求助,求计算生化污泥处理池污泥投加量的方法

施工技术分区
查看: 8916|回复: 8
听众数收听数最后登录注册时间主题精华0积分373帖子
五星助理工程师, 积分 373, 距离下一级还需 127 积分
正在做调试,不知道污水生化池营养物投加量怎么计算,请问各位前辈,在培训阶段各要加多少营养素到厌氧池和好氧池内,分别加的是什么药物,我就知道面粉、红糖、葡萄糖,尿素,磷肥(磷肥有好多种,加那种好?),还有其他更好的营养素吗?怎么计算投加量的?
听众数收听数自我介绍
最后登录注册时间主题精华0积分4018帖子
三星高级工程师, 积分 4018, 距离下一级还需 982 积分
你做的什么污水?原有的BOD和氮磷多少啊?
听众数收听数最后登录注册时间主题精华0积分2300帖子
五星工程师, 积分 2300, 距离下一级还需 200 积分
路过学习,回帖支持
听众数收听数自我介绍
最后登录注册时间主题精华0积分4018帖子
三星高级工程师, 积分 4018, 距离下一级还需 982 积分
按照投加污泥的分子量,计算其中所含N的量,然后折算需要投加的量。
听众数收听数最后登录注册时间主题精华0积分32帖子
技术员, 积分 32, 距离下一级还需 18 积分
我也想学习
听众数收听数最后登录注册时间主题精华0积分32帖子
技术员, 积分 32, 距离下一级还需 18 积分
投加活性污泥的体积是好氧池体积的?%,含水率是多少?望大师帮助。
听众数收听数最后登录注册时间主题精华0积分1131帖子
五星工程师, 积分 1131, 距离下一级还需 1369 积分
这个好像是有公式计算的,可以到图书馆查专门的资料。
听众数收听数自我介绍水处理最后登录注册时间主题精华0积分1146帖子
五星工程师, 积分 1146, 距离下一级还需 1354 积分
三菱MBR膜应用上有相关计算公式
听众数收听数自我介绍一体化设备专业生产厂家最后登录注册时间主题精华1积分2353帖子
五星工程师, 积分 2353, 距离下一级还需 147 积分
根据碳氮磷的比例投加& && && && && &
既然选择,就要坚持!
12周年站庆
10周年站庆
11周年站庆
8-1(商易宝)
8-2(英才网)
8-3(媒体广告)
(资料专属客服)您现在的位置:&&>>&&>>&正文
生化系统活性污泥上浮和沉淀池中污泥膨胀成因及检测与控制
发布时间: 14:10:47&&中国污水处理工程网
在采用活性污泥法处理废水的运行过程中,有多种原因可引起生化体统(曝气池)中污泥活性受到抑制,导致生化系统中污泥上浮和沉淀池中污泥膨胀,从而使有机物的去除率下降。
污泥膨胀、上浮的问题是活性污泥自产生以来一直伴随并常常发生的一个棘手的问题。其主要特征是:污泥结构松散,质量变轻,体积膨大,沉淀压缩性能差;SV值增大,有时达到90%,SVI达到400以上;大量污泥流失,出水浑浊;二次沉淀池难以固液分离,回流污泥浓度低,有时还伴随大量的泡沫的产生,无法维持生化处理的正常工作。污泥膨胀、上浮是生化处理系统较为严重的异常现象之一,它直接影响出水水质,并危害整个生化系统的运作。
生化池(曝气池)中污泥活性一旦受到抑制,就会导致微生物性质和类群的改变、有机底物的去除率下降。有些微生物(如丝状菌)的过量增长会形成泡沫或浮渣,运行时机械应力、挟裹气泡等均会使活性污泥的比重降低而上浮飘走,流入二沉池会引起二沉池污泥膨胀,不仅增加了出水中的悬浮固体量,而且会大大降低生物反应系统(曝气池)中活性污泥的活性和数量。
污泥膨胀的发生率是相当高的,在欧洲近50%的城市污水厂每年都会有不同程度的污泥膨胀发生,在我国的发生率也非常高。基本上目前各种类型的活性污泥工艺都会发生污泥膨胀。污泥膨胀不但发生率高,发生普遍,而且一旦发生难以控制,通常都需要很长的时间来调整。针对污泥膨胀、污泥上浮及生化体统中污泥活性受抑制,各方面的理论很多,但并不完全一致。本文在阅读大量文献基础上,对导致活性污泥活性抑制与膨胀、上浮的原因、检测方法和控制技术进行了讨论,整理出几种较为成熟且有普遍意义的观点,并归纳如下。
1 引起活性污泥上浮的主要因素&1.1 进水水质
1.1.1 过量的表面活性物质和油脂类化合物
这类物质可以影响细胞质膜的稳定性和通透性,使细胞的某些必要成分流失而导致微生物生长停滞和死亡。当曝气池进水中含有大量这类物质时,会产生大量泡沫(气泡),这些气泡很容易附聚在菌胶团上,使活性污泥的比重降低而上浮。另外,当进水含油脂量过高时,经过曝气与混合,油脂会附聚在菌胶团表面,使细菌缺氧死亡,导致比重降低而上浮。
1.1.2 pH值冲击
过高或过低的pH值会影响活性污泥微生物胞外酶及存在于细胞质和细胞壁里酶的催化作用以及微生物对营养物质的吸收。当连续流曝气 反应池内pH<4.0或pH>11.0时,多数情况下活性污泥中微生物活性受到抑制,或失去活性,甚至死亡,以致发生上浮。用SBR法处理啤酒废水和化工废水的实验结果表明:当进水pH值为2.5-5.0和10.0-12.0时,pH值越低(或越高),污泥活性受抑制越严重,上浮污泥量越多。控制低pH值(3.5-7.0)的反应周期内pH值不变,两种废水的活性污泥在pH≤5.5时就开始出现污泥上浮。另一方面,随着pH值的增加,由于胞外聚合物(Extra Celluar Polymer)的电离官能团增加,活性污泥絮凝作用增加(尽管带的负电性增加),但当pH值超过一定范围后,絮凝作用下降。可见,这时的电排斥作用增加,也会造成活性污泥脱絮(悬浮、不絮凝、反絮凝(deflocculation)和上浮[6]。&1.1.3 盐含量的影响
对进水的pH值调整不能消除碱度对活性污泥的影响。对碱性进水调pH值,虽然中和了碱性物质,但产生了盐。盐溶液浓度不同其渗透压也不同,渗透压是影响微生物生存的重要因素之一。如微生物所处的溶液渗透压发生突变,就会导致细胞死亡。
1.1.4 水温过热
组成活性污泥的微生物适合的温度范围一般为15-35℃,超过45℃时会使活性污泥中大部分微生物死亡而上浮(经过长期驯化的或特殊微生物除外)。另外,Klaus Kriebitzsch等在用SBR工艺测定温度对细胞内酶活性影响的试验中也发现,温度在20、30和40℃时酶活性较好,大于50℃之后,酶的活性明显下降。
1.1.5 致毒性底物
对好氧活性污泥微生物有致毒作用的底物主要包括:含量过高的COD、有机物(酚及其衍生物,醇,醛和某些有机酸等)、硫化物、重金属及卤化物。高底物浓度可与细胞酶活动中心形成稳定的化合物,导致基质不能接近,无法被降解,甚至使细胞中毒死亡。重金属离子进人细胞后主要与酶或蛋白质上的-SH基结合而使之失活或变性。微量的重金属离子还能在细胞内不断积累最终对微生物发生毒害作用(微动作用)。卤化物最常见的是碘和氯,碘不可逆地与菌体蛋白质(或酶)的酪氨酸结合,生成二碘酪氨酸,使菌体失活。氯与水合成次氯酸,其分解产生强氧化剂。而且废水中有机物的突变,使原被驯化好的并能降解有机毒物的微生物减少或消失。
1.2 工艺运行
1.2.1 过量曝气&微生物处于饥饿状态而引起自身氧化进人衰老期,池中溶解氧浓度(DO)上升;或者由于污泥活性差,曝气叶轮线速度过高,供氧过多。总之,DO上升,短期内污泥活性可能很好,因为新陈代谢快,有机物分解也快,但时间一久,污泥被打得又轻又碎(但无气泡),象雾花片似的飘满沉淀池表面,随水流走。这种污泥色浅,活性差,耗氧速率下降,污泥体积和污泥指数增高,处理效果明显降低。
1.2.2 缺氧引起的污泥上浮
污泥呈灰色,若缺氧过久则呈黑色,并常带有小气泡。
1.2.3 反硝化引起的污泥上浮
当废水中有机氨化合物含量高或氨氮高时,在适宜条件下可被硝酸菌和亚硝酸菌氧化为NO3-,如二沉池积泥或停留时间过长,NO3-还原产生的N2会被活性污泥絮凝体所吸附,使得活性污泥上浮。
1.2.4 回流量太大引起的污泥上浮
回流量突增,会使气水分离不彻底,曝气池中的气泡带到沉淀区上浮,这种污泥呈颗粒状,颜色不变,上翻的方向是从导流区壁直向沉淀区壁成湍流翻动。
1.2.5 二沉池池底积泥引起的污泥上浮
如果二沉池底泥发酵,产生的CO2和H2也会附聚在活性污泥上,使污泥比重降低而上浮。污泥腐化产生CH4、H2S后卜浮,首先是一个个小气泡逸出水面,紧接着有黑色污泥上浮。
1.3 活性污泥丝状菌过量生长及其控制产生的污泥上浮
1.3.1 温度与负荷
微丝菌(Mocrothrix patvicella)的最佳生长条件是温度在12-15℃,污泥负荷小于0.1kg/(kg?d)。它的天然疏水性会引起活性污泥的脱水性差,最高为490mL/g。在温度高于20℃后、即使污泥负荷是0.2kg/(kg?d),M.parvicella也不增值。它打碎成30-80μm的碎片,成浮渣形式而上浮。
1.3.2 表面活性物质、类脂化合物及机械应力作用
引起低负荷膨胀和污泥上浮的最频繁的丝状菌是:微丝菌、0092型、0041型。在进水中表面活性物质和类脂化合物浓度的升高、接种和机械应力也会引起放线菌(Actinomycetes)的增长。Kappeleretal观察到机械应力(如离心泵)损坏紧密的活性污泥絮凝体并导致微丝菌的过量增长[9]。
1.3.3 过量投加丝状菌抑制剂
在曝气池流出槽中注人过氧化氢,数天后,丝状菌就消失,SVI从580mL/g下降至178mL/g。且过氧化氢也有确保曝气池DO和去除H2S臭味的效果。但若加人量太多会引起活性污泥的活性抑制及污泥上浮。&2、沉淀池(二次沉淀池)中污泥膨胀原因&污泥膨胀分为丝状菌膨胀和非丝状菌膨胀。非丝状菌膨胀主要发生在废水水温较低而污泥负荷太高的时候,此时细菌吸附了大量有机物,来不及代谢,在胞外积贮大量高粘性的多糖物质,使得表面附着物大量增加,很难沉淀压缩。而当氮严重缺乏时,也有可产生膨胀现象。因为若缺氮,微生物便于工作不能充分利用碳源合成细胞物质,过量的碳源将被转弯为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,易形成结合水,从而影响污泥的沉降性能,产生高粘性的污泥膨胀。非丝状菌污泥膨胀发生时其生化处理效能仍较高,出水也还比较清澈,污泥镜检也看不到丝状菌。非丝状菌膨胀发生情况较少,且危害并不十分严重,在这里就不着重研究。
丝状菌膨胀在日常实际工作中较为常见,成因也十分复杂。影响丝状菌污泥膨胀的因素有很多,但我们首先应该认识到的是活性污泥是一 个混合培养系统,其中至少存在着30种可能引起污泥膨胀的丝状菌。而丝状菌在与活性胶团系统共生的关系中是不可缺少的一类重要微生物。它的存在对净化污水起着很好的作用。它对保持污泥的絮体结构,保持生化处理的净化效率,及在沉淀中起着对悬浮物的过滤作用等都有很重要的意义。事实也证明在丝状菌与菌胶团细菌平衡时是不会产生污泥膨胀,只有当丝状菌生长超过菌胶团细菌时,才会出现污泥膨胀现象。
2.1污泥负荷对污泥膨胀的影响
一般认为活性污泥中的微生物的增长都是符合Monod方程的:S
KS +S& &&&&&&&&&&&&&&&&&& 式中μ----微生物比增长速率,d-1;μ=1/x& *& dx/dt& &&&& X----生物体浓度,mg/L;& &&&&&&&&& S----生长限制性基质浓度(残留与溶液中的基质浓度),mg/L;
KS-----饱和常数(半速度常数),其值为μ=μmax/2时的基质浓度,mg/L;
μmax-----在饱和浓度中微生物的最大比增长速率,d-1
研究证明大多数的丝状菌的KS和μmax值比菌胶团的低,所以,按照以上Monond方程,具有低KS和μmax值的丝状菌在低基质浓度条件下具有高的增长速率,而具有较高KS和μmax值的菌胶团在高基质浓度条件下才占优势。同样认为低负荷对于丝状菌生长有利的理论还有表面积/容积比(A/V)假说。这里的表面积和容积,是指活性污泥中微生物的表面积与体积。该假说认为伸展于絮凝体之外的丝状菌的比表 面积(A/V)要大大超过菌胶团细菌的比表面积。当微生物处于受基质限制和控制的状态时,比表面积大的丝状菌在取得底物方面要比菌胶团有利,结果在曝气池内丝状菌就变成了优势菌。
低负荷易导致污泥膨胀这一观点无论是在实际运行中还是在理论上都有了较为成熟的解释。但在我国,通常生化反应的负荷设计都是较高的,的大量污泥膨胀却是在高负荷条件下发生的,这引起了人们对该理论的怀疑。事实上,在高负荷条件下的污泥膨胀往往是由于供氧不足、曝气池内DO浓度降低引起的。我们下面就针对溶解氧DO对于污泥膨胀的影响。具体参见更多相关技术文档。
2.2溶解氧浓度对污泥膨胀的影响
微生物对有机物的降解过程实质上就是对氧的利用过程。溶解氧在活性污泥法的运行中是一个重要的控制参数,曝气池中DO浓度的高低直接影响着有机物的去除效率和活性污泥的生长。低DO浓度一直被认为是引起丝状菌污泥膨胀的主要因素之一。丝状菌由于具有较大的比表面积和较低的氧饱和常数,在低DO浓度下比絮状菌增殖得快,从而导致丝状菌污泥膨胀。根据各方面的研究反应,DO对于污泥膨胀影响的的临界值并不确定。DO浓度的要求是与污泥负荷息息相关的,负荷越高,则对应的临界值就越大。这一值的确定与工艺选择、池型及进水类型都有着密切关系,必须根据实际情况结合实验才可以得出。
2.3其它方面对污泥膨胀的影响
2.3.1 污水种类
污水种类对污泥膨胀有着明显的影响。通常来说,那些含有易生物降解和溶解的有机成份,特别是低分子量的烃类、糖类和有机酸类等类型基质的污水易引起污泥膨胀,例如酿酒、乳品、石化和造纸废水等。
2.3.2 营养成分的不均衡
当污水中N、P不足时,易引起污泥膨胀的发生。通常认为,N、P的合适比例为BOD5:N:P=100:5:1。很多研究表明许多丝状菌对营养物质N、P有着较强的亲和力,这可能就是缺乏营养物质导致污泥膨胀的原因。
2.3.3 pH值与温度
一般认为pH偏低易引起丝状菌的大量繁殖。而温度的对丝状菌的影响也是很普遍的。例如,冬天Microthix parvicella在丝状菌群中占优势,而温暖季节时Nocardia form,0041型或Nostocoida limnicda较易大量繁殖。另外污水在进水处理系统前的早期厌氧消化产生的有机酸和硫化氢也可能导致污泥膨胀的发生。硫磺菌的的贝氏硫菌、硫丝菌等能从硫化氢氧化中获取能量。而这么细菌以非常长的丝状性增殖,有时能长达1厘米,从而导致污泥膨胀的发生。
3、生化体统(曝气池)中污泥活性抑制与上浮的检测方法
3.1 测定污泥的耗氧速率(OUR)和 ATP
测定活性污泥的耗氧速率(OUR),可判断有无毒物流入、负荷条件和排泥平衡情况。若同时测定三磷酸腺苦(ATP),还可以从处理机能方面对微生物量和活性度进行定量分析。根据P.E.Jorgensen等的研究表明,测定ATP含量和OUR是检测生物量活性的可靠方法。
3.2 利用指示生物诊断活性污泥状态和性能
用显微镜对活性污泥中的微生物进行镜检,其中的原生动物和后生动物(统称为微型动物)相对比细菌个体大,在显微镜下易于观察、鉴别和计数,且对外界环境条件的变化更为敏感,作为指示生物来诊断活性污泥的状态和性能,在工程实践中已有较广泛应用。这种指示作用概括于表1中。
表1 微型动物对活性污泥状态和性能的指示作用
微型动物镜检情况
活性污泥状态
①钟虫、遁纤虫、累枝虫、聚缩虫、独缩虫等固着型原声动物和轮虫等后生动物大量出现(≥106个/L)
②微型动物种类高度多样化,没有占绝对优势数量的微生物
①波豆虫、尾波虫、侧滴虫、屋滴虫、豆形虫、草履虫等快速游泳型原生动物较多
②严重恶化时微型动物极少,或被一种(或一组)占优势
漫游虫、斜叶虫、管叶虫等慢速游泳型或匍匐行进的原生动物较多
恶化→良好
可观察到微型动物,但个体数比正常污泥害臊,蠕动纤毛类叫少。球衣菌、丝硫菌、微丝菌、放线菌大量出现
膨胀、泡沫和浮渣
变形虫和简便虫等肉足类原生动物的个数在混合液中出现104个/mL
分散、解体
新态虫、扭头虫、草履虫出现较多
溶解氧(DO)不足
轮虫和变形虫大量出现
4、 控制生化体统中污泥上浮的技术措施&①稳定曝气池进水水质的最可行、最经济的方法是终水回流,用以稀释、调节曝气池进水中的有机物浓度,使其稳定在一定范围内,终水回流的先决条件是污水处理厂的处理能力必须大于实际进水量。
②污水处理厂应考虑设有较大容积的调节池(均质池)并控制好均质池(调节池)液位。因高液位会使均质池的水量缓冲能力下降,甚至丧失;而低液位运行不仅均质效果差,且易使油和均质池底的杂质进人曝气池,造成活性污泥受冲击而上浮。液位宜控制在50%-70%。
③合理投加营养盐。由于工业废水中营养比例失调,常常碳源充分而氮、磷等营养物不足,因此处理工业废水时须另外补加。一般以尿素和磷酸盐为氮源和磷源,但投加量不宜过量。
④曝气池人口设中和池及由碱池、酸池、pH检测仪、pH自动调节阀等组成的pH自动调节系统,使曝气池进水的pH值控制在要求范围内。
⑤采用纯氧曝气。从西德引进的纯氧曝气装置,投产5a以来从未出现污泥上浮。
⑥污泥中毒引起的污泥上浮可以加大曝气量,减少进水量并清除死污泥。
⑦活性污泥的微生物组成主要依赖于废水成分、流动形式、运行条件和适宜的设计。由于在实际处理过程中几乎难以控制废水成分,因此对运行条件和反应器设计进行优化选择至关重要。&5、二次沉淀池中污泥膨胀的一般解决办法
5.1应急措施
适用于临时应急,主要方法是投加药物增强污泥沉降性能或是直接杀死丝状菌。在曝气池的入口处投加铁盐铝盐等混凝剂可以直接提高污泥絮凝性、压密性,保证沉淀出水。另外,投加一些能够杀灭丝状菌的药剂,如氯气、臭氧、过氧化氢等。氯加在回流污泥中也可以达到消除污泥膨胀现象。有效氯为10―20mg/l时,就能够有效杀灭球衣菌,贝代硫菌;高于20mg/l时,可能对絮凝体形成菌产生危害,因此,在使用氯时一定要按投加量的允许范围合理投加。投加过氧化氢和臭氧也可以起到破坏丝状菌的效果。 而臭氧,过氧化氢等氧化剂只有在较高的计量条件下才对球衣菌有杀灭效果。
采用这种方法一般能较快降低SVI值,但这种方法并没有从根本上控制丝状菌的繁殖,一旦停止加药,污泥膨胀现象可以又会卷土重来。而且投药有可能破坏生化系统的微生物生长环境,导致处理效果降低,所以,这种办法只能做为临时应急时用。
5.2改善生化环境
污水厂发生污泥膨胀的时候,一般无法从工艺流程、池型和曝气方式的改变来解决,只能在正在运行的流程基础上通过改变生化池内的微生物生长环境来抑制或消除丝状菌的过度繁殖。在不同的工艺和水质的情况下,很难有一个放之四海而皆准的解决方案。但生化工艺常遇见的几种应该注意的问题必须加以注意。
5.2.1 污水性质的控制
首先应该检查和调整pH值,当pH值低于5以下时,不仅对污泥膨胀会有利,而且对正常的生化反应也会有一定的危害,所以当pH值偏低时应及时调整。
另外水温对污泥膨胀有一定的影响,组成活性污泥的微生物适合的温度范围一般为15--35℃,温度每升高1℃微生物代谢速度提高1倍。当温度超过40℃时会使活性污泥中大部分微生物死亡而导致污泥膨胀。在北方寒冷地区一定应注意冬季时的水温,若水温偏低应加热,因为低温也会导致污泥膨胀的发生。采用鼓风曝气能有效地升高曝气池内水温。
当污水中营养成份不足或失衡时,应补充投加。N、P含量应控制在BOD:N:P=100:5:1左右。
若污水处理生化系统前已有消化现象的发生,产生的低分子有机酸将有利于丝状菌的生长,这时可以对废水在调节池内预曝气来加以改善。一般采用空气扩散器向3-5米有效水深的调节池曝气,供气量可以控制在0.5-1.0m3(空气)/ m3废水?h。它能使调节池的废水保持新鲜,并有效防止由于厌氧所会带来的臭气。
5.2.2保持生化池内足够的溶解氧,一般控制在0.3---2mg/l;对于高负荷的生化系统一般至少应控制DO&2 mg/l。
5.2.3调整曝气池中污泥负荷,运行经验表明,如果污泥负荷超过0.35kgBOD/kgMLSS.d易于发生丝状菌性污泥膨胀。
5.2.4缩短沉淀池的水力停留时间和沉淀池内的污泥应及时排出或回流, 防止其发生厌氧现象。若发生厌氧现象,产生的各种气体吸附在污泥上,也会使污泥上浮,沉降性能变差。而且发生厌氧的污泥回流也会引发丝状菌的大量繁殖。这种情况时除排泥和清除沉淀池内的死角,并缩短污泥在池内的停留时间外,还应提高曝气池DO值,使出入沉淀池的水保持较的溶解氧,或者在污泥回流进入生化池前曝气再生。
在解决了以上问题后,如果污泥膨胀现象仍得不到控制,就得根据实际情况加以分析,下面针对几中常见的工艺提出一些指导性的方法,供参考。
A. 高负荷活性污泥工艺
目前国内对活性污泥工艺的设计通常采用中等负荷(0.3KgBOD5/(kgMLSS?d)),而在实际中人们从经济角度考虑总是采用较高的负荷,所以高负荷下的污泥膨胀在中国具体较为广泛的意义。在高负荷情况下,最常见的是DO不足,所以先采取提高气水比,强化曝气,在推流式曝气池内首端采用射流曝气等方式,观察一段时间,找出问题的所在。
如果在以上措施采取后一段时间情况仍无好转,则可考虑在曝气池头部加设软填料。这一部份对于有机酸去除率很高,从而去除丝状菌的生长促进因素,帮助絮状菌生长。这个方法比较有效,但造价较高,且对以后的维修管理造成不便。或者在曝气池前设置一个水力停留时间约为15min的选择器,一般能很有效的抑制丝状菌的生长。
对于间歇式进水的SBR工艺来说,反应器本身是完全混合式的,而且在时间上其污染物的基质就存在浓度梯度,所以无需再另设选择器。通常间歇式SBR工艺产生污泥膨胀的原因是,污泥浓度过高,而进水有机物浓度偏低或水量偏小而导致污泥负荷偏低。对于这种情况,降低排出比,提高基质初始浓度,并对SBR强制排泥,一般就能够对污泥膨胀现象进行有效的控制。而对于连续进水的SBR如ICEAS和CASS等工艺如果发生污泥膨胀的话,就有必要在进水端设置一个预反应区或生物反应器了。
B. 低负荷活性污泥工艺
低负荷活性污泥工艺曝气池内基质浓度较低,丝状菌容易获得较高的增长效率,所以是最容易产生污泥膨胀。除了在水质和曝气上想办法外,最根本和有效的是将曝气池分成多格且以推流方式运行,或增设一个分格设置的小型预曝气池作为生物选择器,在这个选择器内采用高污泥负荷,吸附部分有机物并消除有机酸。这个办法不但有助于抑制污泥膨胀,并能有效的改善生化处理效果。在曝气池内增加填料的方法也同样在低负荷完全混合工艺中适用。
对于A/O和A2/O工艺可通过在在好氧段前设置缺氧段和厌氧段以及污泥回流系统,使混合菌群交替处于缺氧和好氧状态,并使有机物浓度发生周期性变化,这既控制了污泥膨胀又改善了污泥的沉降性能。而交替工作式氧化沟和UNITANK工艺等连续进水的系统因为其本身在时间和空间上就有了实际上的“选择器”,所以对污泥膨胀有着效强的控制能力。如果这两种工艺发生污泥膨胀,则可通过调整曝气控制溶氧量和控制回流污泥量来调节池内的污泥负荷及DO,通过一段时间的改善,一般能够控制住污泥膨胀现象。
总的来说,污泥膨胀由于丝状菌的种类繁多,且生长适宜的环境也不尽相同。在不同工艺不同水质的情况下,微生物的生长环境非常微妙,这就要求发生污泥膨胀时,需要水处理工作者根据实际情况作大量切实的实验和分析,大胆实践,才能解决污泥膨胀问题。(谷腾水网)杨哲1& 李峰2
  1 中国市政工程中南设计研究总院有限公司& 湖北武汉& 430010;
  2 浙江省建筑设计研究院& 浙江杭州& 310006
  摘要:污水中BOD5/TKN<4时,脱氮效果不理想,需通过外加碳源解决。本文比较分析了几种碳源,推荐采用乙酸钠。结合工程实际情况,提出了一种新的乙酸钠投加量的计算方法及校核条件,为类似工程提供借鉴。
  关键词:外加碳源;反硝化;乙酸钠
  现有污水处理厂会由于混入工业废水或工艺处理(前端处理构筑物过量降低了BOD5量)等原因,导致进入生化池中的碳源不足从而影响脱氮的效果,需要外加碳源以满足脱氮需求。一般认为,污水中的五日生化需氧量(BOD5)与总凯氏氮(TKN)之比大于4,才可达到理想的脱氮效果。
  1.外加碳源的选择
  目前,污水处理厂常用的碳源有甲醇、乙醇、淀粉及乙酸钠等。对脱氮起主要作用的异养型反硝化菌对不同碳源的适应程度不同,总的来说,分子量越小,结构越简单的碳源,越容易被反硝化菌利用。其中,淀粉溶解性差,反硝化速率最低,并容易造成残留。甲醇、乙醇作为外加碳源,不仅存在成本高,而且有弱毒性,污泥所需适应时间较长。乙酸钠较其它碳源的反应速率更快,成本更低,且不易产生安全风险,方便使用。本文建议采用乙酸钠作为外加碳源。
  2.乙酸钠投加量的确定
  活性污泥中的异养型反硝化菌在缺氧条件下,以碳源为电子供体,硝态氮和亚硝态氮作为电子受体被还原为氮气。
  当以甲醇作为外投碳源时,其投入量按下列公式计算:
  Cm=2.47No+1.53N+0.87D
  式中 Cm&&必需投加的甲醇量,mg/L;
  No&&初始的硝态氮浓度,mg/L;
  N&&初始的亚硝态氮浓度,mg/L;
  D&&初始的溶解氧浓度,mg/L。
  甲醇(CH3OH)与乙酸钠(CH3COONa)的碳当量比值为0.78:1,得出当以乙酸钠为外投碳源时,投加量的计算公式:
  C=1.93No+1.19N+0.68D
  式中& C&&必需投加的乙酸钠量,mg/L;
  其余符号同上。
  当以BOD为外投碳源时,投加量的计算公式:
  BOD5=2.86No+1.71N+D
  符号同上。
  为考虑富余量并方便计算,假定:1)DO浓度为0;2)所有氮均以硝态氮形式存在;3)出水满足一级A标准;4)剩余污泥含氮量为12%(质量)。乙酸钠投加量计算公式如下:
  乙酸钠投加量C(mg/L)=K&(1.93TN-(BOD5-10)/2.86-120&△Xv/Q)
  式中 K&&安全系数,取1.3;
  △Xv&&剩余污泥量,kgMLVSS/d;
  Q&&污水量,m3/d。
  校核:BOD5/TN&4。
  现以昆山某污水处理厂二期扩建工程为例计算乙酸钠投加量。该污水处理厂二期扩建后规模为25000m3/d,生化池采用两座A/O氧化沟,单座规模为12500m3/d,剩余污泥量为1225kgMLVSS/d。
  根据实测数据,进水总氮保证率在90%情况下,BOD5/TN=99.1/53.4=1.86;平均情况下,BOD5/TN=84.9/41.7=2.04,均需外加碳源。
  90%保证率情况下:C= K&(1.93TN-(BOD5-10)/2.86-120&△Xv/Q)
  =1.3*(1.93*53.4-(99.1-10)/2.86-120*)
  =78.2mg/L
  校核:BOD5/TN=(78.2/1.93*2.86+99.1)/53.4=4.03,满足要求。
  同理,计算得平均情况下:C=55.3mg/L
  校核:BOD5/TN=(55.3/1.93*2.86+84.9)/41.7=4.00,满足要求。
  合计投加量为0.002C*Q=0.002*(55.3~78.2)*~1955kg/d。
  乙酸钠一般采用湿式投加,根据选用的溶液浓度即可算出需要的容积,并以此选择相应的加药泵及储存罐。
  3.结语
  对于碳源不足的污水处理厂,合理选择外加碳源可提高脱氮的效果。在进行了技术及经济性比较后,本文推荐乙酸钠作为外加碳源。乙酸钠的投加量需经计算确定,计算中需考虑原有进水中可利用的碳源及剩余污泥排出时带出的氮量。计算结果需经校核,满足BOD5/TN&4才可。计算公式中的部分数据采用了简算,有条件的污水处理厂可在缺氧池及出水中设置浓度计,以实时监测数据确定最佳投加量。
  参考文献:
  [1]张自杰,林荣忱,金儒霖,排水工程(下册),第四版,北京:中国建筑工业出版社,2000.
  [2]王丽丽,赵林等,不同碳源及其碳氮比对反硝化过程的影响[J],环境保护科学,1):15-18.
  [3]孙永利,许光明等,城镇污水处理厂外加商业碳源的选择[J],中国给水排水,):84-86.
  [4]陈军,污水处理厂乙酸钠加药间设计探讨[J],环境科学与管理,):102-104.
您可能感兴趣的其他文章
&&站长推荐
&&期刊推荐
&&原创来稿文章
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的邮件地址:
写信给编辑
您的邮件地址:}

我要回帖

更多关于 生化污泥晾晒 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信