高数高数 线性代数数。基础解系的表示法唯一,这是什么定理?能让我看一下吗?

高等数学包括线性代数 完美作业网
高等数学和线性代数的区别在哪里? 首先我把我个人感觉告诉你1.高数比线代难2.两者相互联系很小,不学高数,也能学抚线代,也就是说随便学哪个,对另一个都没什么影响,学校开课是先学高数,但我觉得两者没什么共性3.线代其实只要学过高中的行列式,入门是很快的,而高数要花的功夫就比较多了以上是我个人感觉,我是针对大学开的课来说的
《同济高等数学》中是否包含详细的线性代数和微积分? 我原来考研的时候用的就是《同济高等数学》和《线性代数》,所以可以很肯定的告诉你,《同济高等数学》共有上下册两本,但没有包括线性代数。线性代数是独立出来的一本书(也是同济大学)同济大学的两本高数,一本线性代数,再加上浙江大学的概率统计,共4本书,是非常好,非常经典的教材。看了绝对有收获。补充:概率论与数理统计也是独立的,建议你用浙江大学的那本.非常好!还有,考研数学最主要是要多做几遍历年真题.总结解题思路.不明白的再回归到教材.建议你去书店买一本历年真题!PS:有什么问题可以直接与我联系交流!
高等数学指的是哪几门课程? 高数是一个统一的称呼,范围也是根据专业而不同的。以研究生考试的标准来说,理工科的学生考的是高数一,二;经济类,管理类的学生考的是高数三,四。具体的来说,高数一(二)包括的内容有:一元和多元微积分,一元常微分方程,概率论,统计初步,线性代数,部分学校还要求数值分析的一些内容。高数三(四)包括一元和多元微积分基础(不要求曲线和曲面积分和三重以及以上的积分),矗性代数(不要求约当标准型,不变空间,抽象代数初步),简单常微分方程(简单的意思就是在一般高数书中总结的那几类微风方程类型),概率论(不要求统计)。同济版的高数是很好的参考书,北大出版社的高数(上,下)也是很好的教材,有大量的习题和例子。丘维声的简明线性代数也是同类中不错的教材。
高等数学包括线性代数和 概率论与数理统计吗 高等数学一般不包括 线性代数 和 概率论与数理统计。考研数学一,三,包括 高等数学、 线性代数 和 概率论与数理统计
高等数学和线性代数的联系大吗? 线代跟高数没什么联叮。高数研究的是连续量,线代研究的是数阵,也就是离散量。具体说线代研究的是线性方程组,或者更确切的说是研究线性空间里的线性变换。
线性代数和高等数学先学哪个好 首先我把我个人感觉告诉你 一.高数比线代难 二.两者相互联系很小,不学高数,也能学会线代,也就是说随便学哪个,对另一个都没什么影响,学校开课是先学高数,但我觉得两者没什么共性 三.线代其实只要学过高中的行列式,入门是很快的,而高数要花的功夫就比较多了 以上是我个人感觉,我是针对大学开的课来说
考研的高等数学一包括哪些 考研数一一共包括四本书!两本高数(同济五版,绿色封皮)线性代数(同济四版,紫色封皮)概率论与数理统範(浙大的三版)这就考研数一用书,不分文理的!
线性代数和高等数学的区别 高等数学包括很多分支,比如分析类,代数类,非欧几何类。线性代数是代数学的分支,也是高数的分支。
高等数学包括哪些范围?有加分!!! 10月19日 09:22 这和您报考学校专业的具体要求有关,数二不考线性代数、数三、数四属于经济数学。1. 2005年数学考试大纲的修订说明与评述(1) 基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统考试卷仍分为数学一、数学二、数学三和数学四。(2) 数学一、二试卷高等数学部分,“函数、极限、连续”的考试要求的第4条增加“了解初等函数的概念”的要求。原为“掌握基本初等函数的性质及其图形”。变为“掌握基本初等函数的性质及其图形,了解初等函数的概念”。评述:进一步强调基础知识点。(3)数学一试卷高等数学部分,“多元函数微分学”的考试要求的第6条,数学二试卷高等数学部分,“多元函数微积分学”的考试要求的第3条,将原来的“会用隐函数的求志法则”改为“了解隐函数存在定理,会求多元隐函数的偏导数”。评述:进一步强调基础知识点与概念理解的重要性。(4) 数学三、四试卷高等数学部分,“函数、极限、连续”的考试要求的第3条,将“理解反函数、隐函数的概念”改为“了解反函数、隐函数的概念”,原为“理解复合函数、反函数、隐函数和分段函数的概念”。变为“理解复合函数及分段函数的概念,了解反函数及隐函数的概念”。评述:进一步强调基础知识点。“一元函数微分学”的考试要求的第1条,增加“会求平面曲线的切线方程和法线方程”的要求。原为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)”。变为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。”评述:进一步强调基础知识点,进一步提升对考生能力的要求。(5)数学三、四试卷线性代数部分,“线性方程组”的考试要求的第4条改为“4.理解非齐次线性方程组解的结构及通解的概念。5.掌握用初等行变换求解线性方程组的方法”。原为“4.掌握理解非齐次线性方程组基础解系的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解”。变为以上的两条。评述:进一步提升对考生能力的要求。(6) 对数学一、三试卷概率论与数理统计部分和数学四试卷概率论部分的一些概念、考试内容和考试要求在文字表述上作了修改,使其更加规范和统一。(7) 对数学一、二试卷的样卷进行了修订。(8)对数学一、二、三、四试卷中的考试内容和考试要求的表述更进一步明确、规范和统一,在考试内容部分只列出内容范围,而将有关内容的要求层次和应用这些内容可以解出的问题在考试要求部分列出。2.2005年考研数学特点2005考研数学试卷将进一步加大对考生掌握数学基础知识的准确性与全面性的考察力度,同时坚固不同知识点综合交叉运用性的基本能力。就难度而言,会维持2004年的水平。2004年数学试题是近5年以来较容易也是最基本的一套试题。2005年大纲维持2004年要求基本不变。只是进一步加强了对基础性知识点的重视与规范化要求。如:一元微分学中常增加了“接初等函数的概念准确的概念”,“会求平面曲线的切线方程与法线方程”,多元微分学强调了“了解隐函数存在定理,会求多元隐函数的偏导数”,线性代数强调“理解非齐次方程组解的结构及通解的概念”,“掌握用初等行变换求解线性方程组的方法”,等等。准确而全面的概念理解与过硬的基本计算能力,将是2005年考生取胜的关键。加强知识的基础性、系统综合性与交叉性......
大学里面高等数学,线性代数,概率论之间有关联吗 有很少的关联。线性代数,有时候会以高等数学为背景进行设置,但是用到主干知识还是线性代数;概率论会用到一些积分,二重积分,比如确定分布函数或者概率密度函数等,其余的关系不大。基本用不到线性代数。望采纳!当前位置: >>
线性代数基本定理
线性代数基本定理 行列式 1、 对于线性方程组,若系数行列式的值 D≠0,则方程组有唯一解。 2、 若线性方程组的系数行列式 D≠0,则方程组有唯一解。 3、 若线性方程组无解或有无穷多个解,则它的系数行列式必为零。 4、 若齐次线性方程组的系数行列式 D≠0,则齐次线性方程组只有 0 解,没有非零解。 5、 若齐次线性方程组有非零解,则它的系数行列式必为零,即 D=0。矩阵 1、 方阵为满秩矩阵的充分必要条件是|A|≠0; (方阵 A 可逆的充分必要条件是 A 为满秩矩阵) 。 2、 设 A 是 m×n 矩阵,则齐次线性方程组 Ax=0 有非零解得充分必要条件为 R(A)<n。向量组的线性相关性 1、 一个向量线性相关的充分必要条件是α =0; α 是线性无关的充分必要条件是α ≠0。 两个向量线性 相关的充分必要条件是它们对应的分量成比例。 2、 向量 b 能由向量组α 1, α 2, ?, α n 线性表示的充分必要条件是: 线性方程组 x1α 1+ x2α 2+?+ xnα n=b 有解。3、 向量组α 1,α 2,?,α n 线性相(无)关的充分必要条件是齐次线性方程组有(无)非零解。 阐述:根据向量线性相关的定义,若向量组α 1,α 2,?,α n 线性相关,则存在一组不全为零 的数λ 1,λ 2,?,λ n,使λ 1α 1+ λ 2α 2+?+λnα n=0,即齐次线性方程组x1α 1+ x2α 2+?+ xnαn=0有非零解。反之,若齐次方程组有非零解,则向量组线性相关。向量组α 1,α 2,?,α n 线性无关的充分必要条件是齐次线性方程组仅有零解。4、 n 个 n 维向量线性相关的充分必要条件是它们排成的 n 阶行列式的值等于零。 5、 当 m>n 时,m 个 n 维向量一定线性相关。 6、 向量组线性无关的充分必要条件是向量组的秩等于该向量组所含向量的个数;向量组线性相关的 充分必要条件是向量组的秩小于该向量所含向量的个数。 7、 向量组与它的任意一个极大无关组等价。 8、 一个向量组的任意两个极大无关组等价。 9、 若向量组 A 能由向量组 B 线性表示,则 R(A)≤R(B),即“秩小的可以表示秩大的” 。如何求行向量组的一个极大无关组? 把行向量组转置变成列向量组,组成一个矩阵 A,再对 A 进行初等行变换化成行阶梯形矩阵 B, 则 B 所对应的非零行中第一个不等于 0 的数所在的列对应的列向量组就是它的一个极大无关组。 方法二:可以直接作为行组成矩阵,此时要进行初等列变换才行。――百度知道 线性方程组 1、 设 A 是 m×n 的矩阵,齐次方程组 Ax=0 有费玲姐的充要条件是 r(A)<n(n 即未知数的个数) ,亦 即 A 的列向量线性相关。 2、 如果 A 是 n 阶矩阵,Ax=0 有非零解的充要条件是|A|=0。 3、 Ax=0 有非零解的充分条件是 m<n(即方程个数<未知数个数) 。 4、 设 A 是 m×n 矩阵,方程组 Ax=b,则 (1) 有唯一解 等价于 r(A)=增广矩阵的秩=n (2) 有无穷多解 等价于 r(A)=增广矩阵的秩<n (3) 无解 等价于 r(A)+1=增广矩阵的秩 等价于 b 不能由 A 的列向量线性表出 5、 如 Ax=b 有唯一解,则 Ax=0 只有零解;反之,当 Ax=0 只有零解时,Ax=b 没有无穷多解(可能无 解,也可能只有唯一解)&&&&线性代数解题方法技巧归纳(第三版)
自营订单满39元(含)免运费
不足金额订单收取运费5元起
邀请好友参加吧
版 次:1页 数:字 数:印刷时间:日开 本:大32开纸 张:胶版纸包 装:平装是否套装:否国际标准书号ISBN:8所属分类:&&&
下载免费当当读书APP
品味海量优质电子书,尊享优雅的阅读体验,只差手机下载一个当当读书APP
本商品暂无详情。
当当价:为商品的销售价,具体的成交价可能因会员使用优惠券、积分等发生变化,最终以订单结算页价格为准。
划线价:划线价格可能是图书封底定价、商品吊牌价、品牌专柜价或由品牌供应商提供的正品零售价(如厂商指导价、建议零售价等)或该商品曾经展示过的销售价等,由于地区、时间的差异化和市场行情波动,商品吊牌价、品牌专柜价等可能会与您购物时展示的不一致,该价格仅供您参考。
折扣:折扣指在划线价(图书定价、商品吊牌价、品牌专柜价、厂商指导价等)某一价格基础上计算出的优惠比例或优惠金额。如有疑问,您可在购买前联系客服咨询。
异常问题:如您发现活动商品销售价或促销信息有异常,请立即联系我们补正,以便您能顺利购物。
当当购物客户端手机端1元秒
当当读书客户端万本电子书免费读2011年考研加;线性代数的学习切入点:线性方程组;线性方程组的特点:方程是未知数的一次齐次式,方程;关于线性方程组的解,有三个问题值得讨论:(1)、;高斯消元法,最基础和最直接的求解线性方程组的方法;(2)、交换某两个方程的位置;(3)、用某个常数;任意的线性方程组都可以通过初等变换化为阶梯形方程;由具体例子可看出,化为阶梯
2011年考研加油
少说话,转身为生活的旁观者。 线性代数知识点框架(一)
线性代数的学习切入点:线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。
线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。
关于线性方程组的解,有三个问题值得讨论:(1)、方程组是否有解,即解的存在性问题;(2)、方程组如何求解,有多少个解;(3)、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。
高斯消元法,最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:(1)、把某个方程的k倍加到另外一个方程上去;(2)、交换某两个方程的位置;(3)、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。
任意的线性方程组都可以通过初等变换化为阶梯形方程组。
由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。
对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。
可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。
系数矩阵和增广矩阵。
高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。
阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。
对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无 穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r<n,则方程组有无穷多解。
在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。
常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。
齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。
利用高斯消元法和解的判别定理,以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。
对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。
通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。
用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。
总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。
2011年考研加油
少说话,转身为生活的旁观者。
线性代数知识点框架(二)
在利用高斯消元法求解线性方程组的过程中,涉及到一种重要的运算,即把某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项判断它有没有解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运算。
数域上的n元有序数组称为n维向量。设向量a=(a1,a2,...,an),称ai是a的第i个分量。
n元有序数组写成一行,称为行向量,同时它也可以写为一列,称为列向量。要注意的是,行向量和列向量没有本质区别,只是元素的写法不同。
矩阵与向量通过行向量组和列向量组相联系。
对给定的向量组,可以定义它的一个线性组合。线性表出定义的是一个向量和另外一组向量之间的相互关系。
利用矩阵的列向量组,我们可以把一个线性方程组有没有解的问题转化为一个向量能否由另外一组向量线性表出的问题。同时要注意这个结论的双向作用。
从简单例子(如几何空间中的三个向量)可以看到,如果一个向量a1能由另外两个向量a2、a3线性表出,则这三个向量共面,反之则不共面。为了研究向量个数更多时的类似情况,我们把上述两种对向量组的描述进行推广,便可得到线性相关和线性无关的定义。
通过一些简单例子体会线性相关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。
从多个角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性相关和线性无关的本质。
部分组线性相关,整个向量组线性相关。向量组线性无关,延伸组线性无关。
回到线性方程组的解的问题,即一个向量b在什么情况下能由另一个向量组 a1,a2,...,an线性表出?如果这个向量组本身是线性无关的,可通过分析立即得到答案:b, a1, a2, ..., an线性相关。如果这个向量组本身是线性相关的,则需进一步探讨。
任意一个向量组,都可以通过依次减少这个向量组中向量的个数找到它的一个部分组,这个部分组的特点是:本身线性无关,从向量组的其余向量中任取一个进去,得到的新的向量组都线性相关,我们把这种部分组称作一个向量组的极大线性无关组。
如果一个向量组A中的每个向量都能被另一个向量组B线性表出,则称A能被B线性表出。如果A和B能互相线性表出,称A和B等价。
一个向量组可能又不止一个极大线性无关组,但可以确定的是,向量组和它的极大线性无关组等价,同时由等价的传递性可知,任意两个极大线性无关组等价。
注意到一个重要事实:一个线性无关的向量组不能被个数比它更少的向量组线性表出。这是不难理解的,例如不共面的三个向量(对应线性无关)的确不可能由平面内的两个向量组成的向量组线性表出。
一个向量组的任意两个极大线性无关组所含的向量个数相等,我们将这个数目r称为向量组的秩。
向量线性无关的充分必要条件是它的秩等于它所含向量的数目。等价的向量组有相同的秩。
有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组的有解的充分必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。
向量组的秩是一个自然数,由这个自然数就可以判断向量组是线性相关还是线性无关,由此可见,秩是一个非常深刻而重要的概念,故有必要进一步研究向量组的秩的计算方法。
2011年考研加油
少说话,转身为生活的旁观者。 线性代数知识点框架(三)
为了求向量组的秩,我们来考虑矩阵。矩阵的列向量组的秩称为矩阵的列秩,行向量组的秩称为行秩。
对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。
矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。
任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。
通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。
考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。总而言之,初等变换不会改变矩阵的秩。因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。
矩阵的秩,同时又可定义为不为零的子式的最高阶数。
满秩矩阵的行列式不等于零。非满秩矩阵的行列式必为零。
既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r<n,有无穷多解。
齐次线性方程组的解的结构问题,可以用基础解系来表示。当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。
通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。
非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。
线性代数知识点框架(四)
在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。
矩阵的加法和数乘,与向量的运算类同。
矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。即可以把一个矩阵看作是一种线性变换在数学上的表述。
矩阵的乘法,反映的是线性变换的叠加。如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。
矩阵乘法的特点:若C=AB,则C的第i行、第j列的元素是A的第i行与B的第j列的元素对应乘积之和;A的列数要和B的行数相同;C的行数是A的行数,列数是B的列数。需要主义的是矩阵乘法不满足交换律,满足结合律。
利用矩阵乘积的写法,线性方程组可更简单的表示为:Ax=b。
对于C=AB,还可作如下分析:将左边的矩阵A写成列向量组的形式,即意味着C的列向量组能由A的列向量组表示,从而推知C的列秩小于等于A的列秩;将右边的矩阵B写成行向量组的形式,即意味着C的行向量组能由B的行向量组表示,从而推知C的行秩小于等于B的行秩,再考虑到矩阵的行秩等于列秩等于矩阵的秩,最终可得到结论,C的秩小于等于A的秩,也小于等于B的秩,即矩阵乘积的秩总不超过任一个因子的秩。
关于矩阵乘积的另外一个重要结论:矩阵乘积的行列式等于各因子的行列式的乘积。
一些特殊的矩阵:单位阵、对角阵、初等矩阵。尤其要注意,初等矩阵是单位阵经过一次初等变换得到的矩阵。
每一个初等矩阵对应一个初等变换,因为左乘的形式为PA(P为初等矩阵),将A写成行向量组的形式,PA意味着对A做了一次初等行变换;同理,AP意味着对A做了一次初等列变换,故左乘对应行变换,右乘对应列变换。 3
2011年考研加油
少说话,转身为生活的旁观者。
若AB=E,则称A为可逆矩阵,B是A的逆阵,同样,这时的B也是可逆矩阵,注意可逆矩阵一定是方阵。
第一种求逆阵的方法:伴随阵。这种方法的理论依据是行列式的按行(列)展开。
矩阵可逆,行列式不为零,行(列)向量组线性无关,满秩,要注意这些结论之间的充分必要性。
单位阵和初等矩阵都是可逆的。
若矩阵可逆,则一定可以通过初等变换化为单位阵,这是不难理解的,因为初等矩阵满秩,故最后化成的阶梯型(最简形)中非零行数目等于行数,主元数目等于列数,这即是单位阵。进一步,既然可逆矩阵可以通过初等变换化为单位阵,而初等变换对应的是初等矩阵,即意味着:可逆矩阵可以通过左(右)乘一系列初等矩阵化为单位阵,换言之可逆矩阵可看作是一系列初等矩阵的乘积,因为单位阵在乘积中可略去。
可逆矩阵作为因子不会改变被乘(无论左乘右乘)的矩阵的秩。
由于可逆矩阵可以看作是一系列初等矩阵的乘积,可以想象,同样的这一系列初等矩阵作用在单位阵上,结果是将这个单位阵变为原来矩阵的逆阵,由此引出求逆阵的第二种方法:初等变换。需要注意的是这个过程中不能混用行列变换,且同样是左乘对应行变换,右乘对应列变换。
矩阵分块,即可把矩阵中的某些行和列的元素看作一个整体,对这些被看作是整体的对象构成的新的矩阵,运算法则仍然适用。将矩阵看成一些列行向量组或列向量组的形式,实际也就是一种最常见的对矩阵进行分块的方式。 线性代数知识点框架(五)
由矩阵乘法的特点可知,计算一个矩阵A的n次方,相对于数乘运算来说要繁琐得多。我们注意到,如果存在可逆矩阵P和对角矩阵∧,使得A=P*∧*P逆,那么有: A^n=(P*∧*P逆)^n=(P*∧*P逆)(P*∧*P逆)…(P*∧*P逆)=P*∧^n*P逆
由于对角矩阵的乘方容易计算,从而问题得到大幅简化。
对矩阵A、B来说,如果存在着可逆矩阵P,使得A=P *B*P逆,我们称A与B是相似的。特别地,如果A与对角矩阵∧相似,则称A可对角化。由此可见,如果矩阵A可对角化,那么A^n的计算将变得简单许多。故可把相似的说法理解为一个在寻找矩阵乘方简便运算的过程中提出来的概念。
相似的矩阵有许多共同的性质,如有相同的秩和相同的行列式值,相似的矩阵或者都可逆,或者都不可逆,等等。
设矩阵A相似于对角矩阵∧,那么: A=P*∧*P逆 <=> AP=P∧,其中P为可逆矩阵 <=> A*(a1, a2, …, an)=(a1, a2, …, an)*∧,其中a1, a2, …, an分别为可逆矩阵P的列向量,λ1, λ2, …, λn分别为对角矩阵∧的主对角线上元素 <=> A*a1=λ1*a1,A*a2=λ2*a2,…,A*an=λn*an 也就是说,矩阵A能对角化的关键,在于找到n个常数λ1, λ2, …, λn和n个线性无关的向量a1, a2, …, an(因为这些向量构成的矩阵可逆,这也决定了零向量不是特征向量),使得A*ai=λi*ai(i=1,2,3,…,n)。 我们把满足条件A*ai=λi*ai的λi称为矩阵A的特征值,ai称为矩阵A对应特征值λi的特征向量。换句话说,一个矩阵能够相似于对角矩阵的充分必要条件是:存在n个线性无关的特征向量。
接下来的问题是如何求矩阵的特征值和特征向量?一个方案是从定义A*ai=λi*ai出发,直接寻找满足这样要求的λi 和ai,但这一般是不容易做到的,故还有必要去建立一种更为普遍的方法。
2011年考研加油
少说话,转身为生活的旁观者。 设A*ai=λi*ai <=>(A-λi*E)*ai=0 <=> 对λi来说,ai是齐次线性方程组(A-λi*E)*X=0的一个非零解(因为ai构成的向量组线性无关) <=> 方程组的系数行列式det(A-λi*E)=0 由此可见,每一个特征值λi都是多项式det(A-λ*E)在指定数域(一般是实数域)上的根,我们称这个多项式为矩阵A的特征多项式,不难验证,它是一个λ的n次多项式。依据特征方程det(A-λ*E)=0,即可求出矩阵A的全部特征值。
对矩阵A的每个特征值λi,求齐次线性方程组(A-λi*E)*X=0的解,得到的全部非零解(一般可用基础解系表示)就是A的属于特征值λi的全部特征向量。由此可得到两点启示:对同一个特征值来说,特征向量不唯一;对同一特征值来说,特征向量的线性组合仍为特征向量。
相似的矩阵有相同的特征多项式和特征值,但有相同特征多项式的两个矩阵不一定相似。相似的矩阵有相同的秩,故一个可对角化矩阵的非零特征值的数目即为其秩。
在求出矩阵的全部特征值和全部特征向量以后,剩下的问题就是判断这些所有的特征向量中有没有n个是线性无关的?如果有,意味着矩阵可对角化,如果没有,则矩阵不可对角化。
对一个矩阵A来说,考虑到其n个特征值可能相同也可能不同,故最一般的情况应该是把A的这n个特征值分为m组,分别为λ1, λ2, …, λm,每组的个数分别为j1,j2,…,jm(注意有j1+j2+…+jm=n),对每个λi(i=1,2,…,m),齐次线性方程组(A-λi*E)*X=0的基础解系解向量的个数分别为r1,r2,…,rm,这些基础解系各自当然都是A的线性无关的特征向量,自然会进一步联想,把这m组共r1+r2+…+rm个向量合在一起情况如何,是否仍线性无关?
经过考察发现,矩阵A的属于不同的特征值的特征向量一定线性无关。故上述r1+r2+…+rm个来自不同特征值的特征向量构成的向量组确实是线性无关的。于是不难有如下结论,若r1+r2+…+rm=n,则A有n个线性无关的特征向量,从而A可对角化,若r1+r2+…+rm<n,则A没有n个线性无关的特征向量,从而A不可对角化。
若矩阵A具有n个不同的特征值,则A可对角化。
由此可见,要判断一个矩阵是否可对角化,通常需要求出其全部特征值(相当于解代数方程的问题),再求出每个特征值所对应的特征向量(相当于解齐次线性方程组的问题)并考察其相互之间的线性无关性。亦即我们应当建立起这样的认识:相似变换,尤其是相似对角变换,并不是对任何一个矩阵来说都可以进行的,这其中关键在于能否找到一个可逆矩阵P来为两者提供联系,换言之就是应当满足某些对应的条件。当然,可以想象,也许对于具有某些特点的矩阵来说,它们本身就满足这种既定条件,从而必可以对角化。
实对称矩阵就是这样一种特殊的矩阵,它一定存在着n个线性无关的特征向量,即一定可对角化。实对称矩阵属于不同特征值得特征向量是正交的,而之前已经提到过,对同一特征值来说,其特征向量的线性组合仍是其特征向量,故可利用施密特正交化方法(本质是线性组合)来构造出一组属于同一特征值的正交特征向量,这些正交化单位化后的特征向量就决定了实对称矩阵一定可以正交对角化。要注意到正交矩阵当然是可逆的,正交的向量组当然是线性无关的,这是实对称矩阵对于一般矩阵来说在相似变换性质上更为优越的地方。
5 三亿文库包含各类专业文献、文学作品欣赏、中学教育、幼儿教育、小学教育、生活休闲娱乐、专业论文、2011年考研数学线性代数打印资料95等内容。 
 举报文档 pqbrbz贡献于 0.0分 (0人评价)暂无用户评价 我要评价...Wqsg11年考研数学线性代数打印资料Wqsg11年考研数学线性代数打印资料隐藏&& 生命中...  如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 2011考研线性代数必须熟记的结论WORD打印版 考研线代必须要熟记的公式,很...  2011 年考研重点 2011 年考研数学线性代数复习重点一、重视基本概念、基本性质、基本方法的理解和掌握 基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更...  如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 2011年考研数学线性代数必须熟记结论 隐藏&& 线性代数必须熟记的结论 1、...  如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 2011年考研数学线性代数重点内容和典型题型分析 隐藏&& 湖北经济学院法商...  如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 2011年考研数学线性代数重点内容和典型题型分析 2011考研数学线性代数重点...  2011年考研数学线性代数必须熟记结论_教育学/心理学_人文社科_专业资料 暂无评价|0人阅读|0次下载|举报文档 2011年考研数学线性代数必须熟记结论_教育学/心理学_...  典型题解析 暂无评价 70页 2下载券 大学数学复习资料(解析题... 33页 免费 线性代数公式必记 6页 1下载券 线性代数历年考研试题之... 21页 免费2...}

我要回帖

更多关于 线性代数属于高数吗 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信