关于光合作用测定仪的一道问题

一道关于黑、白瓶测定光合作用和呼吸作用习题解析
一道关于黑、白瓶测定光合作用和呼吸作用习题解析
某研究小组从当地一湖泊的某一深度取得一桶水样,分装于六对黑白瓶中,剩余的水样测得原初溶解氧的含量为,白瓶为透明玻璃瓶,黑瓶为黑布罩住的玻璃瓶。将它们分别置于六种不同的光照条件下,分别在起始和小时后测定各组培养瓶中的氧含量,记录数据如下表:
光照强度()
白瓶溶氧量
黑瓶溶氧量
()黑瓶中溶解氧的含量降低为的原因是;该瓶中所有生物细胞呼吸消耗的量为。
()当光照强度为时,白瓶中植物光合作用产生的氧气量为。
()光照强度至少为(填字母)时,该水层产氧量才能维持生物正常生活耗氧量所需。
()光照强度到达时,随着光照强度的增加,白瓶中溶氧量不再增加,此时的限制性因素可能是。
& & 答案:(1)黑瓶中植物不能进行光合作用产生氧,生物呼吸消耗氧气;7(2)21(3)a;温度或二氧化碳浓度
解析:黑白瓶法常用于水中生物光合速率的测定。白瓶就是透光瓶,里面可进行光合作用和呼吸作用。黑瓶就是不透光瓶,只能进行呼吸作用。
(1)黑瓶中溶解氧的含量降低为3mg/L的原因是:黑瓶中生物只进行呼吸作用,其消耗的氧气量为:原初溶解氧—24小时后氧含量,即10—3=7(mg/L&24h)。(2)当光照强度为c时,光合作用产生的氧气量为:(24+7)—10=21(mg/L&24h)。(3)光照强度为a时,光合作用产生的氧气(10+7—10)=7(mg/L&24h),正好等于呼吸作用消耗,所以,光照强度至少为a时,才能维持水中生物正常生活耗氧量所需。
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。一道关于光合作用的题,望有人帮忙解答。谢谢【高中生物吧】_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:64,719贴子:
一道关于光合作用的题,望有人帮忙解答。谢谢收藏
请看图我的问题是从图一可知 一开始的时候就有光合作用,为什么到图二前面却没有呢?
高中生物课程视频,首选掌门1对1,个性化定制在线高中生物课程视频,名师在线精讲,高效提分掌门1对1,初高中高端在线1对1辅导品牌,随报随学,不限地域,省时省力更省心
图一一开始是呼吸作用 A点开始光合作用
图一Y轴交点是呼吸释放二氧化炭的量,光合作用上升,二氧化炭被吸收,A 点是呼吸等于光合,二楼错的,别听
图一Y轴交点是呼吸释放二氧化炭的量,光合作用上升,二氧化炭被吸收,A 点是呼吸等于光合,
图2A前净光合为0而不是为负
登录百度帐号推荐应用 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
高一生物光合作用的原理和应用课时练习题
下载积分:600
内容提示:高一生物光合作用的原理和应用课时练习题
文档格式:DOC|
浏览次数:12|
上传日期: 11:07:47|
文档星级:
全文阅读已结束,如果下载本文需要使用
 600 积分
下载此文档
该用户还上传了这些文档
高一生物光合作用的原理和应用课时练习题
关注微信公众号OALib Journal期刊
费用:99美元
查看量下载量
光合作用的起源:一个引人入胜的重大科学命题
DOI: , PP. 577-592
Keywords: ,,,
光合作用的起源是一个非常古老的事件,对这个事件的证据,包括基本生物学过程的开启和发展之类的问题,如地球早期光合作用生物的属性以及光合作用生物如何获取光合作用装置等,可能已经消失在时间的长河之中;因此,光合作用起源就成为一个引人入胜的重大科学命题。尽管如此,地质学、生物地球化学、比较生物化学和分子进化分析,为光合作用起源及其复杂的进化历史,提供一些新认识和新线索,主要涉及到以下3个方面:(1)光合作用生命的起源;(2)光合作用装置的起源;(3)光合作用催化剂的起源。追索科学家们对这一重大科学命题的持续研究与艰苦努力,以及所取得的一些重要而且富有智慧的认识,将为今后的深入研究提供一些重要的思考途径和研究线索。同时,追逐光合作用起源的研究进展,对于深入了解早期地球复杂的圈层耦合过程也具有重要意义。这些作用过程主要包括:(1)从不生氧光合作用到生氧光合作用的转变;(2)大气圈与生物圈之间复杂的相互作用和协同进化;(3)生氧光合作用起源与进化所造成的、从一个缺氧的大气圈到今天含氧大气圈的复杂演变过程;(4)大气圈和水圈的渐进氧化作用对地球表面环境以及生命的起源和发育所造成的一个长时间影响;(5)早期地球表层古地理面貌的成型等。更为重要的是,对光合作用起源的地质学尤其是沉积学思考所得出的一些重要认识,尽管不是结论,但是拓宽了沉积学的研究范畴,开阔了沉积学家的研究视眼,同时也成为一个多学科协同作战的范例。
References
[]&&冯增昭. 2013. 中国沉积学(第二版)[M]. 北京:石油工业出版社.
[]&&梅冥相. 2010. 长周期层序形成机制的探索:层序地层学的进展之二[J]. 古地理学报,12(6):711-728.
[]&&梅冥相. 2011. 微生物席沉积学:一个年轻的沉积学分支[J]. 地球科学进展,26(6):586-597.
[]&&梅冥相. 2014. 微生物席的特征和属性:微生物席沉积学的理论基础[J]. 古地理学报,16(3):285-304.
[]&&梅冥相,刘少峰. 2013. 陆生植被对河流沉积作用的影响:生物沉积作用研究的一个重要主题[J]. 古地理学报,15(1):1-10.
[]&&梅冥相,高金汉,孟庆芬,等. 2008. 天津蓟县中元古界雾迷山组微指状叠层石及其对1250?Ma±叠层石衰减事件的响应[J]. 古地理学报,10(5):495-509.
[]&&汤冬杰,史晓颖,蒋干清,等. 2012. 中元古代微指状叠层石:超微组构和有机矿化过程[J]. 地质论评,58(6):.
[]&&谢树成,殷鸿福,史晓颖,等. 2011. 地球生物学:生物与地球环境的相互作用与协同演化[M]. 北京:科学出版社.
[]&&徐桂荣,王永标,龚淑云,等. 2005. 生物与环境的协同演化[M]. 湖北武汉:中国地质大学出版社.
[]&&殷鸿福,杨逢清,谢树成,等. 2004. 生物地质学[M]. 湖北武汉:中国地质大学出版社.
[]&&Altermann W. 2008. Accretion,trapping and binding of sediment in Archaean stromatolites:Morphological expression of the antiquity of life[J]. Space Sciences Reviews,135:55-79.
[]&&Altermann W,Kazmierczak J,Oren A,et al. 2006. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history[J]. Geobiology,4:147-166.
[]&&Allwood A C,Walter M R,Kamber B S,et al. 2006. Stromatolite reef from the Early Archaean era of Australia[J]. Nature,441:714-718.
[]&&Ashida H,Danchin A,Yokota A. 2005. Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism?[J]. Research in Microbiology,16:611-618.
[]&&Ashida H,Saito Y,Kojima C, et al. 2003. A functional link between Rubisco-like protein of Bacillus and photosynthetic Rubisco[J]. Science,302:286-290.
[]&&Awramik S M. 1977. Stromatolites. In:Ponnamperuma C(ed). Chemical Evolution of the Early Precambrian[M]. New York:Academic Press,111-123.
[]&&Awramik S M. 2006. Respect for stromatolites[J]. Nature,441:700-701.
[]&&Awramik S M,Schopf J W,Walter M R. 1983. Filamentous fossil bacteria 3.5×109 years old from the Archean of Western Australia[J]. Precambrian Research,20:357-358.
[]&&Bader K P. 1994. Physiological and evolutionary aspects of the O2/H2O-cycle in cyanobacteria[J]. Biochimestrica et Biophysica Acta,.
[]&&Badger M R,Price G D. 2003. CO2 concentrating mechanisms in cyanobacteria:Molecular components,their diversity and evolution[J]. Journal of Experimental Botany,54:609-622.
[]&&Badger M R,Price G D,Long B M,et al. 2005. The environmental plasticity and ecological genomics of the syanobacterial CO2 concentrating mechanism[J]. Journal of Experimental Botany,57:249-265.
[]&&Bekker A,Holland H D,Wang P L,et al.2004. Dating the rise of atmospheric oxygen[J]. Nature,427:117-120.
[]&&Blank C E,S?Nchez-Baracaldo P. 2010. Timing of morphological and ecological innovations in the cyanobacteria:A key to understanding the rise in atmospheric oxygen[J]. Geobiology,8:1-23.
[]&&Blankenship R E. 1992. Origin and early evolution of photosynthesis[J]. Photosynthesis Research,51:91-111.
[]&&Bosak T,Liang B,Sim M S,et al. 2009. Morphological record of oxygenic photosynthesis in conical stromatolites[J]. Proceedings of the National Academy of Sciences,106:.
[]&&Brock T D,Madigan M T,Martinko J M,et al. 1994. Biology of Microorganisms(7th edition)[M]. New Jersey:Prentice Hall,1-786.
[]&&Buick R. 1992. The antiquity of oxygenic photosynthesis:Evidence from stromatolites in sulfate-deficient Archaean lakes[J]. Science,255:74-77.
[]&&Buick R. 2008. When did oxygenic photosynthesis evolve?[J]. Philosophical Transaction of the Royal Society B,363:.
[]&&Butterfield N J. 2011. Animals and the invention of the Phanerozoic Earth system[J]. Trends in Ecology and Evolution,26:81-87.
[]&&Canfield D E. 2005. The early history of atmospheric oxygen:Homage to Robert M Garrels[J]. Annul Review of Earth and Planetary Science,33:1-36.
[]&&Catling D C,Zahnle K J,McKay C P. 2001. Biogenic methane,hydrogen escape,and the irreversible oxidation of early Earth[J]. Science,293:839-843.
[]&&Chacónb E,Gómez E B,Montejano G, et al. 2011. Are cyanobacterial mats precursors of stromatolites? In:Tewari V C,Seckbach J(eds). Stromatolites:Interaction of Microbes with Sediments(Cellular Origin,Life in Extreme Habitats and Astrobiology 18)[M]. Berlin:Springer-Verlag,317-341.
[]&&Crowe S A,D?ssing L N,Beukes N J, et al. 2013. Atmospheric oxygenation three billion years ago[J]. Nature, 501:535-539.
[]&&Czaja A D,Johnson C M,Roden E E, et al. 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation[J]. Geochimica et Cosmochimica Acta,86:118-137.
[]&&Davies N S,Gibling M R. 2010a. Cambrian to Devonian evolution of alluvial systems:The sedimentological impact of the earliest land plants[J]. Earth-Science Reviews,98:171-200.
[]&&Davies N S,Gibling M R. 2010b. Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets[J]. Geology,38:51-54.
[]&&Eigenbrode J L,Freeman K H,Summons R E. 2008. Methylhopane biomarkerhydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis[J]. Earth and Planetary Scientific Letter,273:323-331.
[]&&Eriksson P G,Catuneanu O,Nelson D R, et al. 2010. Events in the Precambrian history of the Earth:Challenges in discriminating their global significance[J]. Marine and Petroleum Geology,30:1-18.
[]&&Erwin D H,Laflamme M,Tweedt S M, et al. 2011. The Cambrian conundrum:Early divergence and later ecological success in the early history of animals[J]. Science,334:.
[]&&Ettwig K F,Butler M K,Le Paslier D, et al. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature,464:543-548.
[]&&Farquhar J,Bao H,Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle[J]. Science,289:756-758.
[]&&Farquhar J,Zerkle A,Bekker A. 2010. Geological constraints on the origin of oxygenic photosynthesis[J]. Photosynthesis Research,89:1-26.
[]&&Fischer A G. 1965. Fossils,early life,and atmospheric history[J]. Proceedings of the National Academy of Sciences,53:.
[]&&Garvin J,Buick R,Anbar A D, et al. 2009. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean[J]. Science,323:.
[]&&Gerdes G. 2010. What are microbial mats? In:Seckbach J,Oren A(eds). Microbial Mats:Modern and Ancient Microorganisms in Stratified Systems. Cellular Origin,Life in Extreme Habitats and Astrobiology,14[M]. Berlin:Springer-Verlag,5-25.
[]&&Godfrey L V,Falkowski P G. 2009. The cycling and redox state of nitrogen in the Archaean ocean[J]. Nature Geoscience,2:725-729.
[]&&Greenwood N J,Edward J M B. 1979. Human Environment and Natural System[M]. North Scituate of Massachussetts:Duxbury Press.
[]&&Guo Q J,Strauss H,Kaufman A J, et al. 2009. Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition[J]. Geology,37:399-402.
[]&&Gupta R S. 2003. Evolutionary relationships among photosynthetic bacteria[J]. Photosynthesis Research,76:173-183.
[]&&Gutteridge S,Pierce J. 2006. A unified theory for the basis of the limitations of the primary reaction of photosynthetic CO2 fixation:Was Dr. Pangloss right?[J]. Proceedings of the National Academy of Sciences,103:.
[]&&Han T M,Runnegar B. 1992. Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee iron formation,Michigan[J]. Science,257:232-235.
[]&&Hayes J M. 1994. Global methanotrophy at the Archean-Proterozoic transition. In:Bengtson S(ed). Early Life on Earth:Nobel Symposium No.84[M]. New York:Columbia University Press,220-236.
[]&&Hanson T E,Tabita F R. 2001. A ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress[J]. Proceedings of the National Academy of Sciences,98:.
[]&&Hartman H. 1998. Photosynthesis and the origin of life[J]. Origins of Life and Evolutionary Biosphere,28:515-521.
[]&&Holland H D. 2006. The oxygenation of the atmosphere and oceans[J]. Philosophical Transaction of the Royal Society B,361:903-915.
[]&&Holland H D. 2009. Why the atmosphere became oxygenated:A proposal[J]. Geochimica et Cosmochimica Acta,73:.
[]&&Johnson C M,Beard B L,Roden E E. 2008. The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth[J]. Annual Review of Earth and Planetary Science,36:457-493.
[]&&Blankenship R E,Hartman H. 1998. The origin and evolution of oxygenic photosynthesis[J]. TIBS,23:94-97.
[]&&Blankenship R E,Sadekar S,Raymond J. 2007. The evolutionary transition from anoxygenic to oxygenic photosynthesis. In:Falkowski P G,Knoll A H(eds). Evolution of Primary Producers in the Sea[M]. Amsterdam:Academic Press,21-35.
[]&&Joshi H M,Tabita F R. 1996. A global two-way component signal transduction system that integrates the control of photosynthesis,carbon dioxide assimilation and nitrogen fixation[J]. Proceedings of the National Academy of Sciences,93:.
[]&&Kah L C,Bartley J K. 2011. Protracted oxygenation of the Proterozoic biosphere[J]. International Geology Review,53:.
[]&&Kastings J F,Brown L L. 1998. The early atmosphere as a source of biogenic compounds. In:Brack A(ed). The Molecular Origins of Life:Assembling the Pieces of the Puzzle[M]. Cambridge:Cambridge University Press,35-56.
[]&&Kazmierczak J,Altermann W,Kremer B, et al. 2009. Mass occurrence of benthic coccoid cyanobacteria and their role in the production of Neoarchean carbonates of South Africa[J]. Precambrian Research,173:79-92.
[]&&Kazmierczak J,Kremer B. 2002. Thermal alteration of the Earth's oldest fossils[J]. Nature,420:477-478.
[]&&Kirschvink J L,Gaidos E J,Bertani L E, et al. 2000. Paleoproterozoic snowball Earth:Extreme climatic and geochemical global change and its biological consequences[J]. Proceedings of the National Academy of Sciences,97:.
[]&&Kirschvink J L,Kopp R E. 2008. Paleoproterozoic ice houses and the evolution of oxygen-mediating enzymes:The case for the late origin of photosystem II[J]. Philosophical Transactions of the Royal Society B,363:.
[]&&Knoll AH. 1992. The early evolution of eukaryotes:A geological perspective[J]. Science,256:622-627.
[]&&Knoll A H. 2008. Cyanobacteria and earth history. In:Herrero A,Flores E. The Cyanobacteria,Molecular Biology,Genetics and Evolution[M]. Norfolk:Caister Academic Press,1-20.
[]&&Lowe D R. 1994. Abiotic origin of described stromatolites older than 3.2?Ga[J]. Geology,22:387-390.
[]&&Madigan M T,Martinko J M,Parker J, et al. 2006. Brock Biology of Microorganisms(11th edition)[M]. New Jersey:Prentice Hall,1-786.
[]&&Margulis L. 1970. Origin of Eukaryotic Cells[M]. New Haven of Connecticut:Yale University Press.
[]&&Mathis P. 1990. Compared structure of plant and bacterial photosynthetic reaction centers: Evolutionary implications[J]. Biochimestrica et Biophysica Acta,.
[]&&Mauzerall D. 1992. Light,iron,Sam Granick and the origin of life[J]. Photosynthesis Research,33:163-170.
[]&&McKay C P, Hartman H. 1991. Hydrogen peroxide and the evolution of oxygenic photosynthesis[J]. Origins of Life and Evolutionary Biosphere,21:157-163.
[]&&Mei Mingxiang,Gao Jinhan,Meng Qingfen, et al. 2010. Sedimentary features and their implications of microdigital stromatolites from the Mesoproterozoic Wumishan Formation at the Jixian section in North China[J]. Acta Geologica Sinica,82(3):483-496.
[]&&Melezhik VA,Fallick A E,Hanski E J, et al. 2005. Emergence of the aerobic biosphere during the Archean-Proterozoic transition:Challenges of future research[J]. GSA Today,11:4-11.
[]&&Meyer T E,Van Beeumen J J,Ambler R P, et al. 1996. The evolution of electron transfer proteins in photosynthetic bacteria and denitrifying pseudomonads. In:Baltscheffsky H(ed). Origin and Evolution of Biological Energy Conversion[M]. New York,VCH Publishers:71-108.
[]&&Mojzsis S J,Arrhenius G,McKeegan K D, et al. 1996. Evidence for life on Earth before 3800?million years ago[J]. Nature,384:55-59.
[]&&Morden C W,Sherwood A R. 2002. Continued evolutionary surprise among dinoflagellates[J]. Proceedings of the National Academy of Sciences,99:.
[]&&Morse D,Salois P,Markovic P, et al. 1995. A nuclear-encoded form II Rubisco in dinoflagellates[J]. Science, 268:.
[]&&Summons R E,Jahnke L L,Hope J M, et al. 1999.2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis[J]. Nature,400:554-557.
[]&&Swingley W D,Sadekar S,Mastrian S D, et al. 2007. The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism[J]. Journal of Bacteriology,189:683-690.
[]&&Tal M,Paola C. 2007. Dynamic single-thread channels maintained by the interaction of flow and vegetation[J]. Geology,35:347-350.
[]&&Tcherkez G G B,Farquhar G D,Andrews T J. 2006. Despite slow catalysis and confused substrate specificity,all ribulose bisphospahte carboxylases may be nearly perfectly optimized[J]. Proceedings of the National Academy of Sciences,103:.
[]&&Weise P B,Koegh R N. 1977. Elements of Biology[M]. New York:McGraw-Hill Bock Company.
[]&&Williams G E. 2008. Proterozoic(pre-Ediacaran)glaciation and the high obliquity,low-latitude ice,strong seasonality(HOLIST)hypothesis:Principles and tests[J]. Earth-Science Reviews,87:61-93.
[]&&Xiong J,Inoue K,Bauer C E. 1998. Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis[J]. Proceedings of the National Academy of Sciences,95:.
[]&&Xiong J,Fischer W M,Inoue K, et al. 2000. Molecular evidence for the early evolution of photosynthesis[J]. Science,289:.
[]&&Xiong J,Bauer C E. 2002a. A cytochrome b origin of photosynthesic reaction centers:An evolutionary link between respiration and photosynthesis[J]. Journal of Mol Biology,322:.
[]&&Xiong J,Bauer C E. 2002b. Complex evolution of photosynthesis[J]. Annual Review of Plant Biology,53:503-521.
[]&&Young G M. 2002. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations:Relevance to the snowball Earth debate[J]. Journal of African Earth Sciences,35:451-466.
[]&&Young G M. 2004. Earth's earliest extensive glaciations:Tectonic setting and stratigraphic context of Paleoproterozoic glaciogenic deposits. In:Jenkins G S,McMenamin M A S, et al(eds). The Extreme Proterozoic:Geology,Geochemistry and Climate[M]. American Geophysical Union Geophysical Monograph,146:161-181.?李新坡
[]&&Nisbet E G,Cann J R,van Dover C L. 1995. Origins of photosynthesis[J]. Nature,373:479-480.
[]&&Nisbet E G,Grassineau N V,Howe C J, et al. 2007. The age of Rubisco:The evolution of oxygenic photosynthesis[J]. Geobiology,5:311-335.
[]&&Nitschke W,Mühlenhoff U,Liebl U. 1998. Evolution. In:Raghavendra A(ed). Photosynthesis:A Comprehensive Treatise[M]. Cambridge,UK:Cambridge University Press,285-304.
[]&&Olson J M. 1970. Evolution of photosynthesis[J]. Science,168:438-446.
[]&&Olson J M,Pierson B K. 1986. Photosynthesis 3.5 thousand million years ago[J]. Photosynthesis Research,9:251-259.
[]&&Olson J M, Pierson B K. 1987a. Evolution of reaction centers in photosynthetic prokaryotes[J]. Annual Review of Cytology,108:209-248.
[]&&Olson J M, Pierson B K. 1987b. Origin and evolution of photosynthetic reaction centers[J]. Origin of Life,17:419-430.
[]&&Olson J M,Blankenship R E. 2004. Thinking about the evolution of photosynthesis[J]. Photosynthesis Research,80:373-386.
[]&&Olson S L,Kump L R,Kasting J F. 2013. Quantifying the areal extent and dissolvedoxygen concentrations of Archean oxygen oases[J]. Chemistry Geology,362:35-43.
[]&&Palmer J D,Delwich C E. 1996. Second hand chloroplasts andthe case of the disappearing nucleus[J]. Proceedings of the National Academy of Sciences,93:.
[]&&Pavlov A E,Kasting J F. 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments:Strong evidence for an anoxic Archean atmosphere[J]. Astrobiology,2:27-41.
[]&&Payne J L,McClain C R,Boyer A G, et al. 2011. The evolutionary consequences of oxygenic photosynthesis:A body size perspective[J]. Photosynthesis Research,107:37-57.
[]&&Petroff A P,Sim M S,Maslov A, et al. 2010. Biophysical basis for the geometry of conical stromatolites[J]. Proceedings of the National Academy of Sciences,107:.
[]&&Raymond J,Zhaxybayeva O,Gogarten J P, et al. 2002. Whole-genome analysis of photosynthetic prokaryotes[J]. Science,298:.
[]&&Raymond J,Zhaxybayeva O,Gogarten J P, et al. 2003. Evolution of photosynthetic prokaryotes:A maximum likelihood mapping approach[J]. Philosophical Transaction of the Royal Society B,358:223-230.
[]&&Reid R P,Foster J S,Radtke G, et al. 2011. Modern marine stromatolites of Little Darby Island,Exuma Archipelago,Bahamas:Environmental setting,accretion mechanisms and role of euendoliths. In:Reitner J,Quéric Nadia-Valérie,Arp G(eds). Advances in Stromatolite Geobiology,Lecture Notes in Earth Sciences 131[M]. Berlin:Springer-Verlag,77-89.
[]&&Reid R P,Visscher P T,Decho A W, et al. 2000. The role of microbes in accretion,lamination and lithification of modern marine stromatolites[J]. Nature,406:989-992.
[]&&Riding R. 2000. Microbial carbonates:The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology,47:179-214.
[]&&Riding R. 2008. Abiogenic,microbial and hybrid authigenic carbonate crusts:Components of Precambrian stromatolites[J]. Geologia Croatica,61:73-103.
[]&&Riding R. 2011. The Nature of Stromatolites:3,500 Million Years of History and a Century of Research. In:Reitner J,Quéric Nadia-Valérie,Arp G(eds). Advances in Stromatolite Geobiology,Lecture Notes in Earth Sciences 131[M]. Berlin:Springer-Verlag,29-76.
[]&&Riding R,Fralick P,Liang Liyuan. 2014. Identification of an Archean marine oxygen oasis[J]. Precambrian Research,251:232-237.
[]&&Rosing M T,Frei R. 2004. U-rich Archaean sea-floor sediments from Greenland:Indications of 3700?Ma oxygenic photosynthesis[J]. Earth and Planetary Science Letters,.
[]&&Samuilov V D. 1997. Photosynthetic oxygen:The role of H2O2: A review[J]. Biochemistry(Moscow),62:451-454.
[]&&Schidlowski M. 1988. A 3800-million-year isotopic record of life from carbon in sedimentary rocks[J]. Nature,333:313-318.
[]&&Schopf J W, 2011. The paleobiological record of photosynthesis[J]. Photosynthesis Research,107:87-101.
[]&&Schopf J W,Walter M R. 1983. Archean microfossils:New evidence of ancient microbes. In:Schopf J W(ed). Earth's Earliest Biosphere[M]. Princeton of New Jersey,U.S.A.:Princeton University Press,214-239.
[]&&Schopf J W,Kudryavtsev A B,Czaja A D, et al. 2007. Evidence of Archean life:Stromatolites and microfossils[J]. Precambrian Research,158:141-155.
[]&&Schütz M,Brugna M,Lebrun E, et al. 2000. Early evolution of cytochrome bc complexes[J]. Journal of Mol Biology,300:663-676.
[]&&Schwartzman D,Caldeira K,Pavlov A. 2008. Cyanobacterial emergence at 2.8 Gya and greenhouse feedbacks[J]. Astrobiology,8:187-203.
[]&&Slack J F,Cannon W F. 2009. Extraterrestrial demise of banded iron formations 1.85 billion years ago[J]. Geology,37:.
Please enable JavaScript to view the
&&&OALib Suggest
Live SupportAsk us anything}

我要回帖

更多关于 光合作用的产物 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信