用或不用填充材料,使
什么是无铅焊接
目前,关于无铅焊接材料和无铅焊接工艺的信息已经很多,对于需要开发无铅焊接工艺的工厂...
回流焊接工艺本文介绍对于回流焊接工艺的经典的PCB温度曲线作图方法,分析了两种最常见的回流焊接温度曲...
供应链服务
版权所有 (C) 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-workbench Mechanical17.0特征值屈曲和子模型_图文_百度文库
您的浏览器Javascript被禁用,需开启后体验完整功能,
享专业文档下载特权
&赠共享文档下载特权
&100W篇文档免费专享
&每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
workbench Mechanical17.0特征值屈曲和子模型
阅读已结束,下载本文需要
定制HR最喜欢的简历
下载文档到电脑,同时保存到云知识,更方便管理
加入VIP
还剩31页未读,
定制HR最喜欢的简历
你可能喜欢workbench和mechanical APDL(ansys)的联合使用-360文档中心
360文档中心免费免积分下载,各行业
知识、技术、信息等word文档下载网站
workbench和mechanical APDL(ansys)的联合使用
workbench和mechanical APDL(ansys)的联合使用
免费下载该文档:
workbench和mechanical APDL(ansys)的联合使用的相关文档搜索
(workbench和ansys的联合使用) - Mechinical APDL(ansys)和workbench的联合 使用 ① Mechinical APDL网格导入workbench ②M...ANSYS APDL与ANSYS Workbench区别 - workbench 和 mechanical_APDL(ansys)的联合使用 1、mechanical APDL 是 ANSYS ...Ansys workbench mechanical官方教程及用法大全_机械/仪表_工程科技_专业资料。ANSYS R12 New N F Features t M h i l Mechanical Capabilities ? 2009 ANSYS, ...ANSYS_Workbench与ANSYS_APDL中轴承模拟方法的对比_机械/仪表_工程科技_专业资料...[3] ANSYS Mechanical APDL 16.1,有限元分析软件,ANSYS Inc. [4] 袁寿其,...– 数据综合应用: 目前的应用包括 Mechanical, Mechanical APDL, Fluent, CFX, AUTODYN 和其他。 本地应用 数据综合应用 1-3 简介 C. ANSYS Workbench - ...在 ANSYS WORKBENCH 中为 LS-DYNA 准备输入文件*.k (2)使用 ANSYS APDL ...(1.4)双击 model,进入到 mechanical 中。 (1.5)设置油壶,润滑油以及地面的材料...联合ANSYS WORKBENCH 和经典界面进行后处理前面几篇文章已经提到过,ANSYS WORK...为了方便,把 file.rst 拷贝到 D 盘的根目录下,然后启动 ANSYS APDL,即 经典...APDL 和ANSYS WORKBENCH数据模型互换_计算机软件及应用_IT/计算机_专业资料。APDL 和ANSYS WORKBENCH数据双向交换 APDL 和 ANSYS WORKBENCH(AWE)数据模型互换 1.AWE ...ANSYS Mechanical APDL Introductory Tutorials v15.0_工程科技_专业资料。ANSYS ...ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager,...ANSYS Mechanical2015_建筑/土木_工程科技_专业资料。...2011 ANSYS, Inc. April 11, 2016 Workbench -...材料与求解器的强大优势 APDL 语言为高级用户提供...ANSYS13 workbench 的Mechanical界面如何调整_百度知道
ANSYS13 workbench 的Mechanical界面如何调整
如下图,Graph界面弄到了右侧,只有鼠标滑到右边时,模型才会出现,而且这个窗口没有标题栏,无法像其他窗口一样移动,请问如何恢复默认排布。...
如下图,Graph界面弄到了右侧,只有鼠标滑到右边时,模型才会出现,而且这个窗口没有标题栏,无法像其他窗口一样移动,请问如何恢复默认排布。
答题抽奖
首次认真答题后
即可获得3次抽奖机会,100%中奖。
采纳数:1475
获赞数:1770
点击 view-----windows-----reset
为你推荐:
其他类似问题
您可能关注的内容
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。当前位置: >>
Ansys workbench mechanical官方教程及用法大全
ANSYS R12 New N F Features tM h i l Mechanical Capabilities? 2009 ANSYS, Inc. All rights reserved.1ANSYS, Inc. Proprietary R12 Highlights in Mechanical Capabilities ? New Element Technology ? Advances in Contact Modeling ? Additional Material Models ? Solver Performance Enhancements ? Rigid and flexible dynamics ? Explicit dynamics? 2009 ANSYS, Inc. All rights reserved.2ANSYS, Inc. Proprietary ELEMENT TECHNOLOGY? 2009 ANSYS, Inc. All rights reserved.3ANSYS, Inc. Proprietary Current-technology elementsCategory Solid Elements PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, SOLID285 SOLID223, SOLID226, SOLID227 SHELL181, SHELL208, SHELL209, SHELL281 SOLSH190 BEAM188, BEAM189 LINK180 PIPE288, PIPE289 ELBOW290 USER300 REINF264,REINF265 Category Interface / gasket C h i Cohesive Target Contact Constraint/ Joints General Axisymmetric p purpose p p Special Elements INTER191 C INTER195 INTER202 - INTER205 INTER20 TARGE169, TARGE170 CONTA171 - CONTA177, PRETS179 MPC184 SOLID272, SOLID273 SURF151 C SURF156, , FOLLOW201, Discrete ElementsCoupled Physics Shell Solid-Shell Beam Link Pipe Elbow User Element Reinforcement? 2009 ANSYS, Inc. All rights reserved.4ANSYS, Inc. Proprietary New Element TechnologyNew 4-noded Tetra element : SOLID285fInternal DOFs4(u x , u y , u z , p)DOF: Displacements & Hydrostatic Pressure Stabilized formulation to satisfy LBB check1(u x , u y , u z ) e(u x , u y , u z , p)(u x , u y , u z , p)Stru uctura al Mec chani ics3f(u x , u y , u z , p)Benefits f Can C b be used dt to mesh h complex l geometries ti f Element is less sensitive to distortion f Vital to rezoning and nonlinear adaptivity analysis Applications ppf f2Automotive Suspension MountGood for incompressible materials Ideal for Forming and Hyperelasticity5ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved. New Element TechnologyGeneral Axi-symmetric Element: 272/273fB3D elements generated based on 2D mesh Boundary conditions applied in 3D space Nonlinearities, Node to surface contactAI JLY’Z’ K X’Stru uctura al Mec chani icsf fBenefitsf f fMultiple Axis can be defined in any direction Take advantage of axi-symmetry but deformation is general in 3D 1 element in Θ (hoop) directionApplication f Detailed simulation of threaded connections f Bio-Medical: Tooth implanting3D view of shaft6ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved. Example: Cam-Shaft3D elements Cams meshed with SOLID272Shaft Valve Ball ValveFULL 3D : 13.7 hrs? 2009 ANSYS, Inc. All rights reserved.SOLID272:7hrsANSYS, Inc. Proprietary New Element Technology3D Finite-strain Element: PIPE288/289 f Linear or quadratic pipes in 3D f Thin pipe (plane stress) and Thick pipe (3D stress) option f Internal fluid and external insulation Benefits f Increased accuracy f Robust nonlinear infrastructure including stabilization f Hydrostatic, current, and wave loading Application A li ti f Slender or stout pipe like structures f Undersea piping and cabling cabling, f Chemical, Nuclear Power Industry,8ANSYS, Inc. ProprietaryPipe p 288Stru uctura al Mec chani icsPipe 289Piping Assembly? 2009 ANSYS, Inc. All rights reserved. New Element TechnologyNew Curved Pipe Element: ELBOW290 f Internal nodes for C/S deformation f C/S Deformation with Fourier series f Radial expansion, expansion ovalization & warping f Follower effects of distributed pressures Benefits f Accurate and easy to use f Supports pp layered y cross-section f Broad nonlinear material library f 3D Visualization Applications f Accurate modeling of curved pipe structures f Composite pipes, cables, nuclear piping9Stru uctura al Mec chani icsWarping & Ovalization? 2009 ANSYS, Inc. All rights reserved.ANSYS, Inc. Proprietary New Element Technology3D discrete Reinforcement: REINF264 f Reinforcing fibers modeled with embedded reinforcing elements f Fibers can be oriented arbitrarily f Reinforcement can account for a variety of nonlinear behavior Benefits f Explicit & accurate modeling of reinforcements f Predict stresses in reinforcements separately f Allows for “tension-only” treatment Application f Tire Ti i industry, d t Bi Biomedical di l d devices i f Aerospace, Civil engineering10ANSYS, Inc. ProprietaryStru uctura al Mec chani icsDiscrete Reinforcements? 2009 ANSYS, Inc. All rights reserved. CONTACT MODELING? 2009 ANSYS, Inc. All rights reserved.11ANSYS, Inc. Proprietary Contact element libraryTechnologySliding General friction (TB,USE) Pure Lagrange Augmented Lagrange Lagrange (Normal)/ Penalty (Tangent) MPC Contact Stiffness Lower-Order Higher-Order Higher Order Rigid-Flexible Flexible-Flexible Thermal Contact Electric/Magnetic Contact? 2009 ANSYS, Inc. All rights reserved.Node-toN d Node 178SMALL Y Y Y YNode-toS f Surface 175LARGE Y Y Y Y YSurfaceto-Surface 171-174LARGE Y Y Y Y Y AUTO Y Y Y Y Y YLine-toLi Line 176LARGE Y Y Y Y Y AUTO Y Y Y Y Y YLine-toS f Surface 177LARGE Y Y Y Y Y AUTO Y Y Y Y Y YANSYS, Inc. ProprietarySEMI-AUTO YAUTO Y Y (2D)Y YY Y Y Y12 Advances in Contact ModelingFluid Pressure Penetration Support f Model fluid penetrating 2 contact surfaces f 2D/3D surface-to-surface contact pair f Small and large sliding contact f Rigid-flexible and flexible-flexible contact Usage f Pressure applied normal to contact & target elements f Can be cut off when contact is restored or contact pressure is larger than the fluid pressure Applications f Post-Leakage simulation f Sealing performance evaluation13Fluid pressure is appliedStru uctura al Mec chani icsFluid pressure is Not appliedSealsANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved. Advances in Contact ModelingContact Performance Enhancements f New Contact search algorithm f Smart over-constraint elimination & display f New Contact pair trimming logic f Solver files size reduced by 50% Benefits f Speed improved by 1x-200x f Computation time reduced f Less Disk I/O observed Applications f Most problems involving contacts should observe speed improvements f Problems involving bonded MPC contacts14ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.Stru uctura al Mec chani ics Contact Speed-up ExampleBOOTSEAL 3D Elem: 11090 Nodes: 5040 Dofs: 30240 Rigid-Deformable +Self Contact 11.0 12.0 speedupBoot SealContact database Contact Search Contact Elements Other Elements Eq. Solver Total CPU Elapsed Time No. of Iterations No. of Substeps? 2009 ANSYS, Inc. All rights reserved.11.72 .64 .77 7 246 420.216 75.64 188.95 .35 8 240 431554.26 45.80 2.67 2.13 1.30 3.29 3.30 1.02 0.97ANSYS, Inc. Proprietary Contact Performance: Nonlinear Customer ModelElems:49701 Nodes:67582 Dofs: 405492CPU V110 V120Contact C t t Searching372s60 6 60.6sContact Elements1488s791sWall time167455s12141s? 2009 ANSYS, Inc. All rights reserved.16ANSYS, Inc. Proprietary Performance & Efficiency? New contact pair trimming logic C The CNCHECK command has new options for removing i (TRIM) or unselecting l ti (UNSE) contact t t and d target elements which are initially in far field. The new capabilities improve solution efficiency for small sliding contact or assembly contact, especially in Distributed ANSYS runs.Before trimmingAfter trimming? 2009 ANSYS, Inc. All rights reserved.17ANSYS, Inc. Proprietary Performance & Efficiency? New contact pair trimming logicBefore trimmingAfter trimming A benchmark test from John Deere No TRIM 2CPU 4CPU 8CPU18A benchmark test from a German user 8CPU No With TRIM TRIM Elements Wall time? 2009 ANSYS, Inc. All rights reserved.With TRIM587
ANSYS, Inc. Proprietary Advances in Contact ModelingFriction Definition Improvements f Tabular data for μ with up to 2 fields, eg. temperature, pressure, sliding velocity etc. f USERFRIC : A general API for user user-defined defined friction definitions Benefits f Account for complex friction behavior f Support friction definitions that do not follow Coulombs law of friction Applications f Wear or bearing analysis f Pipeline on a sea bed f Brake B k Squeal S l analysis l i19ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.Stru uctura al Mec chani ics Example: Pipeline on a Seabed? Straight Pipe on a seabed ? Qualitative comparison to a NAFEMS publication ? Similar Trends observed? 2009 ANSYS, Inc. All rights reserved.20ANSYS, Inc. Proprietary Advances in Contact ModelingEnergy & Momentum Conserving Contact f It imposes additional constraints on relative velocities in interface. f It satisfies momentum and energy balance for the contact/target interface. Benefits f Predict duration of contact & the rebound velocities after separation more accurately f Very little energy gain or loss Applications f High speed impact f Rigid-to-rigid contact in MBD f Dropping D i t tests t21ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.Stru uctura al Mec chani ics Advances in Contact ModelingMany Misc. Contact ImprovementsfStru uctura al Mec chani icsModeling Rigid Bodies with Rigid Target Surfaces Boundary Conditions on any rigid target nodes Force distributed distrib ted s surface rface constraint” (RBE3) under large rotationfffNew shell shell-shell shell & shell-solid shell solid constraint type Benefits/Applications Significant robustness improvement Better performance for MBD analysis & CMS22ANSYS, Inc. Proprietaryf f? 2009 ANSYS, Inc. All rights reserved. SOLVER TECHNOLOGY? 2009 ANSYS, Inc. All rights reserved.23ANSYS, Inc. Proprietary Advances in Solver Technology2D Rezoning Enhancements f Allow to read in generic mesh from a third party mesher in rezoning f Allow user to split selected elements to refine mesh in rezoning f Automatically create transition region meshes h Benefits f Provides flexibility in remeshing f Solve problems otherwise can not be solved Application f Any large deformation analyses f Forming F i and d rubber bb sealing li simulation i l ti24ANSYS, Inc. ProprietarySealing Applications? 2009 ANSYS, Inc. All rights reserved.Stru uctura al Mec chani ics Advances in Solver TechnologyNew SNODE Solver for Modal Analysis f Splits FE matrix in to smaller pieces C SuperNodes f Solves reduced Eigen-value Eigen value problem f Transforms eigenvectors back to the original FE domain Benefits f Ideal for & 3 mil. DOFs , &500 modes f Non-iterative C i.e. will not fail to converge f Does not miss modes Applications A li ti f Beam-Shell or thin geometries f Automotive, Aerospace f High frequency response analysis, etc.2580000Stru uctura al Mec chani icsBlock Lanczos Supernode60000CPU Time e40000200000 100 00Number of ModesSingle Xeon 3.4 GHz processor ?17+ hours reduced to ~1 hour ?7 TB of I/O reduced to &300 GBANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved. Advances in Solver TechnologyMany Misc. Solver ImprovementsfStru uctura al Mec chani icsVT applied to Complex Eigen solver: Frequency Derivative Algorithm used DSPARSE solver supports unsymmetric matricesfBenefits/ApplicationsSolu ution time ef fSignificant improvement in solve speed Better performance for large number of contact pairs & constraints 00 00 Lanczos FDElapsedCPU? 2009 ANSYS, Inc. All rights reserved.26ANSYS, Inc. Proprietary Advances in Solver TechnologyDANSYS Improvements f Support HF-EMag calculations f PSTRESS, PSOLVE support f Cyclic Symmetry supportRepresentative Geometryuctura al Mec chani ics StruBenefits f More problems can take advantage of Parallel solvers 20 % f Scalability of solves improved by 10 10-20 Applications pp f Problems involving stress stiffening f Rotardynamics problems f EMAG problems27Machine Problem SizeWin x64 CCS 480K DOFCPUs Time (hr)1 2 4 836 36.7 7 22.3 14.5 8.4ANSYS, Inc. ProprietaryBolted Joints, N/L Contact, Contact Thermal loads Unsymmetric option? 2009 ANSYS, Inc. All rights reserved. DANSYS: Benchmarks on Win CCSDANSYS Revised Benchmark Set SpeedupsIntel Cluster Ready, 4 nodes 3 Ghz dual cores, 16 Gb, TCP interconnect6 5 4Universal Joint 400k DOF Small DSP sparse Gas-Struct 1M DOF Thermal JCG Carrier Model 2 M DOF PCG msave,on Block Assembly y 5M DOF Large g PCG msave,on Wing Model 1M DOF Lanpcg 10 Modes Wing Model 5M DOF PCG msave,offSpe eedup3 2 1 0 1 2 4 8 12 16Number of Processors? 2009 ANSYS, Inc. All rights reserved.28ANSYS, Inc. Proprietary LINEAR DYNAMICS? 2009 ANSYS, Inc. All rights reserved.29ANSYS, Inc. Proprietary Advances in Linear DynamicsRotordynamics Improvements f Gyroscopic effect for shells and 2D planar elements f Rotating damping to model hysteretic damping in material Benefits f Versatility in modeling rotating shell and 3D axi-symmetric structures. f Rotating damping model enables rotor instability predictions. Applications f Aero gas turbine engines. f Electrical motors, pumps, etc f Computer disk drives30ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.Stru uctura al Mec chani ics Advances in Linear DynamicsPSD (random vibration) Enhancements f Increased # of input PSD points - no longer limited to 50. f Improved performance of mode combination in spectrum analysis. f Number of modes that can be combined increased from 1,000 to 10,000 Benefits f Usability of random vibration features. f Performance improved Applications f Structures subject to random vibration such as aircrafts aircrafts, automobiles automobiles, et al. al31ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.Stru uctura al Mec chani ics Boundary Conditions and LoadingImprovements to PSD AnalysisfBase excitation: Individual or ALL Goodness of fit for PSD data Response PSD Results availableR Response PSD result lStru uctura al Mec chani icsf fApplications f Predict Dynamic y response p of a structure f seismic loading f Loading due to Ground transport f Machine operation? 2009 ANSYS, Inc. All rights reserved.32ANSYS, Inc. Proprietary Advances in Linear DynamicsSpectrum Analysis Improvements f Missing Mass and Rigid response method supported f Residual vector method extended to Spectrum analysis Benefits f Accurate representation of higher frequency content on structural response. f Missing Mass method meets NRC requirements Applications f Random vibration response prediction on airborne structures, nuclear reactors, et al al.Courtesy: NASA? 2009 ANSYS, Inc. All rights reserved.Stru uctura al Mec chani ics33ANSYS, Inc. Proprietary Advances in Linear DynamicsHarmonic Analysis Enhanced f Cyclic Symmetry now supports Harmonic Analysis. f Variational Technology (VT cyclic) based modal cyclic solve approach Benefits f Vibration response of cyclic structures subject to harmonic excitation. excitation f VT cyclic gets 3 C 4 X speed up of modal cyclic solution. Applications f Aero gas turbine engine design, electric motor / generator design34Stru uctura al Mec chani icsModal Cyclic SymmetryElapsed (sec) Standard Win32 Linux 64
VT 533 406 ~ 5.5 ~ 3.2Ratio? 2009 ANSYS, Inc. All rights reserved.ANSYS, Inc. Proprietary Advances in Linear DynamicsModal Superposition Enhancements f Harmonic & Transient performance improved, Results expansion pass f Tabular load as a function of frequency f Multiple load vectors supported for Mode Sup. Harmonic & Transient Benefits f Ability to solve very large models. f Ease of applying frequency dependent loading. f Improved usability of MSUP methods in ANSYS and ANSYS WB environment. Applications f Very V large l structures, t t for f example, l in i nuclear industry, space applications etc.35Stru uctura al Mec chani icsCircuit BoardNo. of equations No. of Modes A l i Analysis No. of Threads11.0SP1 CP (hr) Elapsed (hr) ~ 14.4 ~ 12.35 PSD 212.0 ~ 4.4 ~3ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved. Advances in Linear DynamicsPSOLVE Method for Brake Squeal f Linear QR damped modal analysis with PSOLVE f Improved performance of QR damp eigensolver f Contact element enhancements for sliding f i ti modeling friction d li Benefits f Significantly faster problem setup due to flexibility of contact modeling f Taking advantage of advanced contact biliti t d lb k squeal l capabilities to model brake Applications f Instability prediction in automotive and aircraft landing gear brakes36Brake Assemblyuctura al Mec chani ics StruFull New Linear Nonlinear Method CP (min) ~ 66.6 ~ 13.3ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved. MATERIALS TECHNOLOGY? 2009 ANSYS, Inc. All rights reserved.37ANSYS, Inc. Proprietary New Material Models AddedRate Dependent Chaboche Plasticity ModelfStru uctura al Mec chani icsBased on Chaboche Nonlinear Kinematic Hardening model Plastic Strain Rate-dependent effects Captures cyclic hardening & softeningf fApplications/Benefitsf f fApplicable for turbine and engine design Simulation of Ratcheting and Shakedown Strain rate dependent applications: for ex ex. Impact simulationsStre ess 3.E+08 2.E+08 1.E+08 0.E+00 -1.E+08 -2.E+08 -3.E+08 -0.015 0 015 -0.010 0 010 -0.005 0 005 0.000 0 000 0.005 0 005 0.010 0 010 0.015 0 015 Displacement? 2009 ANSYS, Inc. All rights reserved.38ANSYS, Inc. Proprietary New Material Models AddedImproved Extended Drucker-Prager modelfStructure OceanStru uctura al Mec chani icsInclude creep effect for all options except CAP option Capture strain rate effect of a geological materialfApplications/BenefitsfAnalyze geological materials that exhibit pressure dependency such as sand soil sand, soil, ceramics etc etc.? 2009 ANSYS, Inc. All rights reserved.39ANSYS, Inc. Proprietary New Material Models AddedNew Bergstr?m-Boyce ModelfCombines Hyperelastic & Viscoplastic effects The model decomposes the mechanics response of material into two distinct networks: A: time-independent B: time-dependent. pStru uctura al Mec chani icsfBio -TissuesApplications/BenefitsfAccurately capture material behavior under various loading conditions Model hysteretic behavior of Elastomers under large strain deformation Simulation of Polymers, Elastomers, Plastics, Bio-tissues which are strain-rate dependent40ffKeyboardANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved. New Material Models AddedNew Elastomer Damage ModelfBased on Ogden-Roxburgh model A continuum damage model for rubber like material Isotropic damage assumptionReaction Forces soften with the 2nd load cycleStru uctura al Mec chani icsffBenefits/Applicationsf f fC t Captures cyclic li softening ft i of f elastomers l t Simulation of Mullins effects Applicable to rubber like materials such as polymers, elastomers, plastics and etc.? 2009 ANSYS, Inc. All rights reserved.41ANSYS, Inc. Proprietary New Material Models AddedAnands Viscoplasticity ModelfStru uctura al Mec chani icsImplemented for current generation elements Unified viscoplastic constitutive model Includes an internal state variable - the deformation resistance No yield surface Highly nonlinear large deformation problems High Hi ht temperature t metal t lf forming i simulations Electronic Packaging, g g, Solder j joint simulation42ANSYS, Inc. Proprietaryf f fBenefits & Applicationsf f fMetal Forming Applications? 2009 ANSYS, Inc. All rights reserved. Fracture Mechanics ImprovedEnhancements to J-integral CalculationsfStru uctura al Mec chanicsThermal strain is automatically included in the J-Integral calculation Surface pressure load on element surfaces or edges is automatically included in the J-Integral g calculationfBenefits/ApplicationsfProvide accurate estimation of J-Integral when there are thermal strain and surface pressure on crack k faces f Structural integrity assessments Nuclear reactor safety analysis43Spot Weld Failure Analysisf f? 2009 ANSYS, Inc. All rights reserved.ANSYS, Inc. Proprietary Example: Turbine Blade CrackAnalysisPenny CrackPRCINT prints calculated J-Integral values to Solution Information Window? 2009 ANSYS, Inc. All rights reserved.44ANSYS, Inc. Proprietary Fracture Mechanics ImprovedMixed Mode Stress Intensity Factors f Based of Interaction integral approach by Gosz and Moran f Minimum input f Crack front/tip nodes f Crack plane normal or extension direction f Number of contours Benefits f Much easier to use f Improved p accuracy y observed Applications f Mixed mode stress intensity factor calculation , Safety analyses45ANSYS, Inc. ProprietaryStru uctura al Mec chani icsStress Intensity Factor calculation? 2009 ANSYS, Inc. All rights reserved. Advanced Analysis FunctionsImprovements in Initial StatefSupport Initial strains Support Plastic stress and strainStru uctura al Mec chani icsfBenefits/Applicationsf f f f fA l i of Analysis f residual id l stress/strain t / t i Analysis of Weldment with residual stress Transfer state of a 2D analysis to 3D Start in 2D and continue analysis in 3D Pre-stressed modal, Transient type analysis? 2009 ANSYS, Inc. All rights reserved.46ANSYS, Inc. Proprietary RIGID AND FLEXIBLE BODY DYNAMICS? 2009 ANSYS, Inc. All rights reserved.47ANSYS, Inc. Proprietary Rigid DynamicsBushing Joint ? Free motion in some directions, constrained in others ? Elastic and damping forces in constrained directions Benefits ? Add flexibility at joints w/o large CPU cost ? Add realism to rigid simulations Applications ? Suspensions S i ? Pivots with compliance ? Vibration isolation48ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.R Rigid Dynamics Rigid/Flexible DynamicsStops and Locks ? All Translational DOF’s ? Single rotational axis jointsR Rigid DynamicsBenefits ? Simplifies mechanism modeling ? Much requested feature ? Faster F t than th modeling d li contact t t Applications ? Travel limiters ? Non-moving impact points? 2009 ANSYS, Inc. All rights reserved.49ANSYS, Inc. Proprietary Rigid DynamicsRemote Loads ? Remote displacements ? Remote forces now supportedR Rigid DynamicsBenefits ? Much requested feature ? Allows load input w/o requiring geometry Applications ? Partial assembly modeling ? Inverse Dynamics? 2009 ANSYS, Inc. All rights reserved.50ANSYS, Inc. Proprietary Rigid DynamicsSpring Preload ? Specify free spring length ? Specify preloadR Rigid DynamicsBenefits ? More realistic modeling of spring mechanisms Applications ? Valve trains, ? Plungers, ? Solenoids? 2009 ANSYS, Inc. All rights reserved.51ANSYS, Inc. Proprietary Rigid DynamicsRedundancy Analysis and Repair ? Troubleshooting tool ? Common problem with mechanism models Benefits ? Points out over constrained joints ? Allows selective unconstraining ? Help H l prevent t problems bl going i f from Rigid to Flex pp Applications ? All but the very simplest mechanisms ? All models d l that th t will ill b be solved l di in fl flex dynamics52ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.R Rigid Dynamics Flexible DynamicsComponent Modal Synthesis ? Uses substructuring approach ? Standard command objects ? Requires R i li linear materials t i l ? Large rotation/translation Benefits ? Potentially huge time savings ? CMS for linear parts or model, flex for others Applications ? Mechanisms and machines with linear materials ? Non-contact Non contact dominated parts of assembly53Fle exible e Dynamics sRigid g Flexible Flexible Flexible Flexible Flexible Dynamics Dynamics Dynamics Dynamics Dynamics Dynamics Rigid Full Mesh CMS CMS Full Mesh Parts 7 60 ~75k ~75k ~1 mill ~1 mill Total # DOF 625 0 1015 ??? Total Iterations N/A N/A N/A 27 s 24 min N/A Time for Gen N/A N/A N/A 25 s 1 min N/A Time for Use N/A N/A N/A N/A Time for Exp 1s 60 s 217 min 52 s 25 min Too long! Total Time? 2009 ANSYS, Inc. All rights reserved.ANSYS, Inc. Proprietary EXPLICIT DYNAMICS? 2009 ANSYS, Inc. All rights reserved.54ANSYS, Inc. Proprietary ANSYS Explicit STRNew Product at 12.0 ? Access within ANSYS Workbench ? Familiar user interface ? ANSYS AUTODYN solver Benefits ? WB native, , data sharing g with other WB applications ? Short learning curve for WB users, easiest explicit to learn ? Mature element/solver technology Applications pp ? Impact events ? Highly nonlinear events ? Very short transients ? ALL industries55ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.t Dynamics s Ex xplicit ANSYS Explicit STRMaterials ? Solids S lid ? Rigid and flexible ? Linear/nonlinear ? Erosion ? Failure Benefits ? WB native engineering data easily accessed ? Easy to customize material to match application, or to try what-ifs Applications ? Impacts, drop tests ? Rubber, foam, steel, R bb ceramic, i f t l etc. t ? All solid material industries56ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.t Dynamics s Ex xplicit ANSYS Explicit STRMeshing ? Solids/shells/beams ? Patch dependent and independent ? Swept meshing ? Explicit preference Benefits ? Simulation-based meshing ? Short learning curve from implicit experience i Applications ? Construction/agri equipment ? Automotive/defense? 2009 ANSYS, Inc. All rights reserved.Ex xplicit t Dynamics s57ANSYS, Inc. Proprietary ANSYS Explicit STRConnections ? Body interaction definitions ? Contact regions ? Frictionless/frictional, F i ti l /f i ti l static/dynamic t ti /d i ? Eroding contact Benefits ? Simple/automated definition ?E Ease of f use WB f famous f for ... Applications ? Impacts I t across all ll industries i d ti ? Low velocity to high velocity ? Manufacturing, Manufacturing defense industries58ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.t Dynamics s Ex xplicit ANSYS Explicit STRConnections ? Breakable bonded contact ? Breakable spot welds ? Force F and d stress t failure f il criteria it i Benefits ? Connect dissimilar meshes ? Model conditional connections ?M Model d l connection ti f failures il Applications L i t d components t ? Laminated ? Spot weld/rivet connections ? Glue joints ? Critical in nuclear industry59ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.t Dynamics s Ex xplicit ANSYS Explicit STRConnections ? Discrete reinforcement ? Tie line bodies to interior of solid bodies ? Use any material for solid and line Benefits ? Independent mesh for solid and volume ? Trivial to set up models A li ti Applications ? Reinforced concrete structures ? Steel reinforced rubber ? Civil, nuclear, automotive60ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.t Dynamics s Ex xplicit ANSYS Explicit STR - Applications ? Applications C Electronics? 2009 ANSYS, Inc. All rights reserved.61ANSYS, Inc. Proprietary ANSYS Explicit STR - Applications ? Applications C Aerospace? 2009 ANSYS, Inc. All rights reserved.62ANSYS, Inc. Proprietary ANSYS Explicit STR - Applications ? Applications C Nuclear p power safety y? 2009 ANSYS, Inc. All rights reserved.63ANSYS, Inc. Proprietary ANSYS Explicit STR - Applications ? Applications C Homeland security y? 2009 ANSYS, Inc. All rights reserved.64ANSYS, Inc. Proprietary ANSYS Explicit STR - Applications ? Applications C Sporting p gg goods? 2009 ANSYS, Inc. All rights reserved.65ANSYS, Inc. Proprietary ANSYS AUTODYNTrajectory Contact ? Trajectory T j contact ? Penalty and energy conserving ? Solids/shells/beams/SPH ? Static/dynamic friction ? Option to fix initial penetrations Benefits ? P better suited to work with CAD geometry ? Efficiency improvements Applications ? Mid-high speed Impact events ? Explosive & complex FSI problems ? Defense industry standard improved66ANSYS, Inc. Proprietary? 2009 ANSYS, Inc. All rights reserved.t Dynamics s Ex xplicit R12 Summary? Continued Innovation in Element Technology ? Additional Productivity with Native Workbench Features ? Committed to Advanced Solver Performance ? New Framework for Multiphysics Simulations? 2009 ANSYS, Inc. All rights reserved.67ANSYS, Inc. Proprietary THANK YOU? 2009 ANSYS, Inc. All rights reserved.68ANSYS, Inc. Proprietary
启动ANSYS workbench,点击 Tools(工具) ,选择 ...这里暂定为 20 点击 Mechanical APDL (机械设计 ...ANSYS Workbench系列教程课程 3
课时数1课时 在学人数963人价格: 免费 立即学习 简介 目录 评论(15) 立即学习 免费 课程概述 讲解ANSYS workbench系列课程包含的...ANSYS WORKBENCH教程_计算机软件及应用_IT/计算机_专业资料。workbench入门教程 Workbench 教程 分析步骤 操作实例 文档贡献者 stonesteal 贡献于 ...Mechanical APDL 机械 APDL 命令 Mechanical Model 机械分析模型 Mesh 网格划分...ANSYS Workbench V14.0 ... 9页 2下载券
清华大学ansys基础教程 17页 1下载...ansys workbench热分析教程 - Workbench - Mechanical Introduction 第六章热分 析 6-1 热分析 概念 ? 本章练习稳态热分析的模拟...Ansys workbench 结果背景调成白色的方法_计算机软件及应用_IT/计算机_专业资料。Ansys workbench 结果背景调成白色的方法 1. 更改颜色:如下 tools--options 2. ...最符合ansys workbench 使用的中英文对照表 ...Mechanical APDL Mechanical Model Mesh Results ...ANSYS教程(非常有用) 15页 2下载券
ansys菜单翻译...1、 ANSYS15 Workbench 界面相关分析系统和组件说明 ...Mechanical APDL 机械 APDL 命令 Mechanical Model ...推荐使用“1“级别细化。这使 单元边界划分为初始...workbench 和 mechanical_APDL(ansys)的联合使用 1、mechanical APDL 是 ANSYS 的经典界面,通常所说的 ANSYS 指的就是这个经典界面,大多数教材介绍 ANSYS 时也是...ANSYS Workbench软件仿真及应用教程 - 本教程偏重于示例操作及应用,也兼顾力学及传热相关的基础理论知识介绍。本教程采用ANSYS-Workbench前处理Design Modele...
All rights reserved Powered by
www.tceic.com
copyright &copyright 。文档资料库内容来自网络,如有侵犯请联系客服。}

我要回帖

更多关于 100个心理压力测试题 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信