组驻解并讨论稳定性态时怎么线性化微分方程线性稳定性组的

正文/非线性方程组数值解法
n个变量n个方程(n &1)的方程组表示为
(1)式中?i(x1,x2,…,xn)是定义在n维欧氏空间Rn 的开域D上的实函数。若?i中至少有一个非线性函数,则称(1)为非线性方程组。在Rn 中记 ?= 则(1)简写为?(尣)=0。若存在尣*∈D,使?(尣*)=0,则称尣*为非线性方程组的解。方程组(1)可能有一个解或多个解,也可能有无穷多解或无解。对非线性方程组解的存在性的研究远不如线性方程组那样成熟,现有的解法也不象线性方程组那样有效。除极特殊的方程外,一般不能用直接方法求得精确解,目前主要采用求近似解。根据不同思想构造收敛于解尣*的迭代序列{尣k}(k=0,1,…),即可得到求解非线性方程组的各种迭代法,其中最著名的是。
牛顿法及其变形/非线性方程组数值解法
牛顿法基本思想是将非线性问题逐步线性化而形成如下迭代程序:
  (2)式中
是?(尣k)的,尣0是方程(1)的解尣*的初始近似。 这个程序至少具有2阶收敛速度。由尣k算到尣k+的步骤为:①由尣k算出?(尣k)及;②用直接法求线性方程组的解Δ尣k;③求。 由此看到迭代一次需计算n个分量函数值和 n2个分量偏导数值,并求解一次n阶线性方程组。 为了评价非线性方程组不同迭代法的优劣,通常用效率作为衡量标准,其中P为迭代法的收敛阶,W为每迭代步计算函数值?i及偏导数值的总个数(每迭代步中求一次逆的工作量相同,均不算在W 内)。效率e越大表示此迭代法花费代价越小,根据效率定义,牛顿法(2)的效率为。 牛顿法有很多变形,如当奇异或严重病态时,可引进阻尼因子λk,得到阻尼牛顿法,即
式中I是单位矩阵。牛顿法是方法,因而对初始近似尣0限制较严,为放宽对尣0的要求,扩大收敛范围,通常可引进松弛因子ωk,得到牛顿下降法:
(3)式中ωk的选择应使成立。 为减少解线性方程组次数,提高效率,可使用修正牛顿程序
(4)这种算法也称为萨马斯基技巧,它的收敛阶为 p =m+1,由尣k 计算 的工作量为W =n2+mn,于是该法的效率。当n=10,m=7时,当n=100,m=37时,,由此看到修正牛顿法(4)比牛顿法效率高,且m 越大效果越明显。 在计算机上往往采用不计算偏导数的离散牛顿法,即
,其中ej为,,若取,则(5)仍具有2阶收敛速度。其效率与牛顿法相同。 若在牛顿法(2)中解线性方程组不用直接法,而采用迭代法则得到一类解非线性方程组的双重迭代法。按解线性方程组采用的方法不同就得到不同名称的迭代法,如牛顿-迭代法,牛顿-迭代法,牛顿-ADI迭代法,等等。这些方法都具有速度,工作量也比牛顿法大,除了对某些特殊稀程组外,通常用得校少。若将解线性方程组迭代法的思想直接用于非线性方程组(1),然后把(1)化为一维方程求解,可得到另一类双重迭代法,由于采用的迭代法与解一维非线性方程的方法不同,则得到不同的双重迭代法。如果利用SOR迭代法后再用牛顿法解一维方程则得SOR-牛顿迭代法,在牛顿法中只计算一步而不进行迭代,则得一步的SOR-牛顿迭代,其计算公式可表示为
式中记号嬠i?i表示;ω为迭代参数,当ω=1时就是赛德尔-牛顿迭代法,这类方法对解维数高的稀疏的非线性方程组是有效的。  
割线法/非线性方程组数值解法
若对方程组 (1)线性化时使用插值方法确定线性方程组
     (6)中的Ak和bk,则可得到一类称为割线法的迭代序列。假定已知第k步近似尣k,为确定Ak和bk,可在尣k附近取n个辅助点у忋(j=1,2,…,n),使n个向量线性无关,由插值条件可知
由此可求得
由(6)解得以此作为方程 (1)的新近似,记作,于是得到
(7)(7)称为解非线性方程组的割线法。辅助点у忋 取得不同就得到不同的割线法程序,例如取为常数(j=1,2,…,n),就得到与(5)相同的程序,由于它只依赖于尣k点的信息,故也称一点割线法,若取它依赖于点尣k及, 称为两点割线法。其他多点割线法由于稳定性差,使用较少。
布朗方法/非线性方程组数值解法
布朗采用对每个分量方程 ?i(尣)=0逐个进行线性化并逐个消元的步骤,即在每迭代步中用三角分解求线性方程组的解,得到了一个效率比牛顿法提高近一倍的迭代法,即
(8)中当i=n时求得xn记作,再逐次回代,求出(i=n-1,n-2,…,1)就完成了一个迭代步。布朗迭代程序的敛速仍保持p=2,而每一迭代步的工作量,故效率对这方法还可与牛顿法一样进行改进,得到一些效率更高的算法。这类方法是70年代以来包中常用的求解非线性方程组的算法。   
拟牛顿法/非线性方程组数值解法
为减少牛顿法的计算量,避免计算雅可阵及其逆,60年代中期出现了一类称为拟牛顿法的新算法,它有不同的形式,常用的一类是秩1的拟牛顿法,其中不求逆的程序为
式中,,,称为逆拟牛顿公式。计算时先给出尣0及 B0,由(9)逐步迭代到满足精度要求为止。每步只算 n个分量函数值及O(n2)的计算量,比牛顿法一步计算量少得多。理论上已证明,当尣0及B0选得合适时,它具有超线性收敛速度,但实践表明效率并不高于牛顿法,理论上尚无严格证明。   
最优化方法/非线性方程组数值解法
求方程组 (1)的问题等价于求目标函数为的极小问题,因此可用无约束最优化方法求问题(1)的解(见)。   
连续法/非线性方程组数值解法
又称,它可以从任意初值出发求得方程组(1)的一个足够好的近似解,是一种求出好的迭代初值的方法。连续法的基本思想是引入参数 t∈【0,b】,构造算子H(尣,t),使它满足条件:H(尣,0)=?0(尣),H(尣,b)=?(尣),其中?0(尣)=0的解尣0是已知,方程:
   (10)在t∈【0,b】上有解尣=尣(t),则尣(b)=尣*就是方程(1)的解。当b有限时,通常取b=1,例如可构造。
(11)这里尣0是任意初值,显然H(尣0,0)=0,H(尣,1)=?(尣)。为了求得(10)在t=1的解尣*=尣(1),可取分点0=t0&t1&…&tN=1在每个分点ti(i=1,2,…,N)上,求方程组
H(尣,ti)=0 (i=1,2,…,N) (12)的解尣i,如果取尣i-1为初值,只要足够小,牛顿迭代就收敛,但这样做工作量较大。已经证明,如果方程组(12)只用一步牛顿法,当t=tN=1时,再用牛顿迭代,结果仍具有2阶收敛速度。以(11)为例,得到连续法的程序为:
  若H(尣,t)的偏导数Ht(尣,t)及在D×【0,1】嶅R上连续。且非奇异,则由(10)对t求导可得到等价的微分方程初值问题:
    (13)于是求方程(10)的解就等价于求常微初值问题(13)的解,求(13)的解可用数值方法由t=0计算到t=tN=b得到数值解。已经证明只要N足够大,以尣N为初值再进行牛顿迭代可收敛到方程(1)的解x*,这种算法称为参数微分法。   20世纪60年代中期以后,发展了两种求解非线性方程组(1)的新方法。一种称为区间迭代法或称区间牛顿法,它用区间变量代替点变量进行区间迭代,每迭代一步都可判断在所给区间解的存在惟一性或者是无解。这是区间迭代法的主要优点,其缺点是计算量大。另一种方法称为或称单纯形法,它对求解域进行单纯形剖分,对剖分的顶点给一种恰当标号,并用一种有规则的搜索方法找到全标号单纯形,从而得到方程(1)的近似解。这种方法优点是,不要求?(尣)的导数存在,也不用求逆,且具有性,缺点是计算量大。  
参考书目/非线性方程组数值解法
J.M.Ortega and W.G.Rheinboldt,Iterative Solution of Nonlinear Equations in Several variables,Academic Press,New York,1970.
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:6次
参与编辑人数:4位
最近更新时间: 02:00:57
申请可获得以下专属权利:
贡献光荣榜以下试题来自:
多项选择题
讨论参数a,b取何值时,方程组无解、有解;当方程组有解时求出其所有的解.
为您推荐的考试题库
你可能感兴趣的试题
12.问答题 [解] 设k1Aα1+k2Aα2+…+ksAαs=0,则
A(k1</...... 345
热门相关试卷
最新相关试卷登录网易通行证
使用网易通行证(含网易邮箱)帐号登录
提交您的投诉或建议
视频画面花屏
视/音频不同步
播放不流畅
分享给朋友:
扫描分享给微信好友和朋友圈
扫一扫分享给微信好友和朋友圈
通过代码可以让这个视频在其它地方上播放!
复制FLASH代码
复制HTML代码
复制页面地址
使用公开课APP下载视频
扫描二维码 手机继续看
扫描二维码在手机上继续观看,
还可分享给您的好友。
没有公开课客户端?
登录后才能查看我的笔记
暂时没有笔记!
确定删除笔记?
即将播放下一集,请您保存当前的笔记哦!
对字幕纠错要登录哦!
内容不能少于3个字
不同于一般常微分方程课程千篇一律地从分离变量和一阶线性方程讲起,MIT《微分方程》第一讲就以独特的视角从全局的角度诠释了微分方程的内涵。课程从方向场和积分曲线入手,深入透彻地剖析了微分方程的实质。一上来,撇开那些有解的特殊的微分方程不谈,却从几何方向通俗易懂,而又全面深入地告诉我们什么是微分方程,解微分方程其实是什么。
老头爽约了,他没有按之前说的,讲线性方程的解法,而是开始讲数值方法。按他自己的话说:“线性方程还是推迟到下一讲吧,多数微分方程都是通过数值方法解出来的,先讲这个更好”。他还说:“现在已经是二十一世纪了,计算机都能帮你搞定”。听了他的课才领略,数学不只是那几个臭公式,更重要的是应用。听了他的课,让人深刻地意识到,计算机和数学之间的联系如此紧密。
这一讲的主要内容是一阶线性ODE:y&#039;+p&#040;x&#041;y=q&#040;x&#041;,及其解法积分因子法。这一讲通过两个实际问题——“热传导问题”和“溶液浓度扩散问题”,引出了ODE中“最重要”的一节线性微分方程,并透彻讲解。
这一讲介绍换元法(或译作代换法,substitution method),并以此为思想将某些特定形式的一阶方程转化为可分离变量方程或线性方程。本讲用换元法解决了两类特定的一阶方程,即伯努利方程和齐次方程。伯努利方程y&#039;=p&#040;x&#041;y+q&#040;x&#041;y&#8319;,通过换元化为可分离变量方程。齐次方程y&#039;=F&#040;y/x&#041;,令z=y/x可化为线性方程。
这一讲的主题是一阶自治方程y&#039;=f&#040;y&#041;。这一讲不涉及到此类方程的解法,转而考虑在不求解方程的前提下,进行定性分析,直观地获得方程的相关信息,从而避免了由于积分复杂造成不必要的无用功。这一讲还详细讲解了自治方程的一些实用模型:银行存款模型、人口增长模型。
复数在ODE中应用相当广泛。这一讲从复数的运算着手,落脚于复数的极坐标形式。围绕欧拉公式e^iθ=cosθ+isinθ展开,从各个方面详细介绍了这种美妙形式的由来。这一讲还利用复指数巧妙地解决了∫e^x&#040;sinx&#041;dx这种指数、三角函数混合型积分,方法效率远大于常规的分部积分法。
这一讲特别介绍了一阶常系数线性方程y&#039;+ky=q&#040;t&#041;,并解释了k&0时稳态和暂态的内涵。特别地,这一讲强调了y&#039;+ky=kq&#040;t&#041;形式的方程及在相应模型中的应用,并引入输入-响应的概念。最后以正弦波输入作为例子,讲解了分析和求解此类方程的复方法。
这一讲继续强调一阶常系数线性方程和复数思想。特别强调了正弦输入的情况,并巧妙地通过向量法和复数法给出了三角恒等式acosθ+bsinθ=Ccos&#040;θ-φ&#041;的证明。这一讲的最后,用温度、混合、RC电路、衰变和增长等多个模型为一阶常系数线性方程画上了完美的句号。
这一讲的主题是二阶常系数齐次线性ODE:y&#039;&#039;+Ay&#039;+By=0。这种方程在实际中对应弹簧-质量-阻尼系统,其一般性解法是代入e^&#040;rt&#041;,然后通过特征方程r&sup2;+Ar+B=0求出r。根据特征方程根的性质,分为两个不同实根、二重实根和复根三种情况,分别对应过阻尼、临界阻尼和欠阻尼三种情况。
这一讲首先深入讲解了二阶常系数齐次线性常微分方程y&#039;&#039;+Ay&#039;+By=0的解如何在实解和复解之间进行转换。然后将方程化为具有物理意义的形式的振动方程y&#039;&#039;+2py&#039;+ω&sup2;y=0,分别讨论了无阻尼情形(p=0)时解的性质和意义,以及阻尼情况下解的性质和振动的情况。
这一讲的讨论对象是二阶齐次线性方程y&#039;&#039;+p&#040;x&#041;y&#039;+q&#040;x&#041;y=0,讨论了其通解的性质,为何用两个线性独立的解就能表示所有解,而且所有解都在通解的集合内。并解释了叠加原理、唯一性定理、朗斯基行列式等概念。
这一讲的重点是二阶非齐次线性方程y&#039;&#039;+p&#040;x&#041;y&#039;+q&#040;x&#041;y=f&#040;x&#041;。首先是将f&#040;x&#041;看成输入或驱动,用弹簧和电路两个例子强调方程的重要性。然后用线性算子,描述了解的一般形式和结构。这一讲的另一个重点是暂态和稳态,在什么条件下对二阶线性方程成立,教授用一句精辟的结论总结了这个问题。
本讲用算子方法求解高阶非齐次线性方程p&#040;D&#041;y=e^&#040;αx&#041;,α为复数,p&#040;D&#041;为D的多项式。考虑p&#040;α&#041;≠0时,特解为e^&#040;αx&#041;/p&#040;α&#041;[用到了代换法则];p&#040;α&#041;=0时,需要分情况讨论,其中单根时,特解xe^&#040;αx&#041;/p&#039;&#040;α&#041;[用到指数位移法则]。
这一讲是关于共振的。为什么输入频率等于固有频率时,振幅会达到最大?教授从微分方程和数学的角度解释了这个问题。之后教授讲解了带阻尼情况下的&共振&,考虑了输入频率和阻尼伪频率之间什么关系时,才能实现这种&共振&。
傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用。这一讲首先介绍以2π为周期的函数f&#040;t&#041;可以写作c0+∑&#040;ancosnt+bnsinnt&#041;的傅里叶无穷级数形式。教授通过三角函数正交关系的证明,给出了an和bn的表达式。
这一讲是上一讲的续集,首先考虑了奇函数和偶函数两种情况,讲解了傅里叶级数在这些情况下如何简化运算(以及如果将积分简化到半个周期内)。然后将2π周期延伸到了任意周期2L的情况。最后课程介绍了非周期函数的延伸,任意有限区间都可以用到傅里叶级数。特别地,教授还讲到了傅里叶级数和泰勒级数着眼点的异同。
这一讲主题是利用傅里叶级数求x&#039;&#039;+ω0&sup2;x=f&#040;t&#041;的特解,其中f&#040;t&#041;化为傅里叶级数,通过sin和cos的可解性来求特解。这一讲采用了方波的例子,告诉我们方程的输入响应系统是如何自然选出与固有频率最接近的共振项的,并以此简单介绍了人耳识别乐音的机理。
记得幂级数吧,如1/&#040;1-x&#041;=Σ&#040;x^n&#041;、e^x=∑&#040;x^n/n!&#041;,考虑某种变换,让两个幂级数的系数1和1/n!分别对应于f&#040;x&#041;=1/&#040;1-x&#041;或f&#040;x&#041;=e^x,这很容易。其实拉普拉斯变换与这是对应的。教授用这种深入浅出的讲解,让我们了解了拉普拉斯变换的由来。然后分别计算了1、e^at、cos&#040;at&#041;等几种常见函数的变换,并讲解了指数位移的重要公式。大名鼎鼎的拉普拉斯变换,其实并不难。
这一讲的主要目标是用拉氏变换求解线性ODE,特别的,解y&#039;&#039;+py&#039;+qy=f&#040;t&#041;形式方程。为此,教授首先引入导数的拉氏变换公式,即已知y&#040;t&#041;经过拉氏变换得到Y&#040;t&#041;,那么y&#039;及y&#039;&#039;如何用Y&#040;t&#041;来表示。拉氏变换解法也就是方程两边同时进行拉氏变换,然后求解得到的代数方程,之后运用部分分式,最后用拉氏逆变换求出解y&#040;t&#041;。
这一讲引入了卷积公式f&#040;t&#041;*g&#040;t&#041;=∫f&#040;u&#041;g&#040;t-u&#041;du。教授从两个方面介绍了卷积的由来和用途:理论方面,卷积和拉氏变换密切相关,L&#040;f&#041;L&#040;g&#041;=L&#040;f*g&#041;,卷积由拉氏变换乘积关系的自然产生;实践方面,卷积最普遍的例子是用作放射物质倾泻的积累量问题。教授另外还举了三个实际例子。这一讲全面剖析了卷积公式,并做到了真正的深入浅出。
这一讲主要是讲跳跃式不连续函数u&#040;t&#041;=1&#040;t&0&#041;; 0&#040;t&0&#041;的情况,重新定义拉普拉斯逆变换的唯一性,即L&#040;u&#040;t&#041;&#041;=1/s。之后教授讲到了函数平移之后的拉普拉斯变换如何进行,之后推广到更一般的不连续输入问题。最后教授以几个实用的例题作结。
这是一阶方程组的第一讲,首先引入了形如x&#039;=f&#040;x,y,t&#041;;y&#039;=g&#040;x,y,t&#041;的一阶方程组。教授讲了一些实际用到一阶方程组的例子,然后利用煮鸡蛋的例子,演示了如何用比较直观的消元法来求解。最后教授给出了速度场的几何解释。
这一讲继续以矩阵形式x&#039;=Ax讨论常系数齐次线性方程组。课堂上引入了重复实特征值和复特征值两种特殊情况,即特征方程解出重根或复根的情况,两种情况教授分别举出一个实际例子进行讨论。一个是鱼缸温度传递的例子,一个是苏飞传中的爱情例子,引起满堂哄笑。
这一讲教授讲到了2x2常系数齐次线性方程组各种情况的图像,以此希望给学生一个比较直观的感受,此类方程组解是什么样子。为此,教授引入了两州旅游竞争模型,分别就特征方程中存在两负实根、一正一负实根、以及复根的三种情况给出了方程组解的草图。
这一讲过渡到非齐次方程组,还是以2x2常系数方程组为例,以矩阵形式x&#039;=Ax+r进行讲解。首先,教授介绍了两个相关定理,为求解做了铺垫。然后介绍了x&#039;=Ax的基本矩阵X。最后通过参数变分的方法,给出了非齐次方程组的特解xp=X∫X^&#040;-1&#041;rdt。
这一讲给出了齐次微分方程组x&#039;=Ax的解的一般公式,即用矩阵指数e^&#040;At&#041;表示基本矩阵X。同单个微分方程x&#039;=ax中,a可以看作是1x1矩阵,其解是e^at。这里就是方程组在nxn矩阵上的推广,以此引入矩阵指数及其在解方程组中的应用。
这一讲给出了齐次线性微分方程组x&#039;=Ax的解耦解法,这是第三种方法。由于在自科和工程领域,方程组通常具有物理意义,解耦解法能偶提供对解更为本质的认识,因此教授将其作为这一讲的主题。首先是一个实际例子,然后是一般方程组的解法。
这一讲介绍非线性的情况,主要是通过轻微阻尼的非线性摆的例子,介绍了该情况下如何求临界点,并作轨迹草图。简谐振动中,摆使用的是小角近似为线性情况,这一讲是一个推广,摆使用的不一定是小角,不过仍然通过线性化得到解释。
这一讲的主题是极限环,首先教授给出了极限环的定义,它首先是方程组的解形成的一条闭合轨迹,另外它不同于一般闭合轨迹,它必须是附近轨迹在t趋于无穷时逼近的轨迹。然后教授介绍了极限环何时不存在的两个准则,分别是本迪克松准则和临界点准则,证明本迪克松准则时,证明过程中涉及了反证法,以及逆否命题逻辑。最后教授介绍了极限环的一些历史,并用他经历的一个有趣故事结束了本课,与某位中国教授有关。
[第33课]非线性方程组和一阶常微分方程之间的关联
本课的一开始,教授介绍了非线性自治方程组和一阶常微分方程之间的关系,指出一阶常微分方程只是方程组消去时间t的信息的结果,同时也让大家明白了速度场与方向场、轨迹与积分曲线之间的联系。然后教授通过建立捕食者-猎物模型的一个非线性方程组,引出一个问题:边界线情形,即当方程组参数处于特征方程两个区域的边界时,参数小的变动可能造成临界点的几何类型完全不同,所以在做方程组线性化时,近似就会带来方程类型无法确定的问题。所以使方程组退化的一个优势就体现出来:消去t使得有时方程变得可解,并避开边界线情形,教授用这个方法解出了方程组,并引出一个结论:沃尔泰拉法则,即人类对自然盲目的干预,很可能造成灾难或适得其反的结果。
学校:麻省理工学院
讲师:Prof. Arthur Mattuck
授课语言:英文
类型:数学 国际名校公开课
课程简介:微分方程是一门表述自然法则的语言。理解微分方程解的性质,是许多当代科学和工程的基础。学习内容包括:利用解释、图形和数值方法求解一阶常微分方程,线性常微分方程,不定系数和参变数,正弦和指数信号,复数和幂,傅立叶级数,周期解,Delta函数、卷积和拉普拉斯变换方法,矩阵和一阶线性系统,非线性独立系统。
扫描左侧二维码下载客户端>> 用来估计病态线性方程组正则化求解时的误差。
用来估计病态线性方程组正则化求解时的误差。
所属分类:
下载地址:
errestools.rar文件大小:8.30 kB
分享有礼! 》
请点击右侧的分享按钮,把本代码分享到各社交媒体。
通过您的分享链接访问Codeforge,每来2个新的IP,您将获得0.1 积分的奖励。
通过您的分享链接,每成功注册一个用户,该用户在Codeforge上所获得的每1个积分,您都将获得0.2 积分的分成奖励。
用来估计病态线性方程组正则化求解时的误差。-To estimate the error of regulation method for the ill-conditioned system of linear equations
Sponsored links
源码文件列表
温馨提示: 点击源码文件名可预览文件内容哦 ^_^
1.15 kB04-04-09 22:57
1.18 kB04-04-09 22:58
1.33 kB04-04-09 22:58
6.59 kB04-04-09 23:01
4.63 kB04-04-09 23:18
978.00 B04-04-09 19:30
1.16 kB04-04-09 19:49
1.19 kB04-04-09 23:16
&errestools&0.00 B10-12-09 22:16
(提交有效评论获得积分)
评论内容不能少于15个字,不要超出160个字。
评价成功,多谢!
下载errestools.rar
CodeForge积分(原CF币)全新升级,功能更强大,使用更便捷,不仅可以用来下载海量源代码马上还可兑换精美小礼品了
您的积分不足,优惠套餐快速获取 30 积分
10积分 / ¥100
30积分 / ¥200原价 ¥300 元
100积分 / ¥500原价 ¥1000 元
订单支付完成后,积分将自动加入到您的账号。以下是优惠期的人民币价格,优惠期过后将恢复美元价格。
支付宝支付宝付款
微信钱包微信付款
更多付款方式:、
您本次下载所消耗的积分将转交上传作者。
同一源码,30天内重复下载,只扣除一次积分。
鲁ICP备号-3 runtime:Elapsed:90.911ms - init:0.1;find:0.6;t:0.4;tags:0.2;related:51.2;comment:0.2; 27.69
登录 CodeForge
还没有CodeForge账号?
Switch to the English version?
^_^"呃 ...
Sorry!这位大神很神秘,未开通博客呢,请浏览一下其他的吧线性代数方程组解的情况讨论
  我们在学习方程组的时候,最开始应该明确的是解的基本情况,下面就一般方程组解的情况给大家介绍一下。
  根据以上总结的解的情况,以及求解的方法,可以解决齐次以及非齐次方程组的求解问题。
备战2018年考研 你需要做这些!
考拉必过 移动学习APP
研究生留学qq群:
主讲:杨攀 杨凤芝 李擂 ...
主讲:李擂
扩展阅读   
免责声明:
① 凡本站注明“稿件来源:中国教育在线”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国教育在线”,违者本站将依法追究责任。
② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。
北京大学医学部
中国人民大学
北京理工大学
哈尔滨工业大学
北京师范大学
西安交通大学
中国科学技术大学
华南理工大学
西北工业大学
电子科技大学
北京航空航天大学
大连理工大学
上海交通大学
华中科技大学
中国农业大学
&&招生专业:
&&所在院校:
 各地热招:      
记录教育点滴&&图研考研
专业人气榜
&&排名 专业名称       人气   开设院校
高校人气榜
&&排名 学校名称      人气   相关推荐
| 京ICP备号 |
CERNET Corporation}

我要回帖

更多关于 线性稳定性分析 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信