看多晶体的细化奥氏体晶粒的方法生长情况一般用什么测试方法

您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
多晶材料晶粒生长的MonteCarlo计算机模拟方法_模拟异常晶粒生长.pdf3页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
文档加载中...广告还剩秒
需要金币:100 &&
多晶材料晶粒生长的MonteCarlo计算机模拟方法_模拟异常晶粒生长
你可能关注的文档:
··········
··········
多晶材料晶粒生长的M on te
计算机模拟方法 模拟异常晶粒生长 钟晓征, 陈伟元, 王豪才, 郑 军 电子科技大学CA E
中心, 四川 成都 6 10054
摘 要:  晶粒生长的显微结构的演化是一种受诸多因素影响 来表示。定义晶粒间的这种相互作用为
的复杂过程。前文已简述模拟二维正常晶粒生长所采用的基本 NN E
- J - 1 5 ∑ s
蒙特卡罗 方法。异常晶粒生长的最直接原因是总 ij M on te
C a rlo [6 ]
体系能的改变。而导致体系能变化的因素很多。本文在重点分析 其中的各参数定义如前文。运用M e trop o lis
来实现晶粒
由于晶界能和迁移率的各向异性引起体系能量变化的基础上, 生长的模拟。具体过程参见前文。
介绍模拟异常晶粒生长的基本方法, 为解决如何将实际生长环 异常晶粒生长的模拟原理同上, 但是, 最关键之处在于体系 境复杂性引入生长模型中及如何进一步模拟生长的问题提供重 能量的表达式在式 5 的基础上有所变化。体系能量的改变是引
要思路。 起异常晶粒生长的最直接原因, 而这种改变与许多因素密切相
关键词:  计算机模拟; 蒙特卡罗 方法; 异常晶粒 关。诸如杂质、应力、对材料进行择优取向等因素都将使生长环 M on te
生长 境变复杂, 从而带来生长的各向异性。当材料结构不是很复杂 时, 通常认为边界迁移率和驱动力对边界运动速度的影响最主
1 引 言 要, 可表示为: 如前文所述, 通常多晶材料在晶核形成之后, 晶粒生长呈现 V
M P 6 两种类型: 正常晶粒生长和异常晶粒生长。正常晶粒生长有如下 其中,V
是边界运动速度,M 是边界迁移率, P
是驱动力。因此通
规律: 常认为晶粒的异常生长主要是由晶界迁移率各向异性和驱动力 n 各向异性所致,
正在加载中,请稍后...您的访问出错了(404错误)
很抱歉,您要访问的页面不存在。
1、请检查您输入的地址是否正确。
进行查找。
3、感谢您使用本站,1秒后自动跳转小木虫 --- 500万硕博科研人员喜爱的学术科研平台
&&查看话题
【请教】晶体的晶粒大小尺寸的测定与表征方法?
请教:我不是学晶体的,现在设计到晶体长大这一块,我想请问下晶体粒度的测定可以有哪些方法?还有是通过什么来表征晶体粒度变大了,是一次粒度还是团聚后?
那看晶体是否长大,是看它的一次粒度还是看其它什么的?还有SEM/TEM放大一万倍以上也可以观察到一次粒度的大小,XRD检测到的都是纳米级粒度啊,我想做微米级的粒度检测,请教可以用什么方法检测到其粒径长大?
研究生必备与500万研究生在线互动!
扫描下载送金币
浏览器进程
打开微信扫一扫
随时随地聊科研晶体是在物相转变的情况下形成的。物相有三种,即气相、液相和固相。只有晶体才是真正的固体。由气相、液相转变成固相时形成晶体,固相之间也可以直接产生转变。
晶体生成的一般过程是先生成晶核,而后再逐渐长大。一般认为晶体从液相或气相中的生长有三个阶段:①介质达到过饱和、过冷却阶段;②成核阶段;②生长阶段。
在某种介质体系中,过饱和、过冷却状态的出现,并不意味着整个体系的同时结晶。体系内各处首先出现瞬时的微细结晶粒子。这时由于温度或浓度的局部变化,外部撞击,或一些杂质粒子的影响,都会导致体系中出现局部过饱和度、过冷却度较高的区域,使结晶粒子的大小达到临界值以上。这种形成结晶微粒子的作用称之为成核作用。
介质体系内的质点同时进入不稳定状态形成新相,称为均匀成核作用。
在体系内的某些局部小区首先形成新相的核,称为不均匀成核作用。
均匀成核是指在一个体系内,各处的成核几宰相等,这要克服相当大的表面能位垒,即需要相当大的过冷却度才能成核。
非均匀成核过程是由于体系中已经存在某种不均匀性,例如悬浮的杂质微粒,容器壁上凹凸不平等,它们都有效地降低了表面能成核时的位垒,优先在这些具有不均匀性的地点形成晶核。因之在过冷却度很小时亦能局部地成核。
在单位时间内,单位体积中所形成的核的数目称成核速度。它决定于物质的过饱和度或过冷却度。过饱和度和过冷却度越高,成核速度越大。成核速度还与介质的粘度有关,轮度大会阻碍物质的扩散,降低成核速度. 晶核形成后,将进一步成长。下面介绍关于晶体生长的两种主要的理论。
一、层生长理论
科塞尔(Kossel,1927)首先提出,后经斯特兰斯基(Stranski)加以发展的晶体的层生长理论亦称为科塞尔—斯特兰斯基理论。
它是论述在晶核的光滑表面上生长一层原子面时,质点在界面上进入晶格"座位"的最佳位置是具有三面凹入角的位置(图I-2-1中k)。质点在此位置上与晶核结合成键放出的能量最大。因为每一个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多,释放出能量最大的位置。图I一2—1示质点在生长中的晶体表面上所可能有的各种生长位置:
k为曲折面,具有三面凹人角,是最有利的生长位置;其次是S阶梯面,具有二面凹入角的位置;最不利的生长位置是A。由此可以得出如下的结论即晶体在理想情况下生长时,先长一条行列,然后长相邻的行列。在长满一层面网后,再开始长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体的层生长理论,用它可以解释如下的一些生长现象。
1)晶体常生长成为面平、棱直的多面体形态。
2)在晶体生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状构造(图I-2-2)。它表明晶面是平行向外推移生长的。
3)由于晶面是向外平行推移生长的,所以同种矿物不同晶体上对应晶面间的夹角不变。
4)晶体由小长大,许多晶面向外平行移动的轨迹形成以晶体中心为顶点的锥状体称为生长锥或砂钟状构造(图I-2-3、I-2-4、I-2-5)。在薄片中常常能看到。
然而晶体生长的实际情况要比简单层生长理论复杂得多。往往一次沉淀在一个晶面上的物质层的厚度可达几万或几十万个分子层。同时亦不一定是一层一层地顺序堆积,而是一层尚未长完,又有一个新层开始生长。这样继续生长下去的结果,使晶体表面不平坦,成为阶梯状称为晶面阶梯(图I-2-5)。科塞尔理论虽然有其正确的方面,但实际晶体生长过程并非完全按照二维层生长的机制进行的。因为当晶体的一层面网生长完成之后,再在其上开始生长第二层面网时有很大的困难,其原因是已长好的面网对溶液中质点的引力较小,不易克服质点的热振动使质点就位。因此,在过饱和度或过冷却度较低的情况下,晶的生长就需要用其它的生长机制加以解释。
在晶体生长过程中,不同晶面的相对生长速度如何,在晶体上哪些晶面发育,下面介绍有关这方面的几种主要理论。
一、 布拉维法则
早在1855年,法国结晶学家布拉维(A.Bravis)从晶体具有空间格子构造的几何概念出发,论述了实际晶面与空间格子构造中面网之间的关系,即实际晶体的晶面常常平行网面结点密度最大的面网,这就是布拉维法则。
布拉维的这一结论系根据晶体上不同晶面的相对生长速度与网面上结点的密度成反比的推论引导而出的。所谓晶面生长速度是指单位时间内晶面在其垂直方向上增长的厚度。如图I一2—9所示,晶面AB的网面上结点的密度最大,网面间距也最大,网面对外来质点的引力小,生长速度慢,晶面横向扩展,最终保留在晶体上;CD晶面次之;BC晶面的网面上结点密度最小,网面间距也就小,网面对外来质点引力大,生长速度最快,横向逐渐缩小以致晶面最终消失;因此,实际晶体上的晶面常是网面上结点密度较大的面。
总体看来,布拉维法则阐明了晶面发育的基本规律。但由于当时晶体中质点的具体排列尚属未知,布拉维所依据的仅是由抽象的结点所组成的空间格子,而非真实的晶体结构。因此,在某些情况下可能会与实际情况产生一些偏离。1937年美国结晶学家唐内—哈克(Donnay-Harker)进一步考虑了晶体构造中周期性平移(体现为空间格子)以外的其他对称要素(如螺旋轴、滑移面)对某些方向面网上结点密度的影响,从而扩大了布拉维法则的适用范围。
布拉维法则的另一不足之处是,只考虑了晶体的本身,而忽略了生长晶体的介质条件。
由液相变为固相 由气相变为固相 由固相再结晶为固相
晶体是在物相转变的情况下形成的。物相有三种,即气相、液相和固相。只有晶体才是真正的固体。由气相、液相转变成固相时形成晶体,固相之间也可以直接产生转变。
由液相变为固相
(1)从熔体中结晶 当温度低于熔点时,晶体开始析出,也就是说,只有当熔体过冷却时晶体才能发生。如水在温度低于零摄氏度时结晶成冰;金属熔体冷却到熔点以下结晶成金属晶体。
(2)从溶液中结晶 当溶液达到过饱和时,才能析出晶体。其方式有:
1)温度降低,如岩浆期后的热液越远离岩浆源则温度将渐次降低,各种矿物晶体陆续析出; 2)水分蒸发,如天然盐湖卤水蒸发, 3)通过化学反应,生成难溶物质。
决定晶体生长的形态,内因是基本的,而生成时所处的外界环境对晶体形态的影响也很大。同一种晶体在不同的条件生长时,晶体形态是可能有所差别的。现就影响晶体生长的几种主要的外部因素分述如下。
涡流 温度 杂质 粘度 结晶速度
影响晶体生长的外部因素还有很多,如晶体析出的先后次序也影响晶体形态,先析出者有较多自由空间,晶形完整,成自形晶;较后生长的则形成半自形晶或他形晶。同一种矿物的天然晶体于不同的地质条件下形成时,在形态上、物理性质上部可能显示不同的特征,这些特征标志着晶体的生长环境,称为标型特征。
1.晶体的溶解
把晶体置于不饱和溶液中晶体就开始镕解。由于角顶和棱与溶剂接触的机会多,所以这些地方溶解得快些,因而晶体可溶成近似球状。如明矾的八面体溶解后成近于球形的八面体(图I一2—14)。
晶面溶解时,将首先在一些薄弱地方溶解出小凹坑,称为蚀像。经在镜下观察,这些蚀象是由各种次生小晶面组成。图I一2—15表示方解石与白云石(b)晶体上的蚀像。不同网面密度的晶面溶解时,网面密度大的晶面先溶解,因为网面密度大的晶面团面间距大,容易破坏。
2.晶体的再生
破坏了的和溶解了的晶体处于合适的环境又可恢复多面体形态,称为晶体的再生(图I一2—16),如班岩中石英颗粒的再生(图I一2—17)。
溶解和再生不是简单的相反的现象。晶体溶解时,溶解速度是随方向逐渐变化的,因而晶体溶解可形成近于球形;晶体再生时,生长速度随方向的改变而突变,因之晶体又可以恢复成几何多面体形态。
晶体在自然界的生长往往不是直线型进行的,溶解和再生在自然界常交替出现,使晶体表面呈复杂的形态。如在晶体上生成一些窄小的晶面,或者在晶面上生成一些特殊的突起和花纹。
人工合成晶体
对天然矿物晶体生长的研究有助于了解矿物、岩石、地质体的形成及发展历史,并为矿物资源的开发和利用提供一些有益的启发性资料。人工合成品体则不仅可以模拟和解释天然矿物的形成条件,更重要的是能够提供现代科学校术所急需的晶体材料。
近年来人工合成晶体实验技术迅速发展,成功地合成了大量重要的晶体材料,如激光材料、半导体材料、磁性材料、人造宝石以及其它多种现代科技所要求的具有特种功能的晶体材料。当前人工合成晶体已成为工业主要文柱的材料科学的一个重要组成部分。
人工合成晶体的主要途径是从溶液中培养和在高温高压下通过同质多像的转变来制备(如用石墨制备金刚石)等。具体方法很多,下面简要介绍几种最常用的方法。
(1)水热法 这是一种在高温高压下从过饱和热水溶液中培养晶体的方法。用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱石(祖母绿、海蓝宝石)、石榴子石及其它多种硅酸盐和钨酸盐等上百种晶体。
晶体的培养是在高压釜(图I一2—18)内进行的。高压釜由耐高温高压和耐酸碱的特种钢材制成。上部为结晶区,悬挂有籽晶;下部为溶解区,放置培养晶体的原料,釜内填装溶剂介质。由于结晶区与溶解区之间有温度差(如培养水晶,结晶区为330-350℃,溶解区为360-380℃)而产生对流,将高温的饱和溶液带至低温的结晶区形成过饱和析出溶质使籽晶生长。温度降低并已析出了部分溶质的溶液又流向下部,溶解培养料,如此循环往复,使籽晶得以连续不断地长大。
(2)提拉法 这是一种直接从熔体中拉出单晶的方法。其设备如图I一2—19所示。熔体置柑塌中,籽晶固定于可以旋转和升降的提拉杆上。降低提拉杆,将籽晶插入熔体,调节温度使籽晶生长。提升提拉杆,使晶体一面生长,一面被慢慢地拉出来。这是从熔体中生长晶体常用的方法。用此法可以拉出多种晶体,如单晶硅、白钨矿、钇铝榴石和均匀透明的红宝石等。
(3)焰熔法 这是一种用氢氧火焰熔化粉料并使之结晶的方法。图I-2-20为此法的示意图。小锤1敲打装有粉料的料筒2,粉料受振动经筛网3而落下,氧经入口4进入将粉料下送,5是氢的入口,氢和氧在喷口6处混合燃烧,粉料经火焰的高温而熔化并落于结晶杆7上,控制杆端的温度,使落于杆端的熔层逐渐结晶。为使晶体生长有一定长度,可使结晶杆逐渐下移。用这种方法成功地合成了如红宝石、蓝宝石、尖晶石、金红石、钛酸锶、钇铝榴石等多种晶体。
晶体是在物相转变的情况下形成的。物相有三种,即气相、液相和固相。只有晶体才是真正的固体。由气相、液相转变成固相时形成晶体,固相之间也可以直接产生转变。
晶体生成的一般过程是先生成晶核,而后再逐渐长大。一般认为晶体从液相或气相中的生长有三个阶段:①介质达到过饱和、过冷却阶段;②成核阶段;②生长阶段。
在某种介质体系中,过饱和、过冷却状态的出现,并不意味着整个体系的同时结晶。体系内各处首先出现瞬时的微细结晶粒子。这时由于温度或浓度的局部变化,外部撞击,或一些杂质粒子的影响,都会导致体系中出现局部过饱和度、过冷却度较高的区域,使结晶粒子的大小达到临界值以上。这种形成结晶微粒子的作用称之为成核作用。
介质体系内的质点同时进入不稳定状态形成新相,称为均匀成核作用。
在体系内的某些局部小区首先形成新相的核,称为不均匀成核作用。
均匀成核是指在一个体系内,各处的成核几宰相等,这要克服相当大的表面能位垒,即需要相当大的过冷却度才能成核。
非均匀成核过程是由于体系中已经存在某种不均匀性,例如悬浮的杂质微粒,容器壁上凹凸不平等,它们都有效地降低了表面能成核时的位垒,优先在这些具有不均匀性的地点形成晶核。因之在过冷却度很小时亦能局部地成核。
在单位时间内,单位体积中所形成的核的数目称成核速度。它决定于物质的过饱和度或过冷却度。过饱和度和过冷却度越高,成核速度越大。成核速度还与介质的粘度有关,轮度大会阻碍物质的扩散,降低成核速度. 晶核形成后,将进一步成长。下面介绍关于晶体生长的两种主要的理论。
一、层生长理论
科塞尔(Kossel,1927)首先提出,后经斯特兰斯基(Stranski)加以发展的晶体的层生长理论亦称为科塞尔—斯特兰斯基理论。
它是论述在晶核的光滑表面上生长一层原子面时,质点在界面上进入晶格"座位"的最佳位置是具有三面凹入角的位置(图I-2-1中k)。质点在此位置上与晶核结合成键放出的能量最大。因为每一个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多,释放出能量最大的位置。图I一2—1示质点在生长中的晶体表面上所可能有的各种生长位置:
k为曲折面,具有三面凹人角,是最有利的生长位置;其次是S阶梯面,具有二面凹入角的位置;最不利的生长位置是A。由此可以得出如下的结论即晶体在理想情况下生长时,先长一条行列,然后长相邻的行列。在长满一层面网后,再开始长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体的层生长理论,用它可以解释如下的一些生长现象。
1)晶体常生长成为面平、棱直的多面体形态。
2)在晶体生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状构造(图I-2-2)。它表明晶面是平行向外推移生长的。
3)由于晶面是向外平行推移生长的,所以同种矿物不同晶体上对应晶面间的夹角不变。
4)晶体由小长大,许多晶面向外平行移动的轨迹形成以晶体中心为顶点的锥状体称为生长锥或砂钟状构造(图I-2-3、I-2-4、I-2-5)。在薄片中常常能看到。
然而晶体生长的实际情况要比简单层生长理论复杂得多。往往一次沉淀在一个晶面上的物质层的厚度可达几万或几十万个分子层。同时亦不一定是一层一层地顺序堆积,而是一层尚未长完,又有一个新层开始生长。这样继续生长下去的结果,使晶体表面不平坦,成为阶梯状称为晶面阶梯(图I-2-5)。科塞尔理论虽然有其正确的方面,但实际晶体生长过程并非完全按照二维层生长的机制进行的。因为当晶体的一层面网生长完成之后,再在其上开始生长第二层面网时有很大的困难,其原因是已长好的面网对溶液中质点的引力较小,不易克服质点的热振动使质点就位。因此,在过饱和度或过冷却度较低的情况下,晶的生长就需要用其它的生长机制加以解释。
在晶体生长过程中,不同晶面的相对生长速度如何,在晶体上哪些晶面发育,下面介绍有关这方面的几种主要理论。
一、 布拉维法则
早在1855年,法国结晶学家布拉维(A.Bravis)从晶体具有空间格子构造的几何概念出发,论述了实际晶面与空间格子构造中面网之间的关系,即实际晶体的晶面常常平行网面结点密度最大的面网,这就是布拉维法则。
布拉维的这一结论系根据晶体上不同晶面的相对生长速度与网面上结点的密度成反比的推论引导而出的。所谓晶面生长速度是指单位时间内晶面在其垂直方向上增长的厚度。如图I一2—9所示,晶面AB的网面上结点的密度最大,网面间距也最大,网面对外来质点的引力小,生长速度慢,晶面横向扩展,最终保留在晶体上;CD晶面次之;BC晶面的网面上结点密度最小,网面间距也就小,网面对外来质点引力大,生长速度最快,横向逐渐缩小以致晶面最终消失;因此,实际晶体上的晶面常是网面上结点密度较大的面。
总体看来,布拉维法则阐明了晶面发育的基本规律。但由于当时晶体中质点的具体排列尚属未知,布拉维所依据的仅是由抽象的结点所组成的空间格子,而非真实的晶体结构。因此,在某些情况下可能会与实际情况产生一些偏离。1937年美国结晶学家唐内—哈克(Donnay-Harker)进一步考虑了晶体构造中周期性平移(体现为空间格子)以外的其他对称要素(如螺旋轴、滑移面)对某些方向面网上结点密度的影响,从而扩大了布拉维法则的适用范围。
布拉维法则的另一不足之处是,只考虑了晶体的本身,而忽略了生长晶体的介质条件。
由液相变为固相 由气相变为固相 由固相再结晶为固相
晶体是在物相转变的情况下形成的。物相有三种,即气相、液相和固相。只有晶体才是真正的固体。由气相、液相转变成固相时形成晶体,固相之间也可以直接产生转变。
由液相变为固相
(1)从熔体中结晶 当温度低于熔点时,晶体开始析出,也就是说,只有当熔体过冷却时晶体才能发生。如水在温度低于零摄氏度时结晶成冰;金属熔体冷却到熔点以下结晶成金属晶体。
(2)从溶液中结晶 当溶液达到过饱和时,才能析出晶体。其方式有:
1)温度降低,如岩浆期后的热液越远离岩浆源则温度将渐次降低,各种矿物晶体陆续析出; 2)水分蒸发,如天然盐湖卤水蒸发, 3)通过化学反应,生成难溶物质。
决定晶体生长的形态,内因是基本的,而生成时所处的外界环境对晶体形态的影响也很大。同一种晶体在不同的条件生长时,晶体形态是可能有所差别的。现就影响晶体生长的几种主要的外部因素分述如下。
涡流 温度 杂质 粘度 结晶速度
影响晶体生长的外部因素还有很多,如晶体析出的先后次序也影响晶体形态,先析出者有较多自由空间,晶形完整,成自形晶;较后生长的则形成半自形晶或他形晶。同一种矿物的天然晶体于不同的地质条件下形成时,在形态上、物理性质上部可能显示不同的特征,这些特征标志着晶体的生长环境,称为标型特征。
1.晶体的溶解
把晶体置于不饱和溶液中晶体就开始镕解。由于角顶和棱与溶剂接触的机会多,所以这些地方溶解得快些,因而晶体可溶成近似球状。如明矾的八面体溶解后成近于球形的八面体(图I一2—14)。
晶面溶解时,将首先在一些薄弱地方溶解出小凹坑,称为蚀像。经在镜下观察,这些蚀象是由各种次生小晶面组成。图I一2—15表示方解石与白云石(b)晶体上的蚀像。不同网面密度的晶面溶解时,网面密度大的晶面先溶解,因为网面密度大的晶面团面间距大,容易破坏。
2.晶体的再生
破坏了的和溶解了的晶体处于合适的环境又可恢复多面体形态,称为晶体的再生(图I一2—16),如班岩中石英颗粒的再生(图I一2—17)。
溶解和再生不是简单的相反的现象。晶体溶解时,溶解速度是随方向逐渐变化的,因而晶体溶解可形成近于球形;晶体再生时,生长速度随方向的改变而突变,因之晶体又可以恢复成几何多面体形态。
晶体在自然界的生长往往不是直线型进行的,溶解和再生在自然界常交替出现,使晶体表面呈复杂的形态。如在晶体上生成一些窄小的晶面,或者在晶面上生成一些特殊的突起和花纹。
人工合成晶体
对天然矿物晶体生长的研究有助于了解矿物、岩石、地质体的形成及发展历史,并为矿物资源的开发和利用提供一些有益的启发性资料。人工合成品体则不仅可以模拟和解释天然矿物的形成条件,更重要的是能够提供现代科学校术所急需的晶体材料。
近年来人工合成晶体实验技术迅速发展,成功地合成了大量重要的晶体材料,如激光材料、半导体材料、磁性材料、人造宝石以及其它多种现代科技所要求的具有特种功能的晶体材料。当前人工合成晶体已成为工业主要文柱的材料科学的一个重要组成部分。
人工合成晶体的主要途径是从溶液中培养和在高温高压下通过同质多像的转变来制备(如用石墨制备金刚石)等。具体方法很多,下面简要介绍几种最常用的方法。
(1)水热法 这是一种在高温高压下从过饱和热水溶液中培养晶体的方法。用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱石(祖母绿、海蓝宝石)、石榴子石及其它多种硅酸盐和钨酸盐等上百种晶体。
晶体的培养是在高压釜(图I一2—18)内进行的。高压釜由耐高温高压和耐酸碱的特种钢材制成。上部为结晶区,悬挂有籽晶;下部为溶解区,放置培养晶体的原料,釜内填装溶剂介质。由于结晶区与溶解区之间有温度差(如培养水晶,结晶区为330-350℃,溶解区为360-380℃)而产生对流,将高温的饱和溶液带至低温的结晶区形成过饱和析出溶质使籽晶生长。温度降低并已析出了部分溶质的溶液又流向下部,溶解培养料,如此循环往复,使籽晶得以连续不断地长大。
(2)提拉法 这是一种直接从熔体中拉出单晶的方法。其设备如图I一2—19所示。熔体置柑塌中,籽晶固定于可以旋转和升降的提拉杆上。降低提拉杆,将籽晶插入熔体,调节温度使籽晶生长。提升提拉杆,使晶体一面生长,一面被慢慢地拉出来。这是从熔体中生长晶体常用的方法。用此法可以拉出多种晶体,如单晶硅、白钨矿、钇铝榴石和均匀透明的红宝石等。
(3)焰熔法 这是一种用氢氧火焰熔化粉料并使之结晶的方法。图I-2-20为此法的示意图。小锤1敲打装有粉料的料筒2,粉料受振动经筛网3而落下,氧经入口4进入将粉料下送,5是氢的入口,氢和氧在喷口6处混合燃烧,粉料经火焰的高温而熔化并落于结晶杆7上,控制杆端的温度,使落于杆端的熔层逐渐结晶。为使晶体生长有一定长度,可使结晶杆逐渐下移。用这种方法成功地合成了如红宝石、蓝宝石、尖晶石、金红石、钛酸锶、钇铝榴石等多种晶体。
“你专业吗?有奖征答”的活动组织者,你们有没有守信用的必要呢?
专搜自以为网友都是他的施舍对象,根本不会在乎网友的意见.
一、首页的公告可以随意修改,
(规则修改不作任何说明,只为对自己随意糊弄网友有利,最后改来改去,造成公告前后矛盾,漏洞百出,网友也无所适从。)
二、发布的信息可以当笑话一样不执行,
(活动第二阶段的日期:日—3月25日,到今天也没有一个为何不开始的说明,诚恳,守信对他们来说就是一个游戏.用来戏弄网友)
三、“你专业吗?有奖征答”在第一阶段活动中做的一些不光彩的事怎么处理呢?
比如被网友指出错误拒不改正
比如采纳回答的不公正
比如偷偷摸摸修改规则 糊弄网友
比如说内部人员中奖
比如说奖品名不符实,金额虚夸
四、爱问大大小小的活动搞过无数,网友的参与都积极踊跃,非常成功,为何“专搜”的活动为如此凄凉,连被看作一场游戏都没有几个人参与,可见这游戏的组织者是失败的。
综上所述,失信------是根源。
www.受苦网.com
您的举报已经提交成功,我们将尽快处理,谢谢!
晶体产品的粒度及其分布,主要取决于晶核生成速率(单位时间内单位体积溶液中产生的晶核数)、晶体生长速率(单位时间内晶体某线性尺寸的增加量)及晶体在结晶器中的平均停...
溶液结晶常用的方法有:冷却结晶、蒸发结晶、真空冷却结晶、盐析和溶析结晶、反应结晶等。
(1) 冷却结晶。是指基本上不除去溶剂,而是使溶液冷却成为过饱和溶液而结晶...
结晶过程要考虑的因素很多,像溶剂的选择(单一或复合)、结晶温度,搅拌速度,搅拌方式,过饱和度的选择,养晶的时间,溶媒滴加的方式和速率等等,另外,在溶解、...
食盐颗粒会变成一个立方体
因为溶液已经饱和,所以食盐颗粒不会溶解掉,但会一部分溶解,一部分重新析出,最终形成一个立方体
答: 铬元素也是一种活性很强的物质,它能促进葡萄糖的吸收并在乳房等部位转化为脂肪,促使乳房的丰满、臀部的圆润
大家还关注}

我要回帖

更多关于 细化奥氏体晶粒的方法 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信