gps定位需要实时连接gps车辆卫星定位系统吗

>>>>>>本页
浅谈GPS实时动态定位原理及应用
■ 大庆无线电监测站 李庆龙
介绍了 GPS RTK的工作原理和RTK系统的组成,并阐述了流动站工作范围与RTK定位精度的关系,对RTK的初始化过程、RTK相对于静态定位增加的设备及应用、基准站与流动站信号传输过程作了
详细的说明。最后阐述了VRS的系统构成及工作原理以及VRS的优越性。
关键词:RTK&VRS&基准站 流动站 数据链路电台
随着我国经济的高速发展,为了满足工程施工、测绘等工作的需要,采用GPS实时动态定位技术的测绘系统逐步进入我国市场。采用传统 GPS RTK(Real-Time-Kinematic)技术的测绘系统的数据链路电台,必须经过无线电管理部门批准才可设置使用,但在此前的几起此类设备所造成的无线电干扰案例中,所查获的无线电台均未向无线电管理部门申报。目前这类设备使用时所造成的无线电干扰越来越多,因此无线电管理部门应该加强对这类设备的管理。而增加对GPS RTK技术的了解和认识,将会对查处工作及无线电管理工作大有帮助。
1 RTK 概述
RTK(Real-Time-Kinematic)技术是GPS实时载波相位差分的简称。这是一种将GPS与数传技术相结合,实时解算并进行数据处理,在1~2秒时间内得到高精度位置信息的技术。
1.1 RTK的工作原理
RTK的工作原理是将一台接收机置于基准站上,另一台或几台接收机置于载体(称为流动站)上,基准站和流动站同时接收同一时间、同一GPS卫星发射的信号,基准站所获得的观测值与已知位置信息进行比较,得到GPS差分改正值。然后将这个改正值通过无线电数据链电台及时传递给共视卫星的流动站精化其GPS观测值,从而得到经差分改正后流动站较准确的实时位置。
精密GPS定位均采用相对技术。无论是在几点间进行同步观测的后处理(RTK),还是从基准站将改正值传输给流动站(DGPS),这些都称为相对技术,以采用值的类型为依据可分为4类:
(1)实时差分GPS,其精度为1m~3m;
(2)广域实时差分GPS,其精度为1m~2m;
(3)精密时差分GPS,其精度为1cm~5cm;
(4)实时精密时差分GPS,其精度为1cm~3cm。
差分的数据类型有伪距差分、坐标差分和相位差分三类。前两类定位误差的相关性,会随基准站与流动站的空间距离的增加而迅速降低。故RTK采用第三类方法。
RTK的观测模型为:
因轨道误差、钟差、电离层折射及对流层折射的影响在实际的数据处理中一般采用双差观测值方程来解算,在定位前需确定整周未知数,这一过程称为动态定位的“初始化”(On The Fly即OTF)。实现OTF的方法有很多种,美国天宝导航有限公司的做法是:采用伪距和相位相结合的方法,首先用伪距求出整周未知数的搜索范围,再用相位组合和后继观测历元解算和精化;利用伪距估计初始位置和搜索空间,快速确定精确的初始位置。
1.2 RTK的系统组成
我们以美国天宝导航有限公司生产的4800GPS双频接收机为例介绍RTK系统组成。
天宝RTK系统由两部分组成,如图1所示。
图1 天宝RTK系统组成
2 RTK系统基准站的组成和作用
RTK系统基准站由基准站GPS接收机及卫星接收天线、无线电数据链电台及发射天线、直流电源等组成,如图2所示。
RTK系统基准站的作用是求出GPS实时相位差分改正值,然后将改正值通过数传电台及时传递给流动站以精化其GPS观测值,进而得到更为精确的实时位置信息。
图2 RTK系统基准站的组成
GPS-RTK作业能否顺利进行,关键因素是无线电数据链的稳定性和作用距离是否满足要求。它与无线电数据链电台本身的性能、发射天线类型、参考站的选址、设备架设情况以及无线电电磁环境等有关。
一般数据链电台采用400MHz~480MHz高频载波发送数据,而高频无线电信号是沿直线传播的,这就要求参考站发射天线和流动站接收天线之间没有遮挡信号的障碍物。这些障碍物在陆地上主要是建筑物、无线电信号发射台等,在海上则主要是地球曲率的影响。
为了尽量避免参考站设备之间的干扰,在GPS-RTK作业时,大于25W的数据链电台的发射天线,应距离GPS接收天线至少2m,最好在6m以上;发射天线与电台的连接电缆必须展开,以免形成新的干扰源。
电台所使用的频率和电台功率必须经过国家和当地无线电管理部门批准,使用时可能会受到某些限制。
RTK数据链无线电发射机(TRIMMRKⅡ)的工作频率为UHF频段(400MHz~480MHz),当功率一定时,发射距离随天线高度增加而增加,如下式所示:
发射距离(半径) (2)。
式中:4.24 ――天宝公司的经验值;
H1 ――电台的天线高度;
H2 ――流动站的天线高度。
我们通过举例来说明流动站工作范围的计算过程。
例:天宝4800GPS接收机使用的TRIMMRKⅡ无线电数据链电台发射功率为25W,电台天线高度为9m,流动站的天线高度为2m,试计算流动站工作的最远距离?
解:已知H1=9m,H2=2m,流动站在开阔地带工作的最远距离为:
发射距离(半径)。
需要指出的是,该距离是在无任何遮挡物的空旷地带的理论值。根据经验,在城市环境中,只有架设在高楼顶上,无线电数据链电台发射距离才可能达到10公里。
无线电数据链电台发射功率为25W,其耗电量大,因而直流电源的电流应大一些,一般选择12V/60A或12V/120A为宜。
3 RTK流动站的组成和作用
流动站的UHF电台接收基准站的信号,同时也接收相同的卫星信号,用配备的TSC1控制器进行实时解算。
流动站数据链电台的功率为2W,其电源和卫星接收机共用,不需另配电池。
基准站GPS接收机与TRIMMRKⅡ电台之间的数据传输波特率为38400,TRIMMRKⅡ电台与流动站GPS接收机之间的数据传输波特率为4800,流动站中的UHF数据链电台与流动站GPS接收机之间的数据传输波特率为38400(见图3)。
图3 RTK系统流动站的组成
为了保证流动站的测量精度和可靠性,应在整个测区选择高精度的控制点进行检测校对。选择的控制点应有代表性,并均匀地分布在整个测量区。
(1)若基准站安置在已知点上,则输入已知点的坐标,进行坐标的转换(WGS―84转换成BJ54或其他坐标系)。
(2)若基准站安置在未知点上,(在城市测量中,有时为了控制更远和更大的范围,根据RTK的特点,可将基准站架设在没有控制点的高楼顶上),在启动基准站时,则需输入该点的WGS―84坐标,进行坐标的转换(WGS―84转换成BJ54或其他坐标系)。
求得WGS―84坐标的方法是:开机后,在TSC1控制器上进行初始化操作,然后按here键即可求得该点的WGS―84坐标。
(3)虽然RTK定位测量的基准站可以不放在已知点上,但测量区内必须有已知控制点,而且定位测量的精度和已知控制点的等级和个数有关。在放置好基准站并启动流动站后,用流动站分别到已知点上进行定位测量,以求得该点坐标,然后与该点的原有坐标相比较,求出其差值,若差值很小(根据工程性质定),则不需改正,否则,必须输入该点的原有坐标。
4 RTK定位测量的准备工作
RTK定位测量的准备过程如下:
(1)外业踏勘。
(2)收集资料。
(3)制订观测计划。
(4)星历预报。
(5)器材准备:经检定合格的GPS接收机[基准站+流动站(含TSC1)]一套;12V/60A电源(含充电器),数据链电台一套;手机或对讲机(每台GPS接收机上配一个);每台GPS接收机配观测记录手簿一本。
(6)运输工具:自备汽车或租车。
5 RTK的作业方法
5.1 架设基准站
将基准站GPS接收机安置在开阔的地方,架设电台和天线。
启动基准站,在TSC1控制器中进行如下操作:
按on/off键,打开TSC1控制器,则其自动调用主菜单。
选择Files(文件)来建立新工程如下:
(1)建立新工程:给工程起一个文件名。
(2)选择工程管理(Job management)并确认。
(3)在选择坐标系统窗口中选用手工键入参数(Key in parameter)。
(4)在键入参数窗口中设置投影参数(Projection)。
(5)在输入椭球参数窗口中选择:
①投影方式――Transverce Mercator(横轴墨卡托投影)。
②False northing(北偏)――0.000m (北偏为0)。
③False easting(东偏)――m (东偏500km)。
④origin lat(纬度)――0°00′00.0000N。
⑤central meridian――114°00′00.0000E(当地中央子午线经度)。
⑥scale(尺度比)――1.000000。
⑦semi-major axis――m(BJ54椭球长半轴)。
⑧Flattening(扁率分母)――298.300000。
若在同一测区,椭球参数只需输入一次即可,如再进入其他测区,则需重新输入其他测区的椭球参数。
(6)在键入参数窗口中选择输入转换参数,有以下三种情况:
①No transformation(没有转换参数)――若基准站没有WGS-84或BJ-54坐标,则选此项。
②Three parameter(三参数)――若基准站有BJ-54坐标,则选此项,此时将测区的参数输入即可,也可输入0。
③Seven parameter(七参数)――一般不考虑。
到此,一个新工程项目建立完成。
5.2 启动基准站
点击TSC1控制器Survey(测量)图标,进入测量方式菜单。
(1)在(Survey Styles)测量工作方式菜单中选Trimble RTK(实时动态)。
(2)在(Survey)测量菜单中选Start base receiver(启动基准站)。
(3)显示连接接收机后,输入基准站所在控制点的名称、天线高度。若控制器已储存该点的坐标可直接按Start(F1键);若控制器没有该点坐标信息,则按here(F3键)求得该点的WGS-84坐标(伪距),然后按回车键直到高程变化趋于稳定,然后按Start(F1键)即可。
当提示控制器可以离开接收机,即表示基准站已启动,可以将基准站接收机上的电缆插头拔下(可带电插拔)。但此时控制器并不显示电台的标志,只有启动流动站后才会显出电台标志。
5.3 启动流动站
将TSC1控制器上的电缆插头插入流动站GPS接收机,在(Survey)测量菜单中选Start Survey(开始测量),此时在TSC1控制器的窗口下部即显示如图4所示画面。
图4 TSC1控制器显示的有关图标
图4中,4800表示TSC1控制器所连接的GPS接收机型号;卫星图标中的“5”表示搜索到的卫星颗数,RTK测量时不能少于5颗;电台图标中若两个小灯交替闪亮,则表明无线电数据链已连接;“H”和“V”分别代表水平和高程精度;“PDOP”代表空间位置精度因子值;当RTK=FIXED(固定解)时,初始化完毕,可以开始测量;当RTK=float(浮点解)时,初始化不成功,必须等RTK=FIXED 时方可测量。
5.4 开始测量
RTK测量一般有以下几步操作:
(1)测量点(Measure points)。
(2)连续的碎部点的采集(Continuous top)。
(3)输入方位、距离、计算不可到达的点位(Offsets)。
(4)放样(Stakeout)。
6 GPS网络RTK技术(VRS系统)
(1)GPS实时差分定位RTK技术的缺点
①用户需要架设本地参考站。
②误差随距离的增加而增长。
③误差增长使流动站和参考站的距离受到限制,一般小于15公里。
④精度为1cm+1ppm,可靠性随距离增大而降低。
(2)虚拟参考站方案中VRS的特点与技术优势
虚拟参考站方案中,VRS的实施将使一个地区的测绘工作成为一个有机的整体,这改变了以往GPS作业“单打独斗”的局面,同时它使GPS技术的应用更为广泛,使其精度和可靠性得到进一步提高,最重要的是建立GPS网络的成本降低了很多。
由于VRS技术的种种先进性,一经问世就受到世界各国的广泛关注,并得到积极的实施。德国、瑞士等一些国家的VRS网络已经建成。我国深圳市第一个建成了VRS技术卫星定位服务系统,在深圳经济发展、城市信息化和数字化发挥着重要作用。
6.2 VRS系统的构成与工作原理
VRS系统集GPS、Internet、无线通信和计算机网络管理技术于一身。整个系统由若干个(三个以上)连续运行的GPS基准站和一个GPS网络控制中心构成。
(1)VRS的系统构成
VRS的系统构成由GPS固定基准站系统、数据传输系统、GPS网络控制中心系统、数据发播系统和用户系统等五部分组成。
(2)VRS的工作原理
一个VRS网络由三个以上的固定基准站组成,站与站之间的距离可达70km,固定基准站负责实时采集GPS卫星观测数据并传送给GPS网络控制中心,由于这些固定基准站有长时间的观测数据,故点位坐标精度很高。固定基准站与控制中心之间可通过光缆、ISDN或普通电话线相连,将数据实时传送到控制中心。
GPS流动站先向控制中心发送标准的NMEA位置信息,告之其概略位置,控制中心收到信息后重新计算所有GPS数据,内插到与流动站相匹配的位置,再向流动站发送改正过的RTCM信息。流动站可位于VRS网络中的任何位置,这样RTK的系统误差就将被消减。可以看出,VRS系统实际上是一种多基站技术,它在处理上利用了多个参考站的联合数据。
6.3 VRS系统的优势
(1)VRS系统的覆盖范围较大。
(2)相对传统RTK,提高了精度。
(3)可靠性提高。
(4)更广的应用范围。
VRS技术的出现,标志着高精度GPS进入了一个新的发展阶段。这种网络RTK技术,应用了最先进的多基站RTK算法,极大地扩展了GPS的应用领域。
本文简要介绍了 RTK GPS技术的原理和应用,这将使我们更加地容易对这类系统进行识别与管理。以美国天宝公司为例,关于陆地测绘的产品型号有:Trimble R3 GPS、Trimble
GPS、Trimble R7/R8 /R8 GNSS GPS、Trimble NetRS/NetR5 GPS等。我们需要区分出采用传统GPS RTK技术并且只能采用无线电台选件,用于基准站与流动站之间改正信息的传输的产品,此类产品型号有:R3、5700、R7。既可采用无线电台选件也可采用GSM/GPRS选件的产品型号有:5800、R8、R8 GNSS。采用GPS网络RTK技术(VRS系统)的产品型号有:NetRS、NetR5。
凡是采用传统 RTK GPS技术的测绘系统的数据链路电台的设置必须经过无线电管理部门的审批管理。这类设备的出现对无线电管理部门也提出了许多需要解决的问题。
(1)需要与海关等部门协调,严把进口关,严禁没有无线电发射设备核准证的电台入关。
(2)对此类无线电台使用频率的指配和协调问题,无线电管理部门需要通过与国家规划、测绘等部门协商解决。此类频率指配工作还需要考虑跨省市作业及设备通用性问题。
(3)此类设备必须实行严格的登记制度,因为相关测绘资料属国家机密资料,涉及国家安全问题。
【相关报道】
?(07-30 14:47)&&& ?(07-13 10:54)&&& ?(07-06 09:07)(中国无线电)
 论坛精华
 精彩博文
| 版权所有,人民邮电报社 服务电话:(010)963009 E-mail:义项指多义词的不同概念,如的义项:网球运动员、歌手等;的义项:冯小刚执导电影、江苏卫视交友节目等。
所属类别 :
GPS(Global Positioning System)即全球,是美国研制的卫星导航定位系统,今采用坐标系统。因地球在天球空间中的位置是不稳定的,故协议用wgs84某一刻的点指向位置
外文名称 Global Positioning System
  GPS(Global Positioning System)即全球定位系统,是美国研制的卫星导航定位系统,今采用wgs84坐标系统。因地球在天球空间中的位置是不稳定的,故协议用wgs84某一可的北极点指向位置
GPS是英文Global Positioning System(全球定位系统)的简称。GPS起始于1958年美国军方的一个项目,1964年投入使用。20世纪70年代,美国陆海空三军联合研制了新一代系统GPS。主要目的是为陆海空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,经过20余年的研究实验,耗资300亿美元,到1994年,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。在机械领域GPS则有另外一种含义:产品几何技术规范(Geometrical Product Specifications)-简称。另外一种解释为G/s(GB per s)
GPS系统的前身是美军研制的一种子午仪(Transit),1958年研制,1964年正式投入使用。该系统用5到6颗卫星组成的星网工作,每天最多绕过地球13次,并且无法给出高度信息,在定位精度方面也不尽如人意。然而,子午仪系统使得研发部门对卫星定位取得了初步的经验,并验证了由卫星系统进行定位的可行性,为GPS系统的研制埋下了铺垫。由于卫星定位显示出在导航方面的巨大优越性及子午仪系统存在对潜艇和舰船导航方面的巨大缺陷。美国海陆空三军及民用部门都感到迫切需要一种新的卫星导航系统。为此,研究实验室(NRL)提出了名为Tinmation的用12到18颗卫星组成10000km高度的全球定位网计划,并于67年、69年和74年各发射了一颗试验卫星,在这些卫星上初步试验了原子钟计时系统,这是GPS系统精确定位的基础。而美国空军则提出了621-B的以每星群4到5颗卫星组成3至4个星群的计划,这些卫星中除1颗采用同步轨道外其余的都使用周期为24h的倾斜轨道,该计划以伪随机码(PRN)为基础传播卫星测距信号,其强大的功能,当信号密度低于环境噪声的1%时也能将其检测出来。伪随机码的成功运用是GPS系统得以取得成功的一个重要基础。海军的计划主要用于为舰船提供低动态的2维定位,空军的计划能供提供高动态服务,然而系统过于复杂。由于同时研制两个系统会造成巨大的费用而且这里两个计划都是为了提供全球定位而设计的,所以1973年美国国防部将2者合二为一,并由国防部牵头的卫星导航定位联合计划局(JPO)领导,还将办事机构设立在洛杉矶的空军航天处。该机构成员众多,包括美国陆军、海军、、交通部、国防制图局、北约和澳大利亚的代表。
GPS(Global Positioning System)即全球定位系统,是由美国建立的一个卫星导航定位系统,利用该系统,用户可以在全球范围内实现全天候、连续、实时的三维导航定位和测速;另外,利用该系统,用户还能够进行高精度的时间传递和高精度的精密定位。例举 “星眼”GPS定位终端,携诚科技。现实生活中,GPS定位主要用于用于对移动的人、宠物、车及设备进行远程实时定位监控的一门技术。GPS定位(以上海市连图信息科技GPS车载终端设备为例)是结合了GPS技术、无线通信技术(GSM/GPRS/CDMA)、图像处理技术及GIS技术的定位技术,主要可实现如下功能:1.跟踪定位监控中心能全天侯24小时监控所有被控车辆的实时位置、行驶方向、行驶速度,以便最及时的掌握车辆的状况。2.轨迹回放监控中心能随时回放近60天内的时段车辆历史行程、轨迹记录。(根据情况,可选配轨迹DVD刻录服务)3.报警(报告)3.1,超速报警:车辆行驶速度超出监控中心预设的速度时,及时上报监控中心3.2,区域报警():监控中心设定区域范围,车辆超出或驶入预设的区域会向监控调度中心给出相应的报警3.3,停车报告:调度中心可对车辆的历史停车记录以文字形式生成报表,其中描述车辆的停车地点、时间和开车时间等信息,并可对其进行打印。3.4,应急报警: 一旦遇有紧急险情(如遭劫等),请马上按动应急报警按钮,向监管中心报警,监管中心即刻会知道您处于紧急状态以及您所在的位置。经核实后,进入警情处置程序,助您脱险。(注:一旦应急报警按钮启动,此设备会立即关闭通话功能,但短信功能正常)3.5,欠压报警,当电压过低时,车载主机会自动向监控中心报警,由监控中心值班员提醒用户及时给车辆充电。3.6,剪线报警,车辆主电瓶被破坏后或不能供电时,内置备用电池可维持产品继续工作,并向监控中心发送剪线报警。4.地图制作功能根据查看需要,客户可以添加修改自定义地图线路,以更好服务企业运行5.里程统计系统利用GPS车载终端的行驶记录功能和GIS地理系统原理对车辆进行行驶里程统计,并可生成报表且可打印。6.车辆信息管理方便易用的管理平台,提供了车辆、驾驶人员、车辆图片等信息的设定,以方便调度人员的工作。7.短信通知功能将被控车辆的各种报警或状态信息在必要时发送到管理者手机上,以便随时随地掌握车辆重要状态信息。8.车辆远程控制监控中心可随时对车辆进行远程断油断电,锁车功能。9.车载电话可以象普通手机一样拔打电话,调度中心可对此电话进行远程权限设置,即呼入限制、呼出限制、只能呼叫指定的若干电话号码。10.油耗检测车辆的油耗变化,并生成历史时段油量变化报表或油量曲线图,进而直观反映出油量的正常消耗与非正常消耗及加油数量不足等现象,达到油耗高水平管理,杜绝不良事件的发生。(需搭配油量传感器)11.车辆调度调度人员确定调度车辆或者在地图上画定调度范围,GPS系统自动向车辆或者画定范围内的所有车辆发出调度命令,被调度车辆及时回应调度中心,以确定调度命令的执行情况。GPS系统还可对每辆车成功调度次数进行月统计。智能自检车载终端可以进行自我诊断,一旦发生故障,就会向中心发出故障通知,方便工作人员维修,确保设备正常工作。GPS计划始于1973年 ,已于1994年进入完全运行状态。GPS的整个系统由空间部分、地面控制部分和用户部分所组成:空间部分(太空部分)GPS的空间部分是由24颗GPS工作所组成,这些GPS工作卫星共同组成了GPS卫星星座,其中21颗为可用于导航的卫星,3颗为活动的备用卫星。这24颗卫星分布在6个倾角为55°的轨道上绕地球运行。卫星的运行周期约为12恒星时。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行工作的。控制部分GPS的控制部分由分布在全球的由若干个跟踪站所组成的所构成,根据其作用的不同,这些跟踪站又被分为主控站、监控站和注入站。主控站有一个,位于美国克罗拉多(Colorado)的法尔孔(Falcon)空军基地,它的作用是根据各监控站对GPS的观测数据,计算出卫星的星历和卫星钟的改正参数等,并将这些数据通过注入站注入到卫星中去;同时,它还对卫星进行控制,向卫星发布指令,当工作卫星出现故障时,调度备用卫星,替代失效的工作卫星工作;另外,主控站也具有监控站的功能。监控站有五个,除了主控站外,其它四个分别位于夏威夷(Hawaii)、阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),监控站的作用是接收卫星信号,监测卫星的工作状态;注入站有三个,它们分别位于阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),注入站的作用是将主控站计算出的卫星星历和卫星钟的改正数等注入到卫星中去。用户部分(地面接收)GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。它的作用是接收GPS卫星所发出的信号,利用这些信号进行导航定位等工作。 以上这三个部分共同组成了一个完整的GPS系统。
GPS的信号GPS卫星发射两种频率的载波信号,即频率为1575.42MHz的L1载波和频率为1227.60MHz的L2载波,它们的频率分别是基本频率10.23MHz的154倍和120倍,它们的波长分别为19.03cm和24.42cm。在L1和L2上又分别调制着多种信号,这些信号主要有:C/A码C/A码又被称为粗捕获码,它被调制在L1载波上,是1MHz的伪随机噪声码(PRN码),其码长为1023位(周期为1ms)。由于每颗卫星的C/A码都不一样,因此,我们经常用它们的PRN号来区分它们。C/A码是普通用户用以测定测站到卫星间的距离的一种主要的信号。P码P码又被称为精码,它被调制在L1和L2载波上,是10MHz的伪随机噪声码,其周期为七天。在实施AS时,P码与W码进行模二相加生成保密的Y码,此时,一般用户无法利用P码来进行导航定位。Y码见P码。导航信息导航信息被调制在L1载波上,其信号频率为50Hz,包含有GPS卫星的轨道参数、卫星钟改正数和其它一些系统参数。用户一般需要利用此导航信息来计算某一时刻GPS卫星在地球轨道上的位置,导航信息也被称为广播星历。SPS和PPS是GPS系统针对不同用户提供两种不同类型的服务。一种是标准定位服务(SPSStandard Positioning Service),另一种是精密定位服务(PPSPrecision Positioning Service)。这两种不同类型的服务分别由两种不同的子系统提供,标准定位服务由标准定位子系统(SPSStandard Positioning System)提供,精密定位服务则由精密定位子系统(PPSPrecision Positioning System)提供。SPS主要面向全世界的民用用户。PPS主要面向美国及其盟国的军事部门以及民用的特许用户。在GPS定位中,经常采用下列观测值中的一种或几种进行数据处理,以确定出待定点的坐标或待定点之间的基线向量:L1载波相位观测值L2载波相位观测值(半波或全波)调制在L1上的C/A码伪距调制在L1上的P码伪距调制在L2上的P码伪距L1上的多普勒频移L2上的多普勒频移实际上,在进行GPS定位时,除了大量地使用上面的观测值进行数据处理以外,还经常使用由上面的观测值通过某些组合而形成的一些特殊观测值,如宽巷观测值(Wide-Lane)、窄巷观测值(Narrow-Lane)、消除电离层延迟的观测值(Ion-Free)来进行数据处理。
GPS的误差我们在利用GPS进行定位时,会受到各种各样因素的影响。影响GPS定位精度的因素可分为以下四大类:GPS卫星相关因素SA美国政府从其出发,通过降低广播星历精度( 技术)、在GPS基准信号中加入高频抖动( 技术)等方法,人为降低普通用户利用GPS进行导航定位时的精度。卫星星历误差在进行GPS定位时,计算在某时刻GPS卫星位置所需的卫星轨道参数是通过各种类型的星历[7]提供的,但不论采用哪种类型的星历,所计算出的卫星位置都会与其真实位置有所差异,这就是所谓的星历误差。卫星钟差卫星钟差是GPS卫星上所安装的原子钟的钟面时与GPS标准时间之间的误差。卫星信号发射天线相位中心偏差卫星信号发射天线相位中心偏差是GPS卫星上信号发射天线的标称相位中心与其真实相位中心之间的差异。
GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。如图所示,假设t时刻在地面待测点上安置GPS接收机,可以测定GPS信号到达接收机的时间△t,再加上接收机所接收到的卫星星历等其它数据可以确定以下四个方程式:上述四个方程式中待测点坐标x、 y、 z 和Vto为未知参数,其中di=c△ti (i=1、2、3、4)。di (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4到接收机之间的距离。△ti (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的信号到达接收机所经历的时间。c为GPS信号的传播速度(即光速)。四个方程式中各个参数意义如下:x、y、z 为待测点坐标的空间直角坐标。xi 、yi 、zi (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4在t时刻的空间直角坐标,可由卫星导航电文求得。Vt i (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的卫星钟的钟差,由卫星星历提供。Vto为接收机的钟差。由以上四个方程即可解算出待测点的坐标x、y、z 和接收机的钟差Vto 。事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,以及人为的SA保护政策,使得民用GPS的定位精度只有100米。为提高定位精度,普遍采用差分GPS(DGPS)技术,建立基准站(差分台)进行GPS观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差分GPS,定位精度可提高到5米。车用导航系统主要由导航主机和导航显示终端两部分构成。内置的GPS天线会接收到来自环绕地球的24颗GPS卫星中的至少3颗所传递的数据信息,由此测定汽车当前所处的位置。导航主机通过GPS卫星信号确定的位置坐标与数据相匹配,便可确定汽车在电子地图中的准确位置。在此基础上,将会实现行车导航、路线推荐、信息查询、播放AV/TV等多种功能。驾驶者只须通过观看显示器上的画面、收听语音提示,操纵手中的遥控器即可实现上述功能,从而轻松自如地驾车。编辑本段定位方法GPS定位的方法是多种多样的,用户可以根据不同的用途采用不同的定位方法。GPS定位方法可依据不同的分类标准,作如下划分:观测值伪距定位伪距定位所采用的观测值为GPS伪距观测值,所采用的伪距观测值既可以是C/A码伪距,也可以是P码伪距。伪距定位的优点是数据处理简单,对定位条件的要求低,不存在整周模糊度的问题,可以非常容易地实现实时定位;其缺点是观测值精度低,C/A 码伪距观测值的精度一般为3米,而P码伪距观测值的精度一般也在30个厘米左右,从而导致定位成果精度低,另外,若采用精度较高的P码伪距观测值,还存在AS的问题。载波相位定位载波相位定位所采用的观测值为GPS的载波相位观测值,即L1、L2或它们的某种线性组合。载波相位定位的优点是观测值的精度高,一般优于2个毫米;其缺点是数据处理过程复杂,存在整周模糊度的问题。定位模式绝对定位绝对定位又称为单点定位,这是一种采用一台接收机进行定位的模式,它所确定的是接收机天线的绝对坐标。这种定位模式的特点是作业方式简单,可以单机作业。绝对定位一般用于导航和精度要求不高的应用中。相对定位相对定位又称为差分定位,这种定位模式采用两台以上的接收机,同时对一组相同的卫星进行观测,以确定接收机天线间的相互位置关系。时间实时定位实时定位是根据接收机观测到的数据,实时地解算出接收机天线所在的位置。非实时定位非实时定位又称后处理定位,它是通过对接收机接收到的数据进行后处理以进行定位得方法。运动状态动态定位所谓动态定位,就是在进行GPS定位时,认为接收机的天线在整个观测过程中的位置是变化的。也就是说,在数据处理时,将接收机天线的位置作为一个随时间的改变而改变的量。动态定位又分为Kinematic和Dynamic两类。静态定位所谓静态定位,就是在进行GPS定位时,认为接收机的天线在整个观测过程中的位置是保持不变的。也就是说,在数据处理时,将接收机天线的位置作为一个不随时间的改变而改变的量。在测量中,静态定位一般用于高精度的测量定位,其具体观测模式多台接收机在不同的测站上进行静止同步观测,时间由几分钟、几小时甚至数十小时不等。编辑本段GPS数据卜默示条件,GPS模块SiRFStarIII接受每二输出位置的数据,通常$GPRMC精简数据格式的数据,包括纬度,经度的目的,速度(结),运动方向角,年,月,时,分,秒,毫秒,定位数据是有效的或无效的,和其他重要信息。语句格式如下:$GPRMC,,,,,,,,,,,,*,HH只需要知道位置信息,所以在阅读唯一的,可以实际应用。1&:当地时间代表UTC。格式“当每分钟,小时,分钟和秒2。2&:工作代表国家。”“显示可用的数据,“V”表示接受警报,没有可用的数据。3&:代表纬度数据。“子级的格式。分分分。”4&:纬度半球为代表的“N”或“S”。5&:代表经度数据。格式和LD现状;度分钟。sub-sub-sub-sub.”6&:代表经度半球,为“E”或“软件读取经纬度数据获取用户位置停止分析,确定用户的具体位置在该地区建立和平。方法是基于用户的设置确定中心的纬度和经度和纬度和经度计算出活动维持当前的对象可以超过和平活动预定半径。结果的基础上的歧视,设置相应的标志。[2]
GPS定位器基本功能1、随时定位:企业管理者可以随时定位下属员工的当前位置地图给出被定位员工所在位置的标点,鼠标移动到标点,系统给出员工名称、定位时间及当前所在位置描述信息。2、轨迹跟踪:只需设定时间段,即可查询某个员工在此时间段内的活动走向和轨迹。系统同样给出每个标点的员工名称、定位时间及当时所在位置描述信。3、:设定时间段,查看所有员工的昨日考勤情况,也可查看某个员工某时间段内的详细考勤列表。详细考勤列表可查看所有标点的定位时间及位置描述信息,并支持excel表格导出,方便企业的。4、系统管理:提供完善的系统设置管理,可对员工信息的进行灵活设置,可对员工进行分组,便于管理,各级用户提供严密的权限控制,保障信息的安全性1)短信发送进入短信中心后,点击“写短信”,选择需要发送的终端名称,填写需要发送的短信内容,并点击“发送”2)接收短信进入短信中心后,点击“收短信”,即可收取短信3)查看收信箱选择需要查看的时间,点击“查询”,即可查看该时间段内收到的所有短信4)查看已发信息选择需要查看的时间,点击“查询”,即可查看该时间段内收到的所有短信GPS定位器扩展功能扩展功能高端技术:基于电子地图和GPS定位技术开发,强大,平台稳定性强,GIS地图引擎,查询速度快定位清晰:向企事业单位提供移动终端定位服务的管理服务平台功能完善:该平台可向用户提供移动终端的即时位置信息,轨迹查询,考勤报表导出等服务效果卓著:帮助企业拓展管理方式,降低管理成本,提高管理效率1、语音播报2、彩信回复3、电子栅栏4、超速报警5、区域报警6、断油断电
卜默示条件,GPS模块SiRFStarIII接受每二输出位置的数据,通常$GPRMC精简数据格式的数据,包括纬度,经度的目的,速度(结),运动方向角,年,月,时,分,秒,毫秒,定位数据是有效的或无效的,和其他重要信息。语句格式如下:$GPRMC,,,,,,,,,,,,*,HH只需要知道位置信息,所以在阅读唯一的,可以实际应用。1&:当地时间代表UTC。格式“当每分钟,小时,分钟和秒2。2&:工作代表国家。”“显示可用的数据,“V”表示接受警报,没有可用的数据。3&:代表纬度数据。“子级的格式。分分分。”4&:纬度半球为代表的“N”或“S”。5&:代表经度数据。格式和LD现状;度分钟。sub-sub-sub-sub.”6&:代表经度半球,为“E”或“软件读取经纬度数据获取用户位置停止分析,确定用户的具体位置在该地区建立和平。方法是基于用户的设置确定中心的纬度和经度和纬度和经度计算出活动维持当前的对象可以超过和平活动预定半径。结果的基础上的歧视,设置相应的标志。
GPS利用全球导航系统,可以通过接收卫星信号来适时确定地面位置。现代科技通过无线网络,将GPS确定的地面位置传递到一些专业的定位平台,物流等行业存在的货物遗失、被盗或发送错误等情况。该定位装置可作为财产跟踪器。使行业用户、个人用户及政府用户实时掌握移动资产的地理信息,全面提高移动资产管理效率和安全监控系数。该跟踪器有助于客户更加有效的利用移动资源进行高效运作,提高企业竞争力,实现客户的利益最大化。功能:超小终端
接线少功能强大
距离感应报警 速度感应报警
实时在线跟踪
断油断电 紧急求助 轨迹回放
超出区域报警
进入区域报警
非法拆卸报警
运动状态数据报表、盲区自动休眠重启、ACC检测、
经纬度速度实时上报
可设置多个电子围栏报警GPS汽车跟踪器平台上标注出当前位置。用户可以用此方法很方便的得到目标的位置。GPS在汽车跟踪器中的应用,已经应用到了生活的方方面面,在警用调查中,GPS汽车跟踪器是决对不可缺少的一部分,警察将GPS定位器放到犯罪分子的行动工具上后,可以在警用监控中心很方便的看到犯罪分子所有的区域和行动路线,达到及时发现犯罪窝点,解决治安隐患。GPS在汽车跟踪中,平台是必不可少的,在国内有很多这样的,里面内置有各种最新的和卫星图片。实时的标注GPS汽车跟踪器上传定位平台的位置信息,让用户一目了然的了解目标的位置。
{{each(i, video) list}}
{{if list.length > 8}}
查看全部 ${list.length} 期节目
{{if _first}}
内容来源于
百科兴趣圈
{{if list && list.length}}
360百科致力于成为最为用户所信赖的专业性百科网站。人人可编辑,让求知更简单。}

我要回帖

更多关于 gps卫星定位 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信