氮多如何降低锅炉氮氧化物清除

氮(化学元素)_百度百科
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
(化学元素)
氮是一种化学元素,它的是N,它的是7。氮是空气中最多的元素,在自然界中存在十分广泛,在生物体内亦有极大作用,是组成氨基酸的基本元素之一。氮及其化合物在生产生活中应用广泛。
氮发现简史
1772年由瑞典舍勒发现,后由法国科学家确定是一种元素。
1787年由拉瓦锡和其他法国科学家提出,氮的英文名称nitrogen,是&组成者“的意思。中国清末化学家启蒙者在第一次把氮译成中文时曾写成“淡气”,意思是说,它“冲淡”了空气中的氧气。
元素名来源于希腊文,原意是“硝石”。
氮含量分布
元素性质数据
氮在地壳中的含量很少,自然界中绝大部分的氮是以单质分子氮气的形式存在于大气中,氮气占空气体积的百分之七十八。氮的最重要的矿物是硝酸盐。[1]
氮在地壳中的重量百分比含量是0.0046%,总量约达到4×1012吨。动植物体中的蛋白质都含有氮。土壤中有硝酸盐,例如KNO?。在南美洲智利有硝石矿(NaNO?),这是世界上唯一的这种矿藏,是少见的含氮矿藏。[2]
宇宙星际已发现含氮分子,如NH?、HCN等。
氮的丰度1.8×10占16位。自然界的氮有两种同位素,分别为99.63%、0.365%。[3]
Z(p)N(n)质量(u)相对相对的变化量7310.04165(43)200(140)×10s [2.3(16) MeV](2-)    7411.02609(5)590(210)×10s [1.58(+75-52) MeV]1/2+    740(60) keV6.90(80)×10s1/2-    7512.)11.000(16) ms1+    7613.)9.965(4) min1/2-    7714.(6)稳定1+0.99636(20)0.547815.(7)稳定1/2-0.00364(20)0.217916.)7.13(2) s2-    71017.)4.173(4) s1/2-    71118.)622(9) ms1-    71219.)271(8) ms(1/2)-    71320.02337(6)130(7) ms      71421.02711(10)87(6) ms1/2-#    71522.03439(21)13.9(14) ms      71623.04122(32)#14.5(24) ms [14.1(+12-15) ms]1/2-#    71724.05104(43)#&52 ns      71825.06066(54)#&260 ns1/2-#    
氮理化性质
氮物理性质
在室温下不与空气,碱,水反应,加热到3273K时,只有0.1%分解,因此,N2是化学特性物质,[3]
氮的最重要的矿物是盐。氮有两种天然:氮14和氮15,其中氮14的为99.625%。
晶体结构:为六方晶胞。    元素类型:
氮气为无色、无味的气体。[4]
氮通常的单质形态是。它无色无味无臭,是很不易有化学反应呈化学惰性的气体,而且它不支持燃烧。
主要成分:≥99.999%; 工业级 一级≥99.5%; 二级≥98.5%。
外观与性状:无色无臭气体。
溶解性:微溶于水、乙醇。
主要用途:用于,制,用作物质保护剂,冷冻剂。[4]
相对密度(水=1)
0.81(-196℃)
相对蒸气密度(空气=1)
临界温度(℃)
临界压力(MPa)
体积:(立方厘米/)
元素在太阳中的含量(ppm)
太平洋表面
Main N-3,N-2,N-1,N+1,N+2,N+3,N+4,N+5Other
相对原子质量
原子核亏损质量
0.109383u(u代表原子量)
氮化学性质
N原子的结构为2s2p3,即有3个成单电子和一对孤电子对,以此为基础,在形成化合物时,可生成如下三种键型:
N原子有较高的电负性(3.04),它同电负性较低的金属,如Li(电负性0.98)、Ca(电负性1.00)、Mg(电负性1.31)等形成二元时,能够获得3个电子而形成N3-离子。
N?+ 6Li = 2 Li?N
N?+ 3Mg =点燃= Mg?N?
N3-离子的负电荷较高,半径较大(171pm),遇到水分子会强烈,因此的离子型化合物只能存在于干态,不会有N3-的。
形成共价键
N原子同电负性较高的形成化合物时,形成如下几种共价键:
⑴N原子采取sp3杂化态,形成三个共价键,保留一对孤电子对,分子构型为三角锥型,例如NH?、NF?、NCl?等。
若形成四个共价单键,则分子构型为正四面体型,例如NH?+离子。
⑵N原子采取sp2杂化态,形成2个共价双键和1个单键,并保留有一对孤电子对,分子构型为角形,例如Cl—N=O。(N原子与Cl 原子形成一个σ 键和一个π键,N原子上的一对孤电子对使分子成为角形。)
若没有孤电子对时,则分子构型为三角形,例如HNO?分子或NO?-离子。硝酸分子中N原子分别与三个O原子形成三个,它的π轨道上的一对电子和两个O原子的成单形成一个三中心四电子的不定域。在硝酸根离子中,三个O原子和中心N原子之间形成一个四中心六电子的不定域。
这种结构使硝酸中N原子的表观氧化数为+5,由于存在大π键,在常况下是足够稳定的。
⑶N原子采取sp 杂化,形成一个共价叁键,并保留有一对孤电子对,分子构型为直线形,例如N?分子和CN-中N原子的结构。[5]
形成配位键
N原子在形成单质或化合物时,常保留有孤电子对,因此这样的单质或化合物便可作为电子对给予体,向金属离子配位。例如[Cu(NH?)?]2+。
氮共有九种氧化物:一氧化二氮(N?O)、(NO)、一氧化氮二聚体(N?O?)、(NO?)、三氧化二氮(N?O?)、四氧化二氮(N?O?)、五氧化二氮(N?O?)、叠氮化亚硝酰(N?O),第九种氮的氧化物三氧化氮(NO?)作为不稳定的中间体存在于多种反应之中。[5]
氮制备方法
氮素生物循环图
氮在自然界主要以双原子分子的形式存在于大气中,因而工业上由液态空气分馏来获得氮气。产品通常储存在钢瓶中出售。从空气分馏得到的氮气纯度约为99%[6]
,其中含少量的氧气、氩气及水等杂质。
藉由分馏液态空气可获得氮气。
工业上用分馏液态空气(沸点N?=62.93K,O?=90K,Ar=83K),可得纯度为99%的“普氮”(其余1%为O?及稀有气体)。普氮纯化得电子度为99.9%的高纯氮。[3]
实验室制备少量氮气的方法很多。例如,可由固体亚硝酸铵的热分解来产生氮气。
此反应剧烈,不易控制。故常采取在饱和亚硝酸钠溶液中,滴加热的饱和氯化钠溶液,或直接温热饱和亚硝酸铵溶液的办法来得到氮气。这样制得的氮气含少量氨、一氧化氮、氧气及水等杂质。
重铬酸铵热分解也能产生氮气:
上述反应是爆发式的,但若加入硫酸盐则可控制。
将氨气通入溴水也能制备氮气。经净化除去少量氨、溴及水等杂质后,可得较纯的氮气。
8NH?+3Br?=N?
氯气也可氧化氨气生成氮气。
(氨气少量)
(过量氨气继续与氯化氢反应)
光谱纯的氮气则可由小心地加热非常干燥的叠氮化钡或叠氮化钠而制得。(反应剧烈,要注意控制温度,加入缓释剂)
氮应用领域
氮工业应用
氮的惰性广泛用于电子、钢铁、玻璃工业者 性 盖介质,还用于灯泡和膨胀橡胶的填充物,工业上用于保护油类、粮食、精密实验中用作保护气体。[3]
氮在室温时,能与许多直接化合,如、Li、Mg、Cia、Al、B等,反应生成氮化:
N?(g)+3Mg(s)→Mg?N(s)。[3]
N?与O?在高温(~2273K)或放电条件下直接化合N?+O?→2NO,这是固定氮的一种方法,估计地球上每年由“雷电合成”氮化合物达4~5亿吨,而人工合成氮化合物1亿吨左右。[3]
氮生理作用
植物缺氮状态
氮是植物生长的必需养分之一,它是每个活细胞的组成部分。植物需要大量氮。
氮素是叶绿素的组成成分,和叶绿素&都是含氮化合物。进行光合作用,使光能转变为化学能,把(二氧化碳和水)转变为有机物(葡萄糖)是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。
氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长炔,能有更多的叶面积用来进行光合作用。
此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。[7]
氮元素固定
由于氮是一种重要肥料,所以把氮气转化为氮的化合物的方法叫做。主要用于农业上。又分生物、自然、人工固氮3种。
一种固氮的方式是利用植物的根瘤菌根瘤菌是一种细菌,能使豆科植物的根部形成根瘤在自然条件下,它能把空气中的氮气转化为含氮的化合物供植物利用。“种豆子不上肥,连种几年地更肥”就是讲的这个道理。[5]
氮对植物影响
氮是构成蛋白质的主要成分,对茎叶的生长和果实的发育有重要作用,是与产量最密切的。在第一穗果迅速膨大前,植株对的吸收量逐渐增加。
以后在整个生育期中,特别是结果盛期,吸收量达到最高峰。土壤缺氮时,植株矮小,叶片黄化,花芽分化延迟,花芽数减少,果实小,坐果少或不结果,产量低,品质差。氮素过多时,植株徒长,枝繁叶茂,容易造成大量落花,果实发育停滞,含糖量降低,植株抗病力减弱。番茄对氮肥的需要,苗期不可缺少,适当控制,防止徒长;结果期应勤施多施,确保果实发育的需要。
氮素是合成绿叶素的组成部分,叶绿素a和叶绿素b中都有含氮化合物。叶绿素是植物制造碳水化合物的工厂。氮素能合成蛋白质,促进细胞分裂和增长。[7]
氮营养平衡
蛋白质在消化道内被分解为氨基酸和小分子,并被吸收,大部分用于合成组织蛋白,以供运动后被损肌肉组织的修复和生长,部分用于合成各种功能蛋白和蛋白质以外的含氮化合物,如,肌酸。部分氨基酸吸收后,在体内分解供能。
机体在完全不摄入蛋白质的情况下,体内的蛋白质仍然在分解与合成,一个60公斤体重的成年男子每日仍然会从尿,粪,皮肤及分泌物等途径排出3.2克氮,相当于20克蛋白质。这种完全不摄入蛋白质时,机体不可避免的消耗氮量称为“必要的氮损失”。这就是说一个60公斤体重的成年男子,每日至少要摄入20克优质蛋白质。才可以维持肌体内正常的。
在一定的时间内,摄入的氮量和排出的氮量之间的关系,就称之为“氮平衡”用以衡量人体蛋白质的需要量和评价人体肌肉蛋白质的状况。
氮平衡有三种情况:
1.氮平衡:在一定的时间内,摄入的氮量与排出的氮量相等。则表示人体内蛋白质的合成与分解处在,人体的肌肉围度处于原来的围度与水平。
2.正氮平衡:摄入氮量大于排出氮量,蛋白质的合成大于分解量,运动后被破坏的肌肉纤维就会迅速修复、增长。
3.负氮平衡:摄入的氮量小于排除的氮量,蛋白质的合成小于分解,此时人体的肌肉蛋白为保证机体活动进行分解供能,肌肉处于消减状态。[4]
氮注意事项
安全防护:氮元素以单质(氮气)形式存在时无毒,以化合物形式存在时常常有毒,典型的比如说、根等。
接触氮气时无需特别防护,接触液氮时需注意防止冻伤。
化学课程教材研究开发中心.人教版化学教科书必修一:人民教育出版社,2004.
无机化学编写组编.无机化学(下册)[M].人民教育出版社,121页.
.山西师范大学[引用日期]
.洛克化工网[引用日期]
北京师范大学无机化学教研室,华中师范大学无机化学教研室,南京师范大学无机化学教研室.无机化学(第四版):高等教育出版社,2003.
无机化学丛书.无机化学丛书:科学出版社,1998:23
中华人民共和国药典,国家药典委员会编,化学工业出版社,2005年版,二部,p.275。在单位,部门领导要求每周交工作报告,但我不想写,或不愿意认真的去写,每次写也是敷
之前在一线干了将近3年,因个人原因辞职,现在想转销售,南京这边化工贸易公司有许多
查看: 5096|回复: 7
总氮的去除方法及原理
阅读权限75
积分帖子主题
加入海川与三百六十万化工人交流互动(支持手机号、微信、QQ号一键注册)
才可以下载或查看,没有帐号?
请教各位大侠总氮的去除方法及原理。
阅读权限95
积分帖子主题
根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N&500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N&50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1. 折点氯化法去除氨氮
折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮污水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下:
& && && && && && && && &Cl2+H2O→HOCl+H++Cl-& &
NH4++HOCl→NH2Cl+H++H2O& && &&&
& && && && && && && && &NHCl2+H2O→NOH+2H++2Cl-&&
& && && && && && && && &NHCl2+NaOH→N2+HOCl+H++Cl-&&
折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。
2. 选择性离子交换化去除氨氮
离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,成本低,对NH4+有很强的选择性。
O.Lahav等用沸石作为离子交换材料,将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体。该工艺在一个简单的反应器中分吸附阶段和生物再生阶段两个阶段进行。在吸附阶段,沸石柱作为典型的离子交换柱;而在生物再生阶段,附在沸石上的细菌把脱附的氨氮氧化成硝态氮。研究结果表明,该工艺具有较高的氨氮去除率和稳定性,能成功地去除原水和二级出水中的氨氮。
沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的最佳区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、投资省去除率高的特点,适用于中低浓度的氨氮废水(<500mg/L),对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一步处理。
3. 空气吹脱法与汽提法去除氨氮
空气吹脱法是将废水与气体接触,将氨氮从液相转移到气相的方法。该方法适宜用于高浓度氨氮废水的处理。吹脱是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。将废水pH值调节至碱性时,离子态铵转化为分子态氨,然后通入空气将氨吹脱出。吹脱法除氨氮,去除率可达60%~95%,工艺流程简单,处理效果稳定,吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯碱生产作母液,也可根据市场需求,用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品,未收尾气返回吹脱塔中。但水温低时吹脱效率低,不适合在寒冷的冬季使用。
用该法处理氨氮时,需考虑排放的游离氨总量应符合氨的大气排放标准,以免造成二次污染。低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工、有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。该方法比较适合处理高浓度氨氮废水,但吹脱效率影响因子多,不容易控制,特别是温度影响比较大,在北方寒冷季节效率会大大降低,现在许多吹脱装置考虑到经济性,没有回收氨,直接排放到大气中,造成大气污染。
汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样是一个传质过程,即在高pH值时,使废水与气体密切接触,从而降低废水中氨浓度的过程。传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差。延长气水间的接触时间及接触紧密程度可提高氨氮的处理效率,用填料塔可以满足此要求。塔的填料或充填物可以通过增加浸润表面积和在整个塔内形成小水滴或生成薄膜来增加气水间的接触时间汽提法适用于处理连续排放的高浓度氨氮废水,操作条件与吹脱法类似,对氨氮的去除率可达97%以上。但汽提塔内容易生成水垢,使操作无法正常进行。
吹脱和汽提法处理废水后所逸出的氨气可进行回收:用硫酸吸收作为肥料使用;冷凝为1%的氨溶液。
4. 生物法去除氨氮
生物法去除氨氮是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。
硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下:
& && &亚硝化: 2NH4++3O2→2NO2-+2H2O+4H+
& && &硝化 :& &2NO2-+O2→2NO3-
硝化菌的适宜pH值为8.0~8.4,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLSS•d);泥龄在3~5天以上。
在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为:
& && && &6NO3-+2CH3OH→6NO2-+2CO2+4H2O
& && && &6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-
反硝化菌的适宜pH值为6.5~8.0;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO浓度<0.5mg/L;BOD5/TN>3~5。生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。
常见的生物脱氮流程可以分为3类:
⑴多级污泥系统
多级污泥系统通常被称为传统的生物脱氮流程。此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长,构筑物多,基建费用高,需要外加碳源,运行费用高,出水中残留一定量甲醇;
⑵单级污泥系统
单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。前置反硝化的生物脱氮流程,通常称为A/O流程。与传统的生物脱氮工艺流程相比,该工艺特点:流程简单、构筑物少,只有一个污泥回流系统和混合液回流系统,基建费用可大大节省;将脱氮池设置在去碳源,降低运行费用;好氧池在缺氧池后,可使反硝化残留的有机污染物得到进一步去除,提高出水水质;缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷。此外,后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果高于前置式,理论上可接近100%的脱氮效果。交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。它本质上仍是A/O系统,但利用交替工作的方式,避免了混合液的回流,其脱氮效果优于一般A/O流程。其缺点是运行管理费用较高,必须配置计算机控制自动操作系统;具体参见更多相关技术文档。
⑶生物膜系统
将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。
由于常规生物处理高浓度氨氮废水还存在以下:
为了能使微生物正常生长,必须增加回流比来稀释原废水;
硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,一般认为COD/TKN至少为9。
5. 化学沉淀法去除氨氮
化学沉淀法是根据废水中污染物的性质,必要时投加某种化工原料,在一定的工艺条件下(温度、催化剂、pH值、压力、搅拌条件、反应时间、配料比例等等)进行化学反应,使废水中污染物生成溶解度很小的沉淀物或聚合物,或者生成不溶于水的气体产物,从而使废水净化,或者达到一定的去除率。
化学沉淀法处理NH3-N是始于20世纪60年代,在90年代兴起的一种新的处理方法,其主要原理就是NH4+、Mg2+、PO43-在碱性水溶液中生成沉淀。
在氨氮废水中投加化学沉淀剂Mg(OH)2、H3PO4与NH4+反应生成MgNH4PO4&#O(鸟粪石)沉淀,该沉淀物经造粒等过程后,可开发作为复合肥使用。整个反应的pH值的适宜范围为9~11。pH值<9时,溶液中PO43-浓度很低,不利于MgNH4PO4&#O沉淀生成,而主要生成Mg(H2PO4)2;如果pH值&11,此反应将在强碱性溶液中生成比MgNH4PO4&#O更难溶于水的Mg3(PO4)2的沉淀。同时,溶液中的NH4+将挥发成游离氨,不利于废水中氨氮的去除。利用化学沉淀法,可使废水中氨氮作为肥料得以回收。
系统自动给沙发加分~~
阅读权限75
积分帖子主题
此总氮是硝酸根离子带入,并不是普通氨氮
阅读权限20
积分帖子主题
硝酸根浓度有多高,有没有其他有机物或离子,处理的要求为多少,请详细列出
阅读权限75
积分帖子主题
硝酸根离子400-500PPM,还有氟离子大概PPM
阅读权限75
积分帖子主题
处理要求总氮为20PPM,氟离子10ppm
阅读权限20
积分帖子主题
是否还有其他杂质,COD是多少,水量是多少。总氮的去除率要求挺高的,楼主列下详细信息,看有没有好的处理方式。
阅读权限75
积分帖子主题
其他杂志很少,可以不考虑
安全漫画( 10.26)
熟视无睹看图查隐患(10.26)泵的小管线作用?(重谢)关于论坛版块发红包的花样玩法说明(只限休安全的化工厂
独在异乡为异客,每逢佳节倍思亲。一年一度的重阳节就要来临了,作为中国历史悠久的一个假期当然要认真对待啊!
有对象的小伙
在线QQ客服&&
&(电话工作日09:00--17:00受理咨询,信箱和QQ号全天受理咨询)
三百六十万海川人欢迎您的参与 化工技术交流第一社区,共同学习 共同提高!
版权所有 海川网-海川化工论坛 -2004
Discuz!---
本站法律顾问 : 辽宁好谋律师事务所 谢晨曦 主任律师
&&&&&&&&&&小木虫 --- 600万学术达人喜爱的学术科研平台
热门搜索:
&&冬天,怎么对氨氮,总氮的去除
冬天,怎么对氨氮,总氮的去除
最近,公司活性污泥处理工业废水出水氨氮,总氮都超标了。以前出水氨氮能达到1以下,现在出水有20多。。一直慢慢的增高。我们这边污泥浓度有3500左右。sv在25到30。。查资料说冬天,细菌活性会降低,处理效果会降低。但我这边是广东,温度,夜晚最多也是10来度。真的温度会对有这么大的影响吗?还是有其他原因在??菌检,我在好氧池能发现纶虫和钟虫,就是活性不高,不爱动。。有大神给点意见吗??应该怎么做,可以恢复系统?求助~~~
 /tqlop5m8jU ,验证码:92a7还有有时候厌氧池会出现这样的浮泥。。挺厚的,
回流?指的是外回流吧?我现在是回流到厌氧池和好氧池的,大部分去厌氧池。这不对吗?
学术必备与600万学术达人在线互动!
扫描下载送金币}

我要回帖

更多关于 如何制取氮气 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信