ANSYS怎么加X,Y两个方向的王者荣耀位移技能方向约束

温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!&&|&&
LOFTER精选
网易考拉推荐
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
在解决许多有收敛困难的问题上,SHELL181单元可以用来替代SHELL43单元。参见ANSYS 理论参考中的SHELL181单元介绍以了解有关该单元的更多细节问题。
SHELL181 输入数据
其几何特性,节点的位置及坐标系参见图181.1 SHELL 181单元的几何图。 该单元由四个节点定义而成:I,J,K,L。该单元等式是基于对数应变和实际应力的测量的。从运动学来讲,该单元支持有限的薄膜应变(伸展)。但是,在一定时间内的曲线变化必须是小变化。你可以用实常数或者横截面定义来定义该单元的厚度或者其他的一些参数。用实常量来定义其参数只限于定义单层壳体。如果同时用实常数和一个有效的壳体横截面来定义SHELL181单元的话,实常数定义将被忽略。
SHELL181单元同样适用用预整合的壳体横截面类型。当该单元用GENS类型横截面来定义时,厚度或者材料的定义就都不需要了。如果想了解更多的信息,请参见 预整合通用壳体横截面的使用。
用实常数来定义厚度
壳体单元的厚度可以在其各个节点定义,在该单元内,其厚度的变化被认为是光滑的。如果该单元各处的厚度一样,是个常数,那么只需输入I节点的厚度就可以了。如果该单元的厚度不是一个常数,那么所有四个节点处的厚度都必须输入。
多层横截面定义
同样,壳体厚度和其他常规的参数的设定也可以在横截面的定义中来完成。SHELL181单元与壳体横截面有关连(参见横截面类型命令描述)。壳体横截面定义相对实常数定义来讲更为普遍。壳体横截面操作可以定义多层的复合壳体,并可以通过各层的厚度提供的输入选项来指定其厚度,材料,倾向性和积分点的个数。需要注意的是,单层壳体也可以用壳体横截面定义来设定,但是却提供了较多的有伸缩性的选项,如利用ANSYS的功能创建器来定义厚度作为世界坐标系的一项功能和所用到的积分点的个数等。
在横截面定义过程中,你可以在定义各层的厚度时指定积分点(1,3,5,7或者9)的位置。如果只有1个点,那么该点一般都在顶层和底层的中间;如果是3个或者更多,则有两个点分别位于顶层和底层的面上,剩下的点则均匀分布在这两点之间。当指定为5个点时,特殊情况就出现了,为了和用实常数输入选定的位置达成一致,四分之一点位置向距离他们最近层的表面移动了5个百分点。对每层来说,默认的输入点个数是3个。注意,当应用实常数定义时,ANSYS就用5个积分点。但是,当一个等厚度的单层结构用横截面定义十,默认的是3个积分点。为了得到相似的解,可以用SECDATA命令设定横截面点为5个。
该单元默认的方向使得S1(壳体表面坐标)轴和该单元第一个参数方向在该单元中心连成一条直线。该单元的中心将LI和JK的中间边连接起来。最普遍的情况下,该轴可以这样定义:
对于无畸变的单元,默认的方向性和坐标系系统中的描述是一样的(第一个面的方向和IJ边在同一条直线上)。对于空间翘曲的或者有畸变的单元,默认的方向性可以更好的表明应力状态,这是由于在该单元的范围内,它只用一个积分点(默认)。
对与该单元来说,其第一表面S1的方向可以在THETA设定中被旋转一个指定的角度,同样,用SECDATE命令也可以达到同样的效果。对于一个单元来说,你可以在单元平面中指定一个单独的旋转角度值。如果用横截面定义的话,就可以用层的智能方向性了。
你也可以用ESYS来定义单元的方向性。
该单元支持简化为三角形形式。然而,除非被用做分网填充单元或有薄膜选项,建议不要用其三角形形式。其三角形式通常在薄膜选项中具有大挠度时才更为可靠。
SHELL181单元用补偿法标准来描述板内位移组件的独立旋转自由度,ANSYS程序默认选择一个合适的刚度补偿。但是,如果需要的话,您可以用第十个实常数来改变默认值。该实常数的值是系统默认补偿刚度的比例因子。用较高的值的话,有利于模型中的大的非物理能量内容。因此,在改变默认值的时候请务必小心。当用横截面定义SHELL181单元时,钻刚度因素可以通过命令来指定。
在中,描述了单元的荷载。如图181.1:"SHELL181 Geometry"中圈中的数字所示,压力可以按单元表面的面载荷来输入。边压按每单位长度来输入。
TUNIF.在各层(1-1024最大)间外部面的角和内面的角处,温度可以当作单元体载荷莱输入。第一个角温度默认为TUNIF。如果所有的其他的温度都没有指定,则均默认为T1。如果KEYOPT(1)=0,且NL+1温度正确输入了,则第一个温度设定为各层底部四角温度,最后一个温度设定为顶部四个角的温度。如果KEYOPT(1)=1,且NL温度正确输入了,则第一个温度设定为各层四个角的温度。也就是说,T1就是T1, T2, T3, 和 T4;T2就是T5, T6, T7, 和 T8,等。对于其他的输入面板,未指定的温度都默认为TUNIF。
用KEYOPT(3),SHELL 181单元支持相同在不相容的模态下的缩减积分和全面积分。 默认情况下,该单元在非线性应用中为实行原因运用了相同的缩减积分。
用沙漏控制下的缩减积分创建些应用的约束,尽管很小。例如,为了得到内板悬臂梁或者加强筋的弯曲数据(如图181.2 SHELL181典型弯曲应用),就需要在厚度方向设定一定数量的单元。该实行通过类似的缩减积分得到的成果足以抵消你对多单元的需求。在相对细化的网格划分中,沙漏问题是不切题的。
如果用了缩减积分选项,你可以通过对比总能量和用沙漏控制得到的人工能量来检测结果的精确性。如果人工能和中能量的比率小于5%,一般来说结果就是可以接受的。总能量和人工能量同样可以在求解阶段用,VENG监控。
当用完全积分时,双线形单元在内板弯曲中就会很硬。SHELL181用非协调模式法来提高挠度支配问题的精确性。该方法也称作附加形态或者泡沫模态法。SHELL181用该等式确保满足小块检验。
当分析中包含非协调模态时,您必须用完全积分法。KEYOPT(3) = 2暗示包含了非协调模态和完全积分。
对SHELL181单元,当指定KEYOPT(3) = 2时,它不含有任何模拟能量机制。这种SHELL181特殊的形式非常精确,甚至具有网眼。如果您遇到默认选项的与沙漏相关的问题,我们建议您用KEYOPT(3) = 2。如果网格划分有网眼而且单元的内板弯曲控制响应,KEYOPT(3) = 2也是必须的。我们建议各种层的应用问题都选用该选项。
KEYOPT(3) = 2利用了最少使用限制。您可以一直选用该选项。您也可以通过选择最合适您问题的选项来改善单元的性能。该问题在图181。2“SHELL181 典型弯曲的应用”有描述。
图181。2“SHELL181 典型弯曲的应用”
悬臂梁和梁的横截面可以用壳体建模,这是板内弯曲占主导因素问题的典型例子。在这些情况下,选用KEYOPT(3) = 2是最有效的选择。缩减积分可能需要进行网格优化。例如,悬臂梁的缩减积分求解需要厚度方向的四个单元,反之,有非协调模态的完全积分则只需要厚度方向的一个单元。
对于加强的壳体,最有效的选择就是:对壳体,用KEYOPT(3) = 0;对加强部分,用KEYOPT(3) = 2
当指定KEYOPT(3) = 0时,对薄膜和弯曲模态,SHELL181单元会选用沙漏控制法。默认情况下,SHELL181单元会为金属和超弹性应用问题计算沙漏参数。您可以用实常数11和12而不管默认值。您可以增加分网密度或者选用完全积分选项(KEYOPT(3)=2)而不用改变沙漏刚度参数。当用到横截面定义时,你可能会需要通过命令指定沙漏刚度比例因子。
SHELL181单元包含了横向剪切变形效果。巴氏-德沃克林的一个假设的剪切应变等式可以用来缓和剪切锁定。该单元的横向剪切刚度是一个如下所示的2*2矩阵:
在上述矩阵中,R7,R8,和R9是实常数7,8,和9。您可以忽略默认得横向剪切刚度值,而通过把不同的值赋给那些实常量。该选项对分析夹层结构的壳体实行有效的。另一方面,命令提供了对横向剪切刚度值的定义。
对于各向同性的单层壳体结构,默认得横向剪切刚度是:
&在上述矩阵中,k = 5/6, G =剪切模量,& h =壳体厚度.
SHELL181单元可以用于分析线弹性,弹性塑料,蠕变或者超弹性材料的特性。对于弹性体,只有各向同性,各向异性和正交各向异性的线弹性特性可以输入。复杂综合应力等向硬化塑料模型可以被BISO(双线性等向硬化),MISO(多线性), NLISO (非线性各向同性硬化)选项调用。运动学硬化塑料模型可以被BKIN (双线性运动硬化), MKIN and KINH (多线形运动硬化), and CHABOCHE (非线形运动硬化)所调用.调用塑料证明弹性特征是各向同性的。
该单元也可以用超弹性材料的特征。泊松比用来指定材料的可压缩性。如果小于0,泊松比就会被设定为0;如果大于和等于0.5,泊松比则被设定为0.5。
各向同性和各向异性热膨胀系数可以用,ALPX来输入。当用到超弹性时,各向同性膨胀就被选用。
用命令来提供全局阻尼值。如果,DAMP被指定为单元材料号,则它为单元所用而不是命令的值。同样,用TREF命令来指定全局相关温度。如果 ,REFT 用来指定材料定义材料单元编号,则它为单元所用而不是命令的值。但如果是,REFT来定义层的材料号,则它是用来代替全局或者单元值的。
在缩减积分和沙漏控制下 (KEYOPT(3) = 0), 如果质量矩阵不符合求积规则,则低频副振荡模将会出现. SHELL181单元用影射法有效的筛选出了单元内部结构到沙露面模式,为了有效性,必须使用一个连续的质量矩阵。若用该单元左模态分析,我们建议您设定,OFF.集中质量选项可以被用在完全积分选项中(KEYOPT(3) = 2).
对于单层或多层壳体单元来说,KEYOPT(8) = 2用来存储中间面结果。如果您用了,MID,您将看到的是这些计算值,而不是顶部和底部结果的平均值。当顶部和底部的平均值不合适的时候,你应该用这个选项来得到正确的中见面的结果(薄膜结果);例子中包含黑线性材料特性的中间面应力、应变 ,以及在包含诸如谱分析等测长操作的模态叠加之后的中间面结果。
KEYOPT(9) = 1 用来从用户子程序中读取初始厚度数据。
你可以用 或 命令将初始应力状态应用到该单元。如果需要了解更多信息,请参见中的 . 另一方面,你可以通过设置KEYOPT(10) = 1来从用户子程序USTRESS中读取初始应力。对于用户子程序的细节问题,请参见 the Guide to ANSYS User Programmable Features.
该单元自动包含压力载荷刚度的效果。如果压力载荷刚度效果需要非对称矩阵,请用,UNSYM.
该单元的数据输入总结请见.& 也给出了该单元输入数据的概述。.
东临推荐阅读:
& 10:22:15
& 12:25:15
阅读(9098)|
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
历史上的今天
loftPermalink:'',
id:'fks_',
blogTitle:'ANSYS软件中SHELL181单元参数详解(1)',
blogAbstract:'SHELL181单元说明
blogTag:'shell181,ansys,单元,有限元',
blogUrl:'blog/static/',
isPublished:1,
istop:false,
modifyTime:8,
publishTime:0,
permalink:'blog/static/',
commentCount:1,
mainCommentCount:1,
recommendCount:1,
bsrk:-100,
publisherId:0,
recomBlogHome:false,
currentRecomBlog:false,
attachmentsFileIds:[],
groupInfo:{},
friendstatus:'none',
followstatus:'unFollow',
pubSucc:'',
visitorProvince:'',
visitorCity:'',
visitorNewUser:false,
postAddInfo:{},
mset:'000',
remindgoodnightblog:false,
isBlackVisitor:false,
isShowYodaoAd:false,
hostIntro:'',
hmcon:'1',
selfRecomBlogCount:'0',
lofter_single:''
{list a as x}
{if x.moveFrom=='wap'}
{elseif x.moveFrom=='iphone'}
{elseif x.moveFrom=='android'}
{elseif x.moveFrom=='mobile'}
${a.selfIntro|escape}{if great260}${suplement}{/if}
{list a as x}
推荐过这篇日志的人:
{list a as x}
{if !!b&&b.length>0}
他们还推荐了:
{list b as y}
转载记录:
{list d as x}
{list a as x}
{list a as x}
{list a as x}
{list a as x}
{if x_index>4}{break}{/if}
${fn2(x.publishTime,'yyyy-MM-dd HH:mm:ss')}
{list a as x}
{if !!(blogDetail.preBlogPermalink)}
{if !!(blogDetail.nextBlogPermalink)}
{list a as x}
{if defined('newslist')&&newslist.length>0}
{list newslist as x}
{if x_index>7}{break}{/if}
{list a as x}
{var first_option =}
{list x.voteDetailList as voteToOption}
{if voteToOption==1}
{if first_option==false},{/if}&&“${b[voteToOption_index]}”&&
{if (x.role!="-1") },“我是${c[x.role]}”&&{/if}
&&&&&&&&${fn1(x.voteTime)}
{if x.userName==''}{/if}
网易公司版权所有&&
{list x.l as y}
{if defined('wl')}
{list wl as x}{/list}扫二维码下载作业帮
2亿+学生的选择
下载作业帮安装包
扫二维码下载作业帮
2亿+学生的选择
怎么用ansys施加Z负方向的位移
扫二维码下载作业帮
2亿+学生的选择
ANSYS&Main&Menu:&Solution&→Define&Loads&→Apply&→Structural&→Displacement&→&On&Nodes&→pick&&→&OK&→&select&n...
为您推荐:
其他类似问题
把位移的值设成负数就行了
回答者 明天的铭天
已经给你回答得很到位了。
扫描下载二维码ansys后处理中如何约束位移_百度知道
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。
ansys后处理中如何约束位移
我有更好的答案
0d,uzd,ux,all,0d,uy,all,all
为您推荐:
其他类似问题
您可能关注的内容
ansys的相关知识
等待您来回答 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
Ansys workbench位移约束的类型
下载积分:2000
内容提示:Ansys workbench位移约束的类型
文档格式:DOCX|
浏览次数:1164|
上传日期: 13:36:44|
文档星级:
全文阅读已结束,如果下载本文需要使用
 2000 积分
下载此文档
该用户还上传了这些文档
Ansys workbench位移约束的类型
官方公共微信}

我要回帖

更多关于 位移方向 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信