电位器调速电路图输入电压与基准电压相比较,输出控制LED(画出电路图)谢谢!

大功率RGB LED驱动器支持彩色照明设计
大功率RGB LED驱动器支持彩色照明设计
发布: | 作者: | 来源:
| 查看:542次 | 用户关注:
摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA&C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18&m CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte
&& 下一代建筑和装饰照明通过适当组合红、绿、蓝LED的输出能够获得更全面的色彩。在这种高亮度、多LED串联的应用中,典型导通压降可能达到22V至36V,吸收电流为1A至2A。图1所示LED驱动器能够为多个LED串联的模块提供2A的驱动电流,正向导通电压可以达到36V。该电路仅驱动RGB LED的一种颜色,驱动三种颜色需要三路这样的驱动器。由于LED产生的光强与其导通电流并非线性关系,选择通过PWM(而非LED电流幅度)控制亮度等级,每个LED由脉冲调制的固定电流控制灯光亮度。IC控制器利用平均电流模式提供LED驱动,需要最少的外部元件。  工作原理  为了高效提供电流驱动,LED驱动器采用连续导通模式(CCM)的boost拓扑,利用平均电流模式控制输入电压的升压转换,为LED负载提供恒流驱动。单一芯片(MAX16821B)工作在300kHz,控制boost转换器工作。由于boost转换器拓扑在转换器输入和输出之间提供了一个直接通道,必须确保串联LED的最小导通电压大于输入电源电压的最大值。LED负载通过MOSFET (Q1)和检流电阻(R13)跨接在boost转换器的输出端,PWM ON期间Q1接通LED电流,PWM OFF期间则断开电流通道。检测R13两端的电压(代表通过LED的电流)时,IC可以抑制共模噪声并在DIFF引脚提供以地为参考的输出,增益为6V/V。检流放大器输出信号与内部电压误差放大器的0.6V基准相比较,差分检流放大器的6V/V增益能够使电流检测的参考点从0.6V降至0.1V,即在额定负载电流下R13的压差只有0.1V,有助于提高效率。该boost转换器采用平均电流控制模式,通过两个反馈环路控制LED电流。外环路检测LED电流,并将其与基准电压相比较,在EAOUT (第17引脚)产生放大后的误差信号。内环路检测误差放大器的电压输出,相应地控制流过电感(L1)的电流。误差放大器输出还决定了以R13设置的电流驱动LED时所需要的电感电流,LED额定电流在R13产生的压降为0.1V。  第二个检流电阻(R15)用于设置电感返回通道的电流。U2内部的差分电流检测放大器提供34.5V/V增益。电流误差放大器将该输出电压与电压误差放大器的输出进行对比,产生内部平均电流控制环路的误差信号。这一放大后的误差信号与内部振荡器斜波进行比较,最终产生PWM信号(在DL第3引脚)用于驱动MOSFET Q2。电流误差放大器的高增益使得电路能够根据电压环路的要求产生平均电感电流(在所允许的限制范围内),保持非常低的误差。在指定的输入电源电压和LED正向导通电压(忽略开关、二极管、检流电阻等元件的压差)下,boost转换器的CCM工作模式决定了PWM开关的占空比,固定占空比与所要求的LED电流相对应,由此确定所需要的电感电流。电压环路控制电流环路产生这一平均电感电流,从而提供所需的LED电流。两个控制环路都应提供独立补偿,以确保稳定工作。转换器设计  转换器参数要求如下:  ● 输入电压范围:9V至15V  ● 最大LED正向导通电压:33V  ● LED电流:2A  ● 开关频率:300kHz(频率较低时会提高滤波成本,频率较高时则会降低效率、提高EMI。根据这些因素,将开关频率优化在300kHz)。  利用下式计算Q2的ON占空比:  式中VLEDMAX为LED的最大导通电压(应该包括MOSFET Q1的压降和检流电阻R13的压降),VD是整流二极管D1两端的电压,VINMIN是最小输入电压,VFET为ON期间MOSFET Q2的平均电压。该电路中:DMAX = 0.74。  选择电感(L1)时,必须考虑其电感量和额定峰值电流,利用下式计算最大平均电感电流 (ILAVG):  确定电感峰值电流(ILPEAK)时,须注意流过电感的纹波电流,与电感值和开关频率有关。假设电感电流的最大峰峰值纹波(ILPP)为20%。由于ILPP为平均电感电流ILAVG的20%,则:  上式中代入已知参数,得到:ILAVG = 7.7A、ILPEAK = 9.24A。
本页面信息由华强电子网用户提供,如果涉嫌侵权,请与我们客服联系,我们核实后将及时处理。
设计应用分类
应变片的简单放大电路图分析增值税发票
无理由退货
我浏览过的
您现在的位置:&
火线与零线之间的电压_零线和地线之间的电压
火线与零线之间的电压_零线和地线之间的电压
如果地线和大地接触良好的话,地线-火线的电压是和零线-火线之间的电压是一样的.都是220V,地线和零线应该是没有电的(0V).如果发现地线-零线上有大于5伏的交流电,基本可以认定:地线没有接地或是接地不良,或者一些接地的设备漏电过于严重. 我国规定的供电标准是三相四线制:火线有三条,火线与火线之间电压是 ~ 380V ,各相之间的相位差是 120& ,俗称工业电;火线与零线之间电压是 ~220V ,俗称民用电 。供电公司就是按照国家标准向市民供电的。 地线是与大地可靠连接的导线,接在用电器的外壳上,使外壳的电位始终与大地相连,保障人身安全。 而零线虽然是电源的电流通路,最终也是接入大地的,所以零线与地线之间没有电压,或者有几伏电压。但是要注意,出现故障时零线也会危及人身安全,不要轻易触碰。
更多猛料!欢迎扫描下方二维码关注土猫网官方微信( tumaowang )
&#165&159元
节省31.8元
&#165&449元
节省89.8元
&#165&299元
节省59.8元
&#165&35.3元
节省15.7元
&#165&239元
节省47.8元
&#165&38元
&#165&10.9元
&#165&127元
节省25.4元
&#165&19元
&#165&45元
&#165&6.9元
&#165&19.9元电压比较器电路_电压比较器基本原理及设计应用
14:50:30来源: 互联网
本文主要介绍基本概念、工作原理及典型工作电路,并介绍一些常用的电压。  电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电压监测电路、振荡器及压控振荡器电路、过零检测电路等。  什么是电压比较器  简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”  端)  及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。根据输出电平的高低便可知道哪个电压大。    如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB的输入端有关。  图2(a)是双电源(正负电源)供电的比较器。如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。VB>VA时,Vout输出饱和负电压。    如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压。如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。    比较器的工作原理  比较器是由发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。  图4(a)由运算放大器组成的,输入电压VA经R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。    从图4中可以看出,比较器电路就是一个运算处于开环状态的差分放大器电路。  同相放大器电路如图5所示。如果图5中RF=∞,R1=0时,它就变成与图3(b)一样的比较器电路了。图5中的Vin相当于图3(b)中的VA。    比较器与运放的差别  运放可以做比较器电路,但性能较好的比较器比通用运放的开环增益更高,输入失调电压更小,共模输入电压范围更大,压摆率较高(使比较器响应速度更快)。另外,比较器的输出级常用集电极开路结构,如图6所示,它外部需要接一个或者直接驱动不同电源电压的负载,应用上更加灵活。但也有一些比较器为互补输出,无需上拉电阻。    这里顺便要指出的是,比较器电路本身也有技术指标要求,如精度、响应速度、传播延迟时间、灵敏度等,大部分参数与运放的参数相同。在要求不高时可采用通用运放来作比较器电路。如在A/D变换器电路中要求采用精密比较器电路。  由于比较器与运放的内部结构基本相同,其大部分参数(电特性参数)与运放的参数项基本一样(如输入失调电压、输入失调电流、输入偏置电流等)。  比较器典型应用电路  这里举两个简单的比较器电路为例来说明其应用。  1.散热风扇自动控制电路  一些大功率器件或模块在工作时会产生较多热量使温度升高,一般采用散热片并用风扇来冷却以保证正常工作。这里介绍一种极简单的温度控制电路,如图7所示。负温度系数(NTC)热敏电阻RT粘贴在散热片上检测功率器件的温度(散热片上的温度要比器件的温度略低一些),当5V电压加在RT及R1电阻上时,在A点有一个电压VA。当散热片上的温度上升时,则热敏电阻RT的阻值下降,使VA上升。RT的温度特性如图8所示。它的电阻与温度变化曲线虽然线性度并不好,但是它是单值函数(即温度一定时,其阻值也是一定的单值)。如果我们设定在80℃时应接通散热风扇,这80℃即设定的阈值温度TTH,在特性曲线上可找到在80℃时对应的RT的阻值。R1的阻值是不变的(它安装在电路板上,在环境温度变化不大时可认为R1值不变),则可以计算出在80℃时的VA值。      R2与RP组成分压器,当5V电源电压是稳定电压时(电压稳定性较好),调节RP可以改变VB的电压(电位器中心头的电压值)。VB值为比较器设定的阈值电压,称为VTH。  设计时希望散热片上的温度一旦超过80℃时接通散热风扇实现散热,则VTH的值应等于80℃时的K值。一旦VA>VTH,则比较器输出低电平,继电器K吸合,散热风扇(直流电机)得电工作,使大功率器件降温。VA、VTH电压变化及比较器输出电压Vout的特性如图9所示。这里要说清楚的是在VA开始大于VTH时,风扇工作,但散热体有较大的热量,要经过一定时问才能把温度降到80℃以下。    从图7可看出,要改变阈值温度TTH十分方便,只要相应地改变VTH值即可。VTH值增大,TTH增大;反之亦然,调整十分方便。只要RT确定,RT的温度特性确定,则R1、R2、RP可方便求出(设流过RT、R1及R2、RP的电流各为0.1~0.5mA)。  2.窗口比较器  窗口比较器常用两个比较器组成(双比较器),它有两个阈值电压VTHH(高阈值电压)及VTHL(低阈值电压),与VTHH及VTHL比较的电压VA输入两个比较器。若VTHL≤VA≤VTHH,Vout输出高电平;若VAVTHH,则Vout输出低电平,如图10所示。图10是一个冰箱报警器电路。冰箱正常工作温度设为0~5℃,(0℃到5℃是一个“窗口”),在此温度范围时比较器输出高电平(表示温度正常);若冰箱温度低于0V或高于5℃,则比较器输出低电平,此低电平信号电压输入(μC)作报警信号。    温度采用NTC热敏电阻RT,已知RT在0℃时阻值为333.1kΩ;5℃时阻值为258.3kΩ,则按1.5V工作电压及流过R1、RT的电流约1.5  uA,可求出R1的值。R1的值确定后,可计算出0℃时的VA值为0.5V(按图10中R1=665kΩ时),5℃时的VA值为0.42V,则VTHL=0.42V,VTHH=0.5V。若设R2=665kΩ,则按图11,可求出流过R2、R3、R4电阻的电流I=(1.5V-0.5V)/665kΩ=0.0015mA,按R4×I/=0.42V,可求出R4=280kΩ再按0.5V=(R3+R4)0.0015mA,  则可求出R3=53.3kΩ。    本例中两个比较器采用低工作电压、、互补输出双比较器LT1017,无需外接上拉电阻。
关键字:&&
编辑:探路者
引用地址:
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
微信扫一扫加关注 论坛活动 E手掌握
微信扫一扫加关注
芯片资讯 锐利解读
大学堂最新课程
TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
热门资源推荐
频道白皮书}

我要回帖

更多关于 b50k电位器电路图 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信