如图所示在竖直平面内,竖直平面内有...

(2014?大连一模)如图所示,竖直平面内有足够长、不计电阻的两组平行光滑金属导轨,间距均为L,下方连接_百度知道
(2014?大连一模)如图所示,竖直平面内有足够长、不计电阻的两组平行光滑金属导轨,间距均为L,下方连接
(2014?大连一模)如图所示,竖直平面内有足够长、不计电阻的两组平行光滑金属导轨,间距均为L,下方连接一个阻值为r的定值电阻,虚线下方的区域内存在磁感应强度为B的匀强磁场.两根完全相同的金属杆1和2靠在导轨上,金属杆长度与导轨宽度相等且与导轨接触良...
我有更好的答案
A、金属杆2切割磁感线产生感应电流,由右手定则可知,通过电阻r的电流由b流向a,故A错误;B、金属杆受到的安培力F=BIL=BL=2L2v3r,金属杆做匀速直线运动,由平衡条件得:mg=2L2v3r,解得:v=2L2,回路感应电动势最大值:E=BLv=,故B正确;C、h<h0,2进入磁场时的速度变小,2刚进入磁场时受到的安培力小于重力,1与支架的弹力大于零,金属杆2进入磁场后做加速度减小的加速运动,速度逐渐增大,知道运动运动为止,在此过程中1受到的安培力逐渐增大,1与之间的弹力逐渐减小,当2匀速运动时,1与支架的弹力为零,即:金属杆1与绝缘支架的弹力会先减小,后变为零,故C正确;D、稳定后电阻r上消耗的电功率为P=I2r=2r=2g2rB2L2,故D正确;故选:BCD.
采纳率:63%
为您推荐:
其他类似问题
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。当前位置:
>>>如图所示,竖直平面内有一光滑圆弧轨道,其半径为R,平台与轨道的..
如图所示,竖直平面内有一光滑圆弧轨道,其半径为R,平台与轨道的最高点等高,一小球从平台边缘的A处水平射出,恰能沿圆弧轨道上的P点的切线方向进入轨道内侧,轨道半径OP与竖直线的夹角为45°,重力加速度为g,试求:(1)小球从平台上的A点射出时的速度v0;(2)小球从平台上射出点A到圆轨道入射点P之间的距离l;(3)小球能否沿轨道通过圆弧的最高点?请说明理由.
题型:问答题难度:中档来源:不详
(1)小球从A到P的高度差h=R(1+cos45°)=(22+1)R小球做平抛运动有&&&&&h=12gt2&&&小球平抛时间&&&&&t=2hg=(2+2)Rg&&则小球在P点的竖直分速度vy=gt=(2+2)gR&&&&把小球在P点的速度分解可得v0=vy&&&&所以小球平抛初速度v0=(2+2)gR&&&&(2)小球平抛下降高度&h=12vy?t&&&水平射程&&&&s=v0t=2h&&故A、P间的距离l=h2+s2=5h&&&由上式可解得&l=(5+1210)R&&&(3)能.小球从A到达Q时,根据机械能守恒定律可得vQ=v0=(2+2)gR>gR,所以小球能通过圆弧轨道的最高点.答:(1)小球从平台上的A点射出时的速度v0=(2+2)gR;(2)小球从平台上射出点A到圆轨道入射点P之间的距离为5h;(3)小球能沿轨道通过圆弧的最高点,根据机械能守恒定律可得:vQ=v0=(2+2)gR>gR,所以小球能通过圆弧轨道的最高点.
马上分享给同学
据魔方格专家权威分析,试题“如图所示,竖直平面内有一光滑圆弧轨道,其半径为R,平台与轨道的..”主要考查你对&&平抛运动,向心力,牛顿第二定律,机械能守恒定律&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
平抛运动向心力牛顿第二定律机械能守恒定律
平抛运动的定义:
将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。平抛运动的特性:
以抛出点为坐标原点,水平初速度V0,竖直向下的方向为y轴正方向,建立如图所示的坐标系,在该坐标系下,对任一时刻t:①位移分位移(水平方向),(竖直方向);合位移,(φ为合位移与x轴夹角)。②速度分速度(水平方向),Vy=gt(竖直方向);合速度,(θ为合速度V与x轴夹角)。③平抛运动时间:(取决于竖直下落的高度)。④水平射程:(取决于竖直下落的高度和初速度)。类平抛运动:
&(1)定义当物体所受的合外力恒定且与初速度垂直时,物体做类平抛运动。&(2)类平抛运动的分解方法& ①常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性。& ②特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为,,初速度分解为,然后分别在x、y方向上列方程求解。(3)类平抛运动问题的求解思路根据物体受力特点和运动特点判断该问题属于类平抛运动问题——求出物体运动的加速度——根据具体问题选择用常规分解法还是特殊分解法求解。 (4)类抛体运动当物体在巨力作用下运动时,若物体的初速度不为零且与外力不在一条直线上,物体所做的运动就是类抛体运动。在类抛体运动中可采用正交分解法处理问题,基本思路为:&①建立直角坐标系,将外力、初速度沿这两个方向分解。 &②求出这两个方向上的加速度、初速度。&③确定这两个方向上的分运动性质,选择合适的方程求解。向心力的定义:
在圆周运动中产生向心加速度的力。。向心力的特性:
1、向心力总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小,大小,方向总是指向圆心(与线速度方向垂直),方向时刻在变化,是一个变力。向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供。2、轻绳模型Ⅰ、轻绳模型的特点:①轻绳的质量和重力不计;②可以任意弯曲,伸长形变不计,只能产生和承受沿绳方向的拉力;③轻绳拉力的变化不需要时间,具有突变性。Ⅱ、轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:①临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:②小球能通过最高点的条件:(当时,绳子对球产生拉力)③不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)3、轻杆模型:Ⅰ、轻杆模型的特点:①轻杆的质量和重力不计;②任意方向的形变不计,只能产生和承受各方向的拉力和压力;③轻杆拉力和压力的变化不需要时间,具有突变性。Ⅱ、轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:①小球能通过最高点的临界条件:(N为支持力)②当时,有(N为支持力)③当时,有(N=0)④当时,有(N为拉力)知识点拨:向心力是从力的作用效果来命名的,因为它产生指向圆心的加速度,所以称它为向心力。它不是具有确定性质的某种类型的力。相反,任何性质的力都可以作为向心力。实际上它可是某种性质的一个力,或某个力的分力,还可以是几个不同性质的力沿着半径指向圆心的合外力。对一个物体进行受力分析的时候,是不需要画向心力的,向心力是效果力。知识拓展:对于向心力的理解,同学们可以切身的体会一下。两个同学手拉手,甲同学原地,乙同学绕着甲同学转,甲同学给乙同学的拉力就是向心力,当拉力大于向心力的时候,乙同学向心(甲同学)运动,当拉力小于向心力的时候,乙同学做离心运动。内容:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F合=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。对牛顿第二定律的理解:①模型性牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。②因果性力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。③矢量性合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。④瞬时性加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。⑤同一性(同体性)中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。⑥相对性在中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。⑦独立性F合产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:。⑧局限性(适用范围)牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。牛顿第二定律的应用: 1.应用牛顿第二定律解题的步骤: (1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。 (2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。 (3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 (4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。2.两种分析动力学问题的方法: (1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。 (2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。 ①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。 ②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。3.应用牛顿第二定律解决的两类问题: (1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下: (2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。知识扩展:1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。 2.关于a、△v、v与F的关系 (1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。 (2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。 (3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。机械能守恒定律:1、内容:只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。 2、表达式:3.条件机械能守恒的条件是:只有重力或弹力做功。可以从以下三个方面理解: (1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒。 (2)受其他力,但其他力不做功,只有重力或弹力做功。例如物体沿光滑的曲面下滑,受重力、曲面的支持力的作用,但曲面的支持力不做功,物体的机械能守恒。 (3)其他力做功,但做功的代数和为零。判定机械能守恒的方法:
&(1)条件分析法:应用系统机械能守恒的条件进行分析。分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力 (或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。 (2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。 (3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。 (4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。
竖直平面内圆周运动与机械能守恒问题的解法:
在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。但只满足此条件物体并不一定能沿圆弧轨道运动到圆弧最高点。因为在沿圆弧轨道运动时还需满足动力学条件:所需向心力不小于重力,由此可以推知,在物体从圆弧轨道最低点开始运动时,若在动能全部转化为重力势能时所能上升的高度满足时,物体可在轨道上速度减小到零,即动能可全部转化为重力势能;在,物体上升到圆周最高点时的速度)时,物体可做完整的圆周运动;若在时,物体将在与圆心等高的位置与圆周最高点之间某处脱离轨道,之后物体做斜上抛运动,到达最高点时速度不为零,动能不能全部转化为重力势能,物体实际上升的高度满足。故在解决这类问题时不能单从能量守恒的角度来考虑。
发现相似题
与“如图所示,竖直平面内有一光滑圆弧轨道,其半径为R,平台与轨道的..”考查相似的试题有:
96203355920379561337955125746294274> 【答案带解析】如图所示,竖直平面内有无限长、不计电阻的两组平行光滑金属导轨,宽度均为L=0.5...
如图所示,竖直平面内有无限长、不计电阻的两组平行光滑金属导轨,宽度均为L=0.5m,上方连接一个阻值R=1Ω的定值电阻,虚线下方的区域内存在磁感应强度B=2T的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r=0.5Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h0=0.8m处由静止释放,进入磁场后恰作匀速运动.(g取10m/s2)求:(1)金属杆的质量m为多大?(2)若金属杆2从磁场边界上方h1=0.2m处由静止释放,进入磁场经过一段时间后开始匀速运动.在此过程中整个回路产生了1.4J的电热,则此过程中流过电阻R的电量q为多少?(3)金属杆2仍然从离开磁场边界h1=0.2m处由静止释放,在金属杆2进入磁场的同时由静止释放金属杆1,两金属杆运动了一段时间后均达到稳定状态,试求两根金属杆各自的最大速度.(已知两个电动势分别为E1、E2不同的电源串联时,电路中总的电动势E=E1+E2.) 
0.2kg 0.65c v1=1m/s,v2=3m/s
试题分析:(1)金属杆2进入磁场前做自由落体运动,
vm==m/s=4m/s (1分)
金属杆2进入磁场后受两个力平衡:mg=BIL, (1分)
且 E=BLvm (1分)
解得m===0.2kg (2分)
金属杆2从下落到再次匀速运动的过程中,能量守恒(设金属杆2在磁场内下...
考点分析:
相关试题推荐
如图所示,质量m的小物块从高为h的坡面顶端由静止释放,滑到粗糙的水平台上,滑行距离L后,以v = 1 m/s的速度从边缘O点水平抛出,击中平台右下侧挡板上的P点.以O为原点在竖直面内建立如图所示的平面直角坐标系,挡板形状满足方程 (单位:m),小物块质量m = 0.4 kg,坡面高度h = 0.4 m,小物块从坡面上滑下时克服摩擦力做功1 J,小物块与平台表面间的动摩擦因数μ = 0.1,g = 10 m/s2.求(1)小物块在水平台上滑行的距离L ;(2)P点的坐标. 
某同学要测量一由新材料制成的粗细均匀的圆柱形导体的电阻率ρ。步骤如下:(1)用20分度的游标卡尺测量其长度如图甲所示,由图可知其长度为
cm;(2)用螺旋测微器测量其直径如图乙所示,由图可知其直径为
mm;(3)用多用电表的电阻“×10”挡,按正确的操作步骤测此圆柱形导体的电阻,表盘的示数如图丙所示,则该电阻的阻值约为
Ω。(4)该同学想用伏安法更精确地测量其电阻R,现有的器材及其代号和规格如下:待测圆柱形导体电阻R电流表A1(量程0~4 mA,内阻约50 Ω)电流表A2(量程0~10 mA,内阻约30 Ω)电压表V1(量程0~3 V,内阻约10 kΩ)电压表V2(量程0~15 V,内阻约25 kΩ)直流电源E(电动势4 V,内阻不计)滑动变阻器R1(阻值范围0~15 Ω,额定电流2.0 A)滑动变阻器R2(阻值范围0~2 kΩ,额定电流0.5 A)开关S,导线若干。为减小实验误差,要求测得多组数据进行分析,请在虚线框中画出合理的测量电路图,并标明所用器材的代号。  
一个有一定厚度的圆盘,可以绕通过中心垂直于盘面的水平轴转动,圆盘加速转动时,角速度的增加量Δω与对应时间Δt的比值定义为角加速度β(即)。我们用电磁打点计时器、米尺、游标卡尺、纸带、复写纸来完成下述实验:(打点计时器所接交流电的频率为50Hz,A、B、C、D为计数点,相邻两计数点间有四个点未画出)①如图甲所示,将打点计时器固定在桌面上,将纸带的一端穿过打点计时器的限位孔,然后固定在圆盘的侧面,当圆盘转动时,纸带可以卷在圆盘侧面上;②接通电源,打点计时器开始打点,启动控制装置使圆盘匀加速转动;③经过一段时间,停止转动和打点,取下纸带,进行测量。(1)用20分度的游标卡尺测得圆盘的直径如图乙 所示,圆盘的半径r为
cm;(2)由图丙可知,打下计数点B时,圆盘转动的角速度为
rad/s;(3),圆盘转动的角加速度大小为
rad/s2; ( (2),(3)问中计算结果保留三位有效数字) 
如图所示,在xOy平面内存在着磁感应强度大小为B的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P(-L,0)、Q(0,-L)为坐标轴上的两个点.现有一电子从P点沿PQ方向射出,不计电子的重力,则.A.若电子从P点出发恰好经原点O第一次射出磁场分界线,则电子运动的路程一定为B.若电子从P点出发经原点O到达Q点,则电子运动的路程一定为πLC.若电子从P点出发经原点O到达Q点,则电子运动的路程可能为2πLD.若电子从P点出发经原点O到达Q点,则nπL(n为任意正整数)都有可能是电子运动的路程 
如图甲所示,理想变压器原、副线圈的匝数比为3∶1,L1、L2、L3为三只规格均为“9V 6W”的相同灯泡,各电表均为理想交流电表,输入端接入如图乙所示的交变电压,则以下说法中正确的是(  )A.电流表的示数为2AB.电压表的示数为VC.副线圈两端接入耐压值为8V的电容器能正常工作D.变压器副线圈中交变电流的频率为50Hz 
题型:计算题
难度:中等
Copyright @
满分5 学习网 ManFen5.COM. All Rights Reserved.当前位置:
>>>如图所示,竖直平面内有相互垂直的匀强电场和匀强磁场,电场强度..
如图所示,竖直平面内有相互垂直的匀强电场和匀强磁场,电场强度E1=2 500 N/C,方向竖直向上;磁感应强度B=103 T,方向垂直纸面向外;有一质量m=1×10-2 kg、电荷量q=4×10-5 C的带正电小球自O点沿与水平线成45°角以v0=4 m/s的速度射入复合场中,之后小球恰好从P点进入电场强度E2=2 500 N/C,方向水平向左的第二个匀强电场中。不计空气阻力,g取10 m/s2。求: (1)O点到P点的距离s1; (2)带电小球经过P点的正下方Q点时与P点的距离s2。
题型:计算题难度:偏难来源:福建省模拟题
解:(1)带电小球在正交的匀强电场和匀强磁场中受到的重力G=mg=0.1 N,电场力F1=qE1=0.1 N,即G=F1,故带电小球在正交的电磁场中由O到P做匀速圆周运动,根据牛顿第二定律得: qv0B=m,解得:R=m=1 m由几何关系得:s1=R=m(2)带电小球在P点的速度大小仍为v0=4 m/s,方向与水平方向成45°。由于电场力F2=qE2=0.1 N,与重力大小相等,方向相互垂直,则合力的大小为F=N,方向与初速度方向垂直,故带电小球在第二个电场中做类平抛运动建立如图所示的x、y坐标系,沿y轴方向上,带电小球的加速度大小a==10 m/s2,位移大小y=at2沿x轴方向上,带电小球的位移大小x=v0t 由几何关系有:y=x,即:at2=v0t,解得:t=sQ点到P点的距离s2==3.2 m
马上分享给同学
据魔方格专家权威分析,试题“如图所示,竖直平面内有相互垂直的匀强电场和匀强磁场,电场强度..”主要考查你对&&带电粒子在复合场中的运动&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
带电粒子在复合场中的运动
复合场:同时存在电场和磁场的区域,同时存在磁场和重力场的区域,同时存在电场、磁场和重力的区域,都叫做叠加场,也称为复合场。三种场力的特点: ①重力的大小为mg,方向竖直向下。重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始、终位置的高度差有关。 ②电场力的大小为qE,方向与电场强度E及带电粒子所带电荷的性质有关。电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始、终位置的电势差有关。 ③洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,F洛=0;当带电粒子的速度与磁场方向垂直时,F洛=qvB。洛伦兹力的方向垂直于速度v和磁感应强度B所决定的平面。无论带电粒子做什么运动,洛伦兹力都不做功。注:注意:电子、质子、α粒子、离子等微观粒子在叠加场中运动时,一般都不计重力。但质量较大的质点(如带电尘粒)在叠加场中运动时,不能忽略重力。
无约束情景下带电粒子在匀强复合场中的常见运动形式:
带电粒子在电磁组合场中运动时的处理方法:1.电磁组合场电磁组合场是指由电场和磁场组合而成的场,在空间同一区域只有电场或只有磁场,在不同区域中有不同的场。 2.组合场中带电粒子的运动带电粒子在电场内可做加速直线运动、减速直线运动、类平抛运动、类斜抛运动,需要根据粒子进入电场时的速度方向、所受电场力,再南力和运动的关系来判定其运动形式。粒子在匀强磁场中可以做直线运动,也可以做匀速圆周运动和螺旋运动,但在高中阶段通常涉及的是带电粒子所做的匀速圆周运动,通常需要确定粒子在磁场内做圆周运动进出磁场时的位置、圆心的位置、转过的圆心角、运动的时间等。在电磁组合场问题中,需要通过连接点的速度将相邻区域内粒子的运动联系起来,粒子在无场区域内是做匀速直线运动的。解决此类问题的关键之一是画好运动轨迹示意图。
粒子在正交电磁场中做一般曲线运动的处理方法:如图所示,一带正电的粒子从静止开始运动,所受洛伦兹力是一变力,粒子所做的运动是一变速曲线运动,若用动力学方法来处理其运动时,可将其运动进行如下分解:&①初速度的分解因粒子初速度为零,可将初速度分解为水平向左和水平向右的两等大的初速度,令其大小满足 ②受力分析按上述方法将初速度分解后,粒子在初始状态下所受外力如图所示。&③运动的分解将粒子向右的分速度,电场力,向上的洛伦兹力分配到一个分运动中,则此分运动中因,应是以速度所做的匀速运动。将另一向左的分速度,向下的洛伦兹力分配到一个分运动中,则此分运动必是沿逆时针方向的匀速圆周运动。 ④运动的合成粒子所做的运动可以看成是水平向右的匀速直线运动与逆时针方向的匀速圆周运动的合运动。a.运动轨迹如图所示,粒子运动轨迹与沿天花板匀速滚动的轮上某一定点的运动轨迹相同,即数学上所谓的滚轮线。 b.电场强度方向上的最大位移:由两分运动可知,水平方向上的分运动不引起竖直方向上的位移,竖直方向上的最大位移等于匀速圆周分运动的直径:可得c.粒子的最大速率由运动的合成可知,当匀速圆周分运动中粒子旋转到最低点时,两分运动的速度方向一致,此时粒子的速度达到最大:
解决复合场中粒子运动问题的思路:
解决电场、磁场、重力场中粒子的运动问题的方法可按以下思路进行。 (1)正确进行受力分析,除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析。 ①受力分析的顺序:先场力(包括重力、电场力、磁场力),后弹力,再摩擦力等。 ②重力、电场力与物体的运动速度无关,南质量决定重力的大小,由电荷量、场强决定电场力;但洛伦兹力的大小与粒子的速度有关,方向还与电荷的性质有关,所以必须充分注意到这一点。 (2)正确进行物体的运动状态分析,找出物体的速度、位置及变化,分清运动过程,如果出现临界状态,要分析临界条件。 (3)恰当选用解决力学问题的方法 ①牛顿运动定律及运动学公式(只适用于匀变速运动)。 ②用能量观点分析,包括动能定理和机械能(或能量)守恒定律。注意:不论带电体的运动状态如何,洛伦兹力永远不做功。 ③合外力不断变化时,往往会出现临界状态,这时应以题中的“最大”、“恰好”等词语为突破口,挖掘隐含条件,列方程求解。 (4)注意无约束下的两种特殊运动形式 ①受到洛伦兹力的带电粒子做直线运动时,所做直线运动必是匀速直线运动,所受合力必为零。 ②在正交的匀强电场和匀强磁场组成的复合场中做匀速圆周运动的粒子,所受恒力的合力必为零。
发现相似题
与“如图所示,竖直平面内有相互垂直的匀强电场和匀强磁场,电场强度..”考查相似的试题有:
406941154289414788373729436474379367}

我要回帖

更多关于 竖直平面内有一金属环 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信