什么是细胞增殖殖与细胞分裂有区别么

细胞增殖和细胞分裂的区别
小白6nRw诉弨
细胞增殖是指细胞数目的增多.细胞分裂是细胞增殖的方式.
为您推荐:
其他类似问题
扫描下载二维码“登中2009”二轮复习?细胞增殖;Ⅰ有丝分裂;一、细胞周期及各时期特征;细胞周期是指连续分裂的细胞,从一次分裂完成时开始;二、动植物细胞有丝分裂的比较;动物细胞的有丝分裂与植物细胞的有丝分裂相比较有相;三、细胞分裂与生物体生长、发育、繁殖、遗传和变异;1、通过细胞分裂能使单细胞生物直接繁殖新个体,使;2、有丝分裂是真核生物进行细胞分裂的主要方式,多;、基因
“登中2009”二轮复习?细胞增殖
Ⅰ 有丝分裂
一、细胞周期及各时期特征
细胞周期是指连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止。一个细胞周期分为细胞分裂间期和细胞分裂期两个时期,分裂期又人为地分为前期、中期、后期和末期。细胞分裂各时期的主要特征见下表。
二、动植物细胞有丝分裂的比较
动物细胞的有丝分裂与植物细胞的有丝分裂相比较有相同的地方,也有不同的地方。相同的地方表现在动植物细胞有丝分裂的实质是一样的,但由于动物细胞与植物细胞在结构上的差异,所以动植物细胞在有丝分裂的形式上有所不同。具体见表:
三、细胞分裂与生物体生长、发育、繁殖、遗传和变异的关系
1、通过细胞分裂能使单细胞生物直接繁殖新个体,使多细胞生物由受精卵发育成新个体,也能使多细胞生物衰老、死亡的细胞及时得到补充。通过细胞分裂,可以将亲代细胞复制的遗传物质,平均分配到两个子细胞中去。因此,细胞分裂是生物体生长、发育和繁殖的基础。
2、有丝分裂是真核生物进行细胞分裂的主要方式,多细胞生物体以有丝分裂方式增加体细胞数目。有丝分裂过程中,在分裂间期,亲代细胞染色体经过复制,经过分裂期一系列变化,精确地平均分配到两个子细胞中去。由于染色体上有遗传物质(DNA
、基因),因而在生物的亲代和子代之间保持了遗传性状的稳定性,对于生物的遗传有重要意义。
3、细胞分裂间期,DNA复制时,由于生物内部因素或外界环境条件的作用,使染色体
第 1 页 共 22 页
上的基因的分子结构发生差错,而导致基因突变,从而导致子代(或子代细胞)发生变异。减数分裂中,同源染色体的交叉和交换、非同源染色体的自由组合、在细胞水平上导致遗传物质的重组,使亲代产生多种类型的配子,从而使后代具有更大的变异性和更强的生活力及适应性。有丝分裂过程中,正常情况下,复制后的染色体平均分配到子细胞中去,但一些外界条件或因素(如秋水仙素),能抑制纺锤体的形成,使细胞有丝分裂过程受阻,结果细胞核中染色体数目加倍,形成多倍体生物,导致生物变异。因此,细胞分裂与生物变异密切相关。
4、细胞有丝分裂中期,细胞中染色体的形态固定、数目清晰,是观察和辨认细胞中染色体形态和数目的最佳时期。而染色体的形态、数目对于鉴别生物种类、了解生物之间的进化关系,以及研究生物的遗传、变异都是不可缺少的基础。
Ⅱ 无丝分裂
无丝分裂:分裂过程是先细胞核延长,从核的中部向内凹进,缢裂成为2个细胞核,整个细胞从中部缢裂成两部分,形成2个子细胞。在整个分裂过程中没有出现纺锤体和染色体的变化。这种分裂方式常出现于高度分化成熟的组织中,如蛙的红细胞的分裂,在某些植物的胚乳中胚乳细胞的分裂等。
无丝分裂在高等生物中主要是高度分化的细胞,如人的肝细胞、肾小管上皮细胞、肾上腺皮质细胞等,蚕的睾丸上皮细胞,植物的表皮、生长点和胚乳等细胞中都曾见到过无丝分裂现象。蛙(两栖类)的红细胞是进行无丝分裂,但不能依次类推,人的红细胞也是无丝分裂。哺乳动物成熟的红细胞已永久失去分裂的能力,哺乳动物的红细胞是通过骨髓中造血干细胞分裂产生的细胞,再分化发育而来的(由造血干细胞依次分化为原始红细胞、幼红细胞、网织红细胞,最后形成为成熟红细胞)。
Ⅲ 减数分裂
一、有性生殖细胞的形成过程
第一次分裂
第 2 页 共 22 页
第二次分裂
二、减数分裂与孟德尔遗传定律
因为基因在染色体上呈线性排列,所以在减数分裂过程中基因随染色体活动也表现出相应规律。
(1)基因分离定律:
同源染色体分离―→等位基因分离
(2)基因自由组合定律:
非同源染色体自由组合―→非同源染色体上的非等位基因自由组合
(3)孟德尔遗传定律发生时间:减数第一次分裂的后期。
三、减数分裂与生物变异
基因突变:通常发生在DNA复制时期,即细胞分裂的间期。
(细胞分裂间期特别容易发生基因突变,但不等于说其它分裂时期的细胞
或者不进行分裂的细胞就没有基因突变的产生。)
(非同源染色体上的非等位基因自由组合)
(四分体时期同源染色
非姐妹染色单体间的遗传物质交叉互换。)
多倍体:发生于有丝分裂前期,
(抑制纺锤体形成,染色体加倍,没有形成两个子细胞。)
染色体结构的变异:一般发生于减数分裂同源染色体联会时期。
(染色体的易位是指一条染色体的某一片段移接
另一条非同源染色体上,即发生在非同源染色体
四、减数分裂各期的染色体、DNA、同源染色体、四分体等数量计算:
1.给出减数分裂某个时期的分裂图,计算该细胞中的各种数目:
(1)染色体的数目=着丝点的数目; (2)DNA数目的计算分两种情况:
①当染色体不含姐妹染色单体时,一个染色体上只含有一个DNA分子; ②当染色体含有姐妹染色单体时,一个染色体上含有两个DNA分子。
(3)同源染色体的对数在减数第一次分裂的间期和减数第一次分裂期为该时期细胞中染色体数目的一半,而在减数第二次分裂期和配子时期由于同源染色体已经分离进入到不同的细胞中,因此该时期细胞中同源染色体的数目为零。
(4)在含有四分体的时期(四分体时期和减Ⅰ中期),四分体的个数等于同源染色体的对数。
2.无图,给出某种生物减数分裂某个时期细胞中的某种数量,计算其它各期的各种数目。规律:
(1)染色体的数目在间期和减Ⅰ分裂期与体细胞相同,通过减Ⅰ分裂减半,减Ⅱ分裂后期暂时加倍,与体细胞相同。
(2)DNA数目在减Ⅰ前的间期复制加倍,两次分裂分别减少一半。 (3)同源染色体在减Ⅰ分裂以前有,减Ⅱ分裂以后无。 (4)四分体在四分体时期和减Ⅰ中期有,其它各期无。
第 3 页 共 22 页
五、关于配子的种类:
1、一个性原细胞进行减数分裂,如果在四分体时期染色体不发生交叉互换,则可产生4个2种类型的配子,且两两染色体组成相同,而不同的配子染色体组成互补。
2、有多个性原细胞,设每个细胞中有n对同源染色体,进行减数分裂,如果在四分体时期染色体不发生交叉互换,则可产生2种配子。
Ⅳ 细胞分裂图的识别:
【知识回顾】细胞分裂图像的考查频率很高,细胞分裂图像常规考法有两种:给出图形及图中的染色体,识别是何种分裂何种时期;给出文字材料,要求画出某时期的细胞分裂图。因此要能将有丝分裂图像与减数分裂图像正确区分,并能正确辨别细胞的种类、及分裂时期。
(区分有丝分裂、减数第一次分裂、减数第二次分裂)
三看识别法:(点数目、找同源、看行为)(以二倍体生物为例)
一看细胞中的染色体数目:如果细胞内染色体数目为奇数,则该细胞为减数第二次分裂某时期的细胞。而且细胞中一定没有同源染色体存在;如果染色体数为偶数,则进行第二看: 二看细胞中有无同源染色体:如果没有同源染色体,则为减数第二次分裂某时期的细胞分裂图;如果有同源染色体,则为减数第一次分裂或有丝分裂某时期的细胞分裂图。再进行第三看:
三看细胞中同源染色体的行为:在有同源染色体的情况下,若有联会、四分体、同源染色体分离,非同源染色体自由组合等行为则为减数第一次分裂某时期的细胞分裂图;若无以上行为,则为有丝分裂的某一时期的细胞分裂图。
看染色体的位置:前期显散乱,中期在中间,后期到两端,末期已分边。
有丝分裂是染色体复制1次,分裂1次;减数分裂是染色体复制1次,分裂2次的特殊有丝分裂,且有联会现象,所以同源染色体在排列上有紧靠在一起的特点,而有丝分裂中的同源染色体是间隔排列的,该特征是区分各个时期的一个重要依据。方法:
(1)有同源染色体的为有丝分裂或减数第一次分裂,否则为减数第二次分裂。 (2)有同源染色体行为变化的是减数第一次分裂(联会、四分体、四分体排在赤道板上,最后分开),否则为有丝分裂。
【解题思路】(注意:后期图形只取细胞一极的染色体)
第 4 页 共 22 页
染色体排列在赤道板、无同源染色体―→ 减数第二次分裂的中期;
染色体排列在赤道板、有同源染色体、间隔排列―→ 有丝分裂的中期; 染色体不在中央、有同源染色体、无姐妹染色单体―→ 有丝分裂的后期;
染色体不在中央、有同源染色体、有姐妹染色单体―→ 减数第一次分裂的后期。
四、动物细胞、植物细胞分裂的辨别
看细胞质形成方式:细胞板隔裂――植物细胞分裂;缢裂――动物细胞分裂。 看细胞的外形特性:矩形有壁为植物细胞;圆形无壁一般为动物细胞。
五、雄性、雌性减数分裂的辨别
看细胞质分裂是否均等:均等分裂――雄性减数分裂;不均等分裂――雌性减数分裂。
六、细胞分裂DNA、染色体数的变化:
有 丝 分 裂 减 数 分 裂 2、规律
(1)有丝分裂的染色体变化的两个关键时期:①后期着丝点分裂时染色体加倍;②末
期平分给两个子细胞时染色体数恢复。(其他时期染色体数不变。切记:染色体复制时其数目不改变。) (2)有丝分裂的DNA:①间期染色体复制时DNA数目加倍;②末期平分给两个子细胞时DNA数目恢复。(其他时期不变。)
(3)减数分裂的染色体变化:①减数第一次分裂的末期染色体数目减半(说明:减数分裂染色体的减半就是发生在第一次分裂的末期,这时同源染色体分离,导致了染色体的减半。);②第二次分裂的后期染色体暂时增加(这时的染色体数等于体细胞的染色体数);③分裂之后染色体数减半。
(4)减数分裂的DNA变化:复制后加倍,然后两次减半,最后DNA是原来的一半。
七、有丝分裂和减数分裂中DNA、染色体数目的计算
【知识回顾】着丝点数=染色体数。不含姐妹染色单体时DNA数等于染色体数。但当一个染色体含有两个姐妹染色单体时,DNA数是染色体数的二倍,准确画出曲线需记住三个主要特点:
(1)DNA仅在间期复制,形成姐妹染色单体,数目加倍。
(2)染色体仅在后期(有丝分裂或减数第二次分裂后期)着丝点分裂时数目加倍。 (3)末期细胞一分为二,对于子细胞来说,DNA和染色体数目都减半。会画曲线后遇到计算题就可以在曲线上寻找相应的点。
【例题讲解】
第 5 页 共 22 页
包含各类专业文献、幼儿教育、小学教育、应用写作文书、生活休闲娱乐、各类资格考试、外语学习资料、中学教育、高等教育、细胞分裂增殖过程各时期的特点及示意图12等内容。 
 各时期的特点的解析,让学生能够轻松地通过细胞分裂的图示来判断细胞分裂的时期。...【文章编号】14)01-0180-02 细胞增殖是生物体生长、发育、繁殖和...  各时期的特点的解析,让学生能够轻松地通过细胞分裂的图示来判断细胞分裂的时期。...【文章编号】14)01-0180-02 细胞增殖是生物体生长、发育、繁殖和...  细胞周期的划分及各个时期的特点_理化生_高中教育_教育专区。细胞周期的划分及各...是指连续分裂的细胞从一次有 丝分裂结束到下一次有丝分裂完成所经历的整个过程...  简述细胞生长和增殖的周期性。 2. 观察细胞的有丝分裂并概述其过程。 二、...表示有丝分裂各时期特点的表格,已给出了各时期的示意图,请填写各时期的染 色...  细胞增殖包括物质注备和细胞分裂整个连续的过程。 真核细胞的分裂方式有三种:①...有丝分裂各时期的特点时期 分裂 间期 植物细胞 示意图 动物细胞 示意图 主要...  (1)细胞增殖的周期性 (2)真核细胞有丝分裂的过程中各时期的主要变化特点。 ...根据课本 P81 动物细胞有丝分裂示意图,预习动物细胞有丝分裂过程, 探究比较动...  (2)通过细胞分裂图像考查分裂的过程各时期特点以及染色体、DNA、染 色单体等...(2007江苏卷)a、b、c、d 分别是一些生物细胞某个分裂 时期的示意图, 下列有...  和增殖的周期 2.真核细胞有丝分裂的过程 真核细胞有丝分裂过程中,各个时期...d 分别是一些生物细胞某个分裂时期的示意图,正确的是( ) A.a 图表示植物...  3.真核细胞有丝分裂过程中,各个时期染色体行为和...细胞增殖方式 分裂间期(特点) : 前期(特点) : ...【随堂演练 5】图示为植物细胞有丝分裂一个细胞周期...细胞分裂(生物学名词)_百度百科
?生物学名词
(生物学名词)
细胞分裂(cell division)是指活细胞增殖其数量由一个细胞分裂为两个细胞的过程。分裂前的细胞称,分裂后形成的新细胞称子细胞。通常包括细胞核分裂和细胞质分裂两步。在过程中母细胞把传给。细胞分裂包括 有丝分裂 减数分裂 无丝分裂
细胞分裂基本信息
细胞分裂(cell division)是增殖其数目由一个细胞分裂为两个细胞的过程。分裂前的细胞称,分裂后形成的新细胞称。一般包括细胞核分裂和细胞质分裂两步。在核分裂过程中母细胞把遗传物质传给子细胞。在中细胞分裂就是个体的繁殖,在中细胞分裂是个体生长、发育和繁殖的基础。1855年德国学者(R.Virchow)提出“一切细胞来自细胞”的著名论断,即认为个体的所有细胞都是由原有细胞分裂产生的,除细胞分裂外还没有证据说明细胞繁殖有其他途经。
细胞分裂生理作用
主要是引发细胞分裂[1]
,芽的形成和促进芽的生长。对的烟草髓或茎切段,可使已不具备分裂能力的髓细胞重新分裂。这种现象曾被用于细胞分裂素的生物测定。茎切段的分化常受细胞分裂素及生长素比例的调节。当细胞分裂素对生长素的浓度比值高时,可诱导芽的形成;反之则有促进生根的趋势。如对抑制的腋芽局部施用细胞分裂素或在侧芽上涂抹一定浓度的,可以解除顶端对侧芽的抑制(即顶端优势)。天然的簇生植物(莲座状植物)或由于病害发生“丛枝病”的植物里,常含有较多的细胞分裂素。
细胞分裂素还有防止离体叶片、保绿的作用,这主要是由于细胞分裂素能够延缓和的降解速度,稳定多聚核糖体(蛋白质高速合成的场所),抑制DNA酶、RNA酶及蛋白酶的活性,保持膜的等。在叶片上局部施用,能吸聚其他部分的物质向施用处运转和积累。
细胞分裂素的作用方式还不完全清楚。已知在tRNA中与反密码子相邻的地方有细胞分裂素,在蛋白质合成过程中,它们参与到tRNA与核糖体mRNA复合体的连接物上。但这可能不是外源细胞分裂素的作用方式。因为在tRNA中,细胞分裂素的合成是由原来在tRNA中的嘌呤的改变产生的。而外源细胞分裂素并不参入tRNA中,但可促进硝酸还原酶、蛋白质和核酸的合成。除了天然的促进细胞分裂的物质外,还用化学方法人工合成了一些类似激动素的物质。通常也统称细胞分裂素。其中活性较强,也最常用的是6-苄基嘌呤。
细胞分裂分裂种类
细胞分裂①原核细胞的分裂。
还了解不多,只对少数的分裂有些具体认识。既无,也无,只有由分子构成核区,又称,具有类似细胞核的功能。拟核的DNA分子或者连在上,或者连在质膜内陷形成的上,质膜体又称。随着DNA的复制间体也复制成两个。以后,两个间体由于其间的质膜的生长而逐渐离开,与它们相连接的两个DNA分子环于是被拉开,每一个DNA环与一个间体相连。在被拉开的两个之间细胞膜向中央长入,形成,终于使一个细胞分为两个细胞。
细胞分裂②真核细胞的分裂
按细胞核分裂的状况可分为3种:即、和。有丝分裂是真核细胞分裂的基本形式。减数分裂是在进行的生物中导致生殖母细胞中数目减半的分裂过程。它是有丝分裂的一种变形,由相继的两次分裂组成。无丝分裂又称。其典型过程是核仁首先伸长,在中间缢裂分开,随后核也伸长并在中部从一面或两面向内凹进横缢,使核变成肾形或哑铃型,然后断开一分为二。差不多同时细胞也在中部缢裂分成两个子细胞,由于在分裂过程中不形成由构成的或发出的,不发生由浓缩成染色体的变化,故命名无丝分裂。
细胞分裂细胞分裂
细胞分裂无丝分裂amitosis
无丝分裂时由于不经过染色体有规律的平均分配,故存在不能保证(但也不是没有可能)均等分配的问题,由此有些人认为这是一种不正常的分裂方式.
无丝分裂是最早发现的一种细胞分裂方式,早在1841年(R.Remak)于鸡胚血球细胞中见到。在无丝分裂中,核仁、核膜都不消失,没有染色体的出现,在细胞质中也不形成纺锤体,当然也就看不到染色体复制和平均分配到子细胞中的过程。但进行无丝分裂的细胞,染色体也要进行复制,并且细胞要增大。当细胞核体积增大一倍时,细胞就发生分裂。至于核中的遗传物质DNA是如何分配到子细胞中的,还有待进一步研究。无丝分裂是最简单的分裂方式。过去认为无丝分裂主要见于低等生物和高等生物体内的衰老或病态细胞中,但后来发现在动物和植物的正常组织中也比较普遍地存在。无丝分裂在高等生物中主要是高度分化的细胞,在动物的、、和肝组织中,在植物各器官的、表皮、和等细胞中,都曾见到过无丝分裂现象。
细胞分裂无性分裂The asexual Division
又叫,是中常见的一种方式,即是母体分裂成2个()或多个(复分裂)大小形状相同的新个体的生殖方式。这种生殖方式在中比较普遍,但对不同的单细胞生物来说,在生殖过程中核的分裂方式是有所不同的,可归纳为以下几种方式:
1 以无丝分裂方式营无性分裂生殖
无丝分裂又称直接分裂,是一种最简单的细胞分裂方式。整个分裂过程中不经历纺锤丝和染色体的变比,这种方式的分裂在细菌、等的分裂生殖中最常见。
原核细胞的分裂包括两个方面:(1)细胞DNA的分配,使分裂后的子细胞能得到亲代细胞的一整套遗传物质;(2)把细胞基本上分成两等分。
复制好的两个DNA分子与质膜相连,随着细胞的生长,把两个DNA分子拉开,细胞分裂时,与质膜发生内褶,最终把母细胞分成了大致相等的两个子细胞。
2 以核的有丝分裂方式营无性分裂生殖
有丝分裂的过程要比无丝分裂复杂得多,是多细胞生物细胞分裂的主要方式,但一些如:、、等,在分裂生殖时,也以有丝分裂的方式进行:
(1)甲藻细胞染色体的结构和独特的有丝分裂,兼有真核细胞和原核细胞的特点,细胞开始分裂时核膜不消失,核内染色体搭在核膜上,分裂时核膜在中部向内收缩形成凹陷的槽,槽内细胞质出现由微管按同一方向排列的类似于纺锤丝的构造,调节核膜和染色体,分离为子细胞核,最终分裂成两个子细胞(甲藻)。
(2)眼虫营分裂生殖时,核进行有丝分裂,分裂过程中核膜并不消失,随着细胞核中部收缩分离成两个,然后细胞由前向后纵裂为二(纵二分裂),其中一个带有原来的一根鞭毛,另一个又长出一根新鞭毛,从而形成两个眼虫。
(3)变形虫长到一定大小时,进行分裂繁殖,是典型的,消失,随着细胞核中部收缩,染色体分配到子核中,接着胞质一分为二,将细胞分裂成两个子代个体。
3 以核的无丝分裂和有丝分裂方式营无性分裂生殖
这种方式最典型的代表就是,草履虫属,细胞内有大小两种类型的核,即大核和小核,小核是生殖核,大核是营养核,在草履虫进行无性繁殖时,小核进行,大核则行无丝分裂,接着虫体从中部横缢分成2个新个体。
通过分裂进行繁殖。繁殖是生物或细胞形成新个体或新细胞的过程。植物细胞的分裂包括无丝分裂、有丝分裂和减数分裂和细胞的自由形成等不同的方式。
细胞分裂有丝分裂mitosis
有丝分裂又称为间接分裂,它是一种最普遍,是常见的分裂方式。有丝分裂为连续分裂,一般分为核分裂和胞质分裂。
有丝分裂的过程
1 、核分裂(时间长):核分裂是一个连续的过程,为了叙述的方便,人为地把核分裂划分为前期、中期、后期以及末期四个时期。有丝分裂各期的特点如下(以植物细胞为例):
间期:分为G1,S,G2,主要进行DNA复制和相关蛋白质合成,核膜核仁逐渐消失。
前期:核内的染色质凝缩成染色体,核仁解体彻底消失,核膜破裂以及纺锤体开始形成。
中期:中期是染色体排列到赤道板上,纺锤体完全形成时期。
后期:后期是各个染色体的两条染色单体分开,在纺锤丝的牵引下,分别由赤道移向细胞两极的时期。
末期:为形成二子核和胞质分裂的时期。染色体分解,核仁、核膜出现,赤道板位置形成细胞板,将来形成新的细胞壁。上堆积的纺锤丝,称为。
动物细胞与植物细胞相似,不同的是动物细胞是有中心体发出星射线形成,植物细胞是从两级直接发出。有丝分裂末期动物细胞细胞膜向内凹陷,形成两个子细胞,植物细胞是在赤道板(虚拟想象)位置形成细胞板,将细胞分成两个子细胞。
2 、细胞质分裂(时间短):核,染色体接近两极时,细胞质分裂开始。在两个子核之间的中增加了许多短的纺锤丝,形成一个密集着纺锤丝的桶状区域,称之为。的数量增加,成膜体中有来自和的(含多糖类物质),沿着微管指引方向,聚集,融合,释放出多核物质,构成细胞板,从中间开始向周围扩展,直至与母细胞壁相连,成为——,新质膜由泡囊的被而成。新细胞壁形成后,把两个新形成的细胞核和它们周围的细胞质分隔成为两个子细胞。
3、有丝分裂的特点:通过细胞分裂使每一个母细胞分裂成两个基本相同的子细胞,子细胞染色体数目、形状、大小一样,每一染色单体所含的遗传信息与母细胞基本相同,使子细胞从母细胞获得大致相同的遗传信息。使物种保持比较稳定的和遗传的稳定性。
细胞分裂减数分裂meiosis
有性生殖要通过两性生殖细胞的结合,形成合子,再由合子发育成新个体。生殖细胞中的染色体数目是中的一半。(否则生物每繁殖一代,体细胞中的染色体数目就会增加一倍)。既然在形成——精子或卵细胞时,染色体数目要减少一半,则原细胞必须经过减数分裂。
(一)精子形成
的形成部位:()的中。在精巢中,通过有丝分裂产生了大量的原始生殖细胞,也就是。根据有丝分裂的特征,可知精原细胞的染色体数目与体细胞染色体数目是相同的。在精原细胞时期,进行了染色体复制。当雄性动物性成熟后,睾丸里的一部分精原细胞就开始进行,经过减数分裂后,形成精细胞,精细胞经过变性形成男性生殖细胞——精子
精原细胞在减数分裂过程中连续进行了两次分裂
1间后 (复制)
1前 期(联会,形成四分体)
精子形成过程
1中 期1后期
2前期2中期
2后期2末期
第一次分裂分离,染色体数目不变;
第二次分裂两条姐妹染色单体分离,染色体减半。
第一次分裂的前期,细胞中的同源染色体两两配对,叫。所谓的,指减数分裂时配对的两条染色体,形状和大小一般都相同,一个来自父方,一个来自母方。联会后,染色体进一步螺旋化变粗,逐渐在光学显微镜下可见每个染色体都含有两个,由一个相连,每对同源染色体则含有四个姐妹,叫四分体。把和联会时比较,由于染色体复制在精原细胞时就发生了,因此,它们所含的染色单体、DNA数目都是相同的,不同的主要是染色体的螺旋化程度不同,联会时化程度低,染色体细,在下还看不清染色单体,因此,没有在图上表示出来。四分体时期,染色体螺旋化程度高,染色体变粗了,可在光学显微镜下清楚地看到每一个染色体有两个单体。
在细胞分裂的同时,细胞内的同源染色体彼此分离,结果一个初级精母细胞便分裂成两个次级精母细胞,而此时细胞内的染色体数目也减少了一半,细胞内不再存在同源染色体。减数第一次分裂结束。
减数第二次分裂是从次级精母细胞开始的,细胞未经染色体的复制,直接进入第二次分裂。在细胞第二次分裂过程中,染色体的行为和前面所学的有丝分裂过程中染色体的行为非常相似,细胞内染色体的着丝点排列在这一位置后,接着进行分裂,于是两条姐妹染色单体分离,分别移向细胞两极。与此同时,细胞分裂,结果生成了。精子细胞经过变形后成为精子,两个最后生成了四个精子,减数分裂结束。
随后,各个四分体排列在细胞中央,同源染色体好像手拉手似地排成两排,纺锤丝收缩,牵引染色体向两极移动,导致四分体平分为二,配对的同源染色体分开,但此时着丝点并未分开,每一染色体上仍有两条染色单体。接着发生细胞分裂,一个初级精母细胞分裂成两个次级精母细胞,而每个次级精母细胞中的染色体数目就只有初级精母细胞的一半了,初级精母细胞有4条染色体,而次级精母细胞只有两条染色体,染色体数目减半的原因是同源染色体分开,在次级精母细胞中已没有同源染色体了。
联会的同源染色体分开,说明染色体具有一定的独立性,由于两个同源染色体在细胞中央的排列位置是随机的,可以互相交换,因此,就决定了同源的两个染色体各移向哪一极也是随机的,这样,不同对的染色体之间就可以自由组合。这是将来要学的基因的的细胞学基础。
第二次分裂的基本过程与有丝分裂相似:中期,染色体的着丝点排成一排,后期,着丝点一分为二,两个姐妹染色单体成为两个染色体,在纺锤丝的牵引下,移向两极,接着,细胞分裂,两个次级精母细胞分裂成4个精子细胞,减数分裂完成。
精子细胞再经过变形,形成精子,在这个过程中,丢掉了精子细胞的大部分细胞质,带上重要的物质——细胞核内的染色体,轻装上阵,并形成了一个长长的尾,便于游动。
(二)卵细胞形成
在中形成,其过程与精子形成过程基本相同,但也有区别。相同点:染色体复制一次,都有联会和,经过第一次分裂,同源染色体分开,染色体数目减少一半,在第二次分裂过程中,有着丝点的分裂,最后形成的卵细胞,它的染色体数目也比减少了一半。不同点:每次分裂都形成一大两小三个细胞,小的叫,极体以后都要退化,只剩下一个卵细胞,而一个精原细胞是形成4个精子;卵细胞形成后,不需要经过变形,而精子要经过变形才能形成。卵细胞:细胞体形较大,呈球形,不能游动;含多,营养物质丰富,保证受精后发育成新个体。精子:细胞体形较小,有,能游动,其特点是保证的实现;卵细胞的第二次减数分裂中期是在受精作用完成时才开始发生。
受精作用——精子与卵细胞结合成为合子的过程
精子的头部进入卵细胞,精子与卵细胞的细胞核结合在一起,因此,合子中染色体数目又恢复到原来的体细胞的数目,其中一半来自精子(父方),一半来自卵细胞(母方)。从同源染色体的角度看,精子和卵细胞中的同源染色体都是成单存在,但精子带有其中的一条,卵细胞带有其中的另一条,受精后,这两条同源染色体到了一个细胞中,它们就成对存在了,所以,关于同源染色体的概念说,一条来自父方,一条来自母方,就是这个意思。
减数分裂使染色体数目减半,受精作用使染色体数目又恢复到原来的数目,从而使生物遗传后代染色体数目保持恒定。
细胞分裂二分裂a binary fission
细菌可以以无性或者遗传重组二种方式繁殖,最主要的方式是以二分裂这种无性繁殖的方式:一个细菌细胞壁横向分裂,形成两个子代细胞。
除细菌以外,二分裂也是原生动物最普遍的一种无性生殖.一般是有丝分裂,分裂时细胞核先由一个分为二个,染色体均等的分布在两个子核中,随后细胞质也分别包围两个细胞核,形成两个大小、形状相等的子体,二分裂可以是纵裂,如眼虫;也可以是横裂,如草履虫;或者是斜分裂,如角藻。
细菌没有核膜,只有一个大型的环状DNA分子,细菌细胞分裂时,DNA分子附着在细胞膜上并复制为二,然后随着细胞膜的延长,复制而成的两个DNA分子彼此分开;同时,细胞中部的细胞膜和细胞壁向内生长,形成隔膜,将细胞质分成两半,形成两个子细胞,这个过程就被称为细菌的二分裂。无丝分裂则是发现最早的一种真核细胞的分裂方式,在中普遍存在,而且不仅在中,甚至在中都能进行无丝分裂。由于其的过程不出现染色体和纺锤丝,胞质分裂后的不一定能够平均分配给子细胞,与有丝分裂有很大区别,故称无丝分裂。无丝分裂的过程大致可划分为4个时期:第一期核内染色质复制倍增,核及核仁体积增大,核仁及核仁分裂。第二期以核仁及核仁组织中心为分裂制动中心,以核仁与核膜周染色质相联系的为牵引带,分别牵引着新复制的染色质和原有的染色质。新复制的染色质在对侧核仁组织中心发出的染色质丝的牵引下,离开核膜移动到核的赤道面上。第三期核拉长成哑铃型,中央部分缢缩变细。第四期核膜内陷加深,最终缢裂成为两个完整的子细胞核;接着,整个细胞从中部缢裂成两部分,形成两个子细胞。由此我们不难看出:无丝分裂和二分裂有着本质的区别,二分裂指的是原核生物进行的一种最原始的方式,而无丝分裂是独特的细胞增殖方式,通过这种分裂,可同时形成多个核;且分裂时细胞核仍可执行其生理功能。
以高等动物为例,受精卵进行到一定时间细胞增多,形成了一个内部有腔的球状胚,这个时期的胚叫。这时期的胚其特点是中央有一空腔,叫。胚继续发育形成原肠胚。由于一端的细胞分裂较快,新产生的细胞便向植物极方向推移、使植物极一端的细胞向囊胚腔陷入,囊胚腔缩小,内陷的细胞不仅构成了胚胎的内胚层,而且围成了一个新的腔叫。在内外细胞层之间分化出了一个新的细胞层,叫做中胚层,这时期的胚就叫。原肠胚的特点是:具有原肠腔和外、中、内三个胚层。原肠胚的外胚层由包被表面的动物极一端的细胞构成,内胚层由陷入囊胚腔的细胞构成,中胚层位于内、外胚层之间,这三个胚层继续发育,经过、器官形成,最后形成一个完整的幼体。
:形成神经系统的各个器官,包括脑、和神经、眼的、虹膜上皮、内耳上皮、以及皮肤的和皮肤的附属结构。
:形成消化道(、、胃、肠等)和呼吸道(、气管、支气管等)的上皮,肺、肝、和咽部分衍生的腺体(,、等)以及的、和附属腺体的上皮等。
:主要形成各种肌肉、骨胳、结缔组织以及皮肤的真皮,(、血管和血液)、(肾、)、(、及附腺等)、气管和消化道的管壁、体腔膜等。
在胚胎期达到最大限度。
是一类具有自我更新和分化潜能的细胞。它包括胚胎干细胞和。干细胞的发育受多种内在机制和微环境因素的影响。已可成功地在。最新研究发现,成体干细胞可以横向分化为其他类型的细胞和组织,为干细胞的广泛应用提供了基础。
在胚胎的发生发育中,单个受精卵可以分裂发育为多细胞的组织或器官。在成年动物中,正常的生理代谢或病理损伤也会引起组织或器官的修复再生。胚胎的分化形成和成年组织的再生是干细胞进一步分化的结果。胚胎干细胞是全能的,具有分化为几乎全部组织和器官的能力。
到了的一定阶段甚至成体,仍有一部分细胞负责组织的更新和修复,诸如血液、肠道粘膜上皮、皮肤表皮等。这些细胞便是一般所指的特定组织的干细胞,又称为细胞。
随着的发展,人们现已发现,栽些成体组织不但能再生,而且可以衍生成与其来源不同的细胞类型。例如肌肉细胞在一定的环境下可以成为有增殖能力的;相反地,血液“前体细胞”(即未完全成熟的血细胞)也可变成肌肉细胞,甚至长出肝或来。
ES虽好,但其来源有限。ES多取自人工流产的极早期胚胎或是培植试管婴儿时剩余的胚胎。然而现已有科学家证实ES可以在体外即实验室的试管中培养与繁殖,并且可以使ES细胞增殖、定向分化并形成多巴胺能性细胞,而这正是治疗所亟需的。
起开关作用的蛋白质名为“GATA”。研究人员利用基因工程方法使老鼠胚胎干细胞的“GATA”含量增加,结果胚胎干细胞变成了在孕育生命阶段起重要作用的其他细胞。研究人员还同时发现,除了蛋白质“GATA”,还有其他物质也起到开关作用,它们相互合作,共同决定胚胎干细胞的命运。
研究人员计划通过技术找到所有“开关”,这样胚胎干细胞就会按人的意志生成各种组织。操作好这些“开关”,可能使普通干细胞变成真正的“”。
干细胞尤其是胚胎干细胞的识别、分离、增殖、定向分化将成为细胞生物学以及整个生命科学的主攻热点。
一个新的有趣的发现是,生命细胞活着时左旋,死亡后即右旋,一切病毒细菌和死亡的物质却只会右旋不会左旋。这是什么原因?这是否与宇宙本来就是左右不对称有关(地球的自转、公转仍然是左旋的,十大行星几乎都是左旋的,宇宙大黑洞也是左旋的,中微子现也认为是左旋的)。看来衰老问题联系到更广阔的研究领域。
植物组织培养愈伤组织
anther culture 用技术,把发育到一定阶段的花药,通过无菌操作技术,接种在人工培养基上,通过植物激素改变花药内花粉粒的发育程序,诱导其分化,并连续进行有丝分裂,形成细胞团,进而形成一团无定型的无分化的薄壁组织——愈伤组织,再分化成,随后改变激素的比例使愈伤组织分化形成完整的植株。
亦称愈合组织或创伤组织。植物体局部受伤后,在伤口表面形成的具有能力和保护作用的活的薄壁细胞群。愈伤组织的外层细胞常可木质化或形成周皮,对其表层的细胞起保护作用。在植物嫁接中愈伤组织促使砧木与接穗紧密结合,植物扦插能从愈伤组织分化出和不定芽;在组织和时,条件适宜也能长出愈伤组织。利用愈伤组织诱导形成新植株已广泛应用于植物的(即)。
植物组织培养中愈伤组织的形成和形态发生(植物体的结构层次1课时)
在植物组织培养中,主要目标是诱导愈伤组织形成和形态发生变化,使一个离体的细胞、一块组织或一个器官的细胞,通过脱分化形成愈伤组织,并由愈伤组织再分化形成植物体。
愈伤组织的形成 从一块形成典型的愈伤组织,大致要经历三个时期:起动期、分裂期和形成期。
起动期是指细胞准备进行分裂的时期。用于接种的外植体的细胞,通常都是成熟细胞,处在静止状态。起动期是通过一些刺激因素(如机械损伤、改变光照强度、增加氧等)和激素的,使外植体细胞的合成代谢活动加强,迅速进行蛋白质和核酸的合成。机械损伤能诱导植物体细胞开始分裂,如伤口上会出现愈伤组织。在植物组织培养中沿用了愈伤组织这一名词,但是植物组织培养中诱导外植体细胞分裂形成的愈伤组织,大都不是损伤的结果。外源的类物质对诱导细胞开始分裂效果很好,因此生长素类物质在植物组织培养中得到了广泛应用,常用的有2,4—二氯苯氧乙酸、、和等。
分裂期是指外植体细胞经过诱导以后脱分化,不断分裂、增生子细胞的过程。处于的愈伤组织的特点是:细胞分裂快,结构疏松,颜色浅而透明。
外植体的脱分化因植物种类、器官来源及其生理状况的不同而有很大差别。例如,烟草、胡萝卜等植物的比较容易,禾本科植物的脱分化比较难;花的脱分化比较容易,茎、叶的脱分化比较难;幼嫩组织的脱分化比较容易,成熟的老组织脱分化比较难。
分化期是指在分裂期的末期,细胞内开始出现一系列形态和生理上的变化,从而使愈伤组织内产生不同形态和功能的细胞。这些细胞类型有薄壁细胞、、、,等等。
外植体的细胞经过起动、分裂和分化等一系列变化,形成了无序结构的愈伤组织。如果在原来的上继续培养愈伤组织,会由于培养基中营养不足或有毒的积累,导致愈伤组织停止生长,甚至老化变黑、死亡。如果要让愈伤组织继续生长增殖,必须定期地(如2~4周)将它们分成小块,接种到新鲜的培养基上,这样愈伤组织就可以长期保持旺盛的生长。
愈伤组织的形态发生方式 经过起动、分裂和分化期产生的愈伤组织,其中虽然发生了细胞分化,但是并没有器官发生。只有满足某些条件,愈伤组织的细胞才会发生,产生芽和根,进而发育成完整植株。愈伤组织的方式主要有不定芽方式和胚状体方式两种。不定芽方式是在某些条件下,愈伤组织中的发生分化,形成不同的器官原基,再逐渐形成芽和根。胚状体方式是由愈伤组织细胞诱导分化出具有胚芽、胚根、的胚状结构,进而长成完整植株。这种由愈伤组织中的薄壁细胞不经过有性生殖过程,直接产生类似于胚的结构,叫做胚状体。
不定芽方式和胚状体方式是培养中最常见和最重要的两种方式。胚状体方式比不定芽方式有更多的优点,如胚状体产生的数量比不定芽多,胚状体可以制成人工种子,等等。
肝细胞分裂
肝脏是人体一个重要的消化器官,因其在损伤的情况下有强大的再生修复能力而一直受到医学家们的普遍关注。认为参与肝脏修复的细胞可能有三个来源:一是通过肝细胞自身的有丝分裂来弥补死亡的肝细胞,这在正常的肝细胞代谢及轻度的肝脏损伤中起主要作用;二是在比较较严重的肝损情况下,肝脏的干细胞被激活并向肝细胞分化以修复肝脏;最近的研究显示骨髓中的也具有向肝细胞,提示可作为肝脏细胞修复第三个潜在来源1。
自然情况下:
内因:细胞周期受到一系列基因、酶和蛋白质等内在因素的精确调控。不同的组织会造成差异。
外因:主要受一些外界信号的刺激,有细胞因子(如肽类生长因子)、激素和细胞外基质等。
1.肽类:主要通过旁分泌方式作用于靶细胞;同时也存在着自分泌,当两种方式均分泌不足时会抑制增殖与分化。
2.:只作用于特定靶细胞促进其生长与分化。
3.:应其特定细胞的增殖与分化。主要通过与作用激活相关酶,启动相关信号。它对干细胞的增殖分化具有。在发育和创伤组织中,透明质酸合成旺盛,促进细胞的增殖与迁移,分化。当增殖到一定程度时透明质酸会水解。
又如胚胎时期,下调刺激信号的水平,抑制细胞周期引擎会抑制细胞分裂。在肌肉发生过程中,属于TGF-β超家族的肌肉是肌肉生长的负调控因子。
非自然情况下,射线、低温﹑化学药剂、病毒等环境因素对细胞分裂的影响是通过内因起作用的,即通过导致基因突变或影响酶的活性而影响细胞分裂。
分裂新形式
“核分裂”(klerokinesis)
美国威斯康辛大学卡邦癌症中心发现了一种人类细胞分裂的新形式,并称之为“” (klerokinesis)。这种新分裂形式是一种对错误细胞分裂的天然补救机制,能预防某些细胞步入“癌”途。
研究小组给人类细胞复制出了多倍,以模拟癌症。他们用一种常规化学物质阻止了,结果发现分裂并未显出异常。
他们进一步观察了人类细胞是怎样恢复正常染色体倍数的。从一个细胞变成两个核开始观察,吃惊地发现细胞没经过有丝分裂,而是直接由一个细胞变成了两个细胞。每个新细胞都遗传了一个完整无缺的细胞核,包含一套完整染色体。分裂发生的时间出乎预料,是在延迟生长阶段,而不是在有丝分裂结束时。他们还做了大量额外实验,以确定这种分裂和正常的细胞分裂形式“胞质分裂”不同。
他们还发现,有90%的子细胞恢复为正常的配对染色体。在一个生物经过的所有中,每次的胞质分裂偶尔也会失败。这种新分裂是一种补救机制,让细胞能从故障中恢复正常。
细胞分裂影响因素
能够影响细胞分裂的因素很多,而且极为复杂,目前还没达到对其全面认识的水平。
细胞的表面积与体积之比以及细胞核与细胞质体积之间的平衡:细胞通过它的表面不断地与周围环境或邻近细胞进行物质交换,这么它就必须有足够的表面积,否则它的就很难进行。但细胞的体积由于生长而逐渐增大时,表面积与体积的比例就会变得越来越小,物质交换适应不了细胞的需要,这可以引起细胞的分裂,以恢复适宜的比例。同样的,中的指引和控制范围有限,细胞核对太大范围的细胞质的调控作用就会相对减少。  曾做过这样的实验:当人工培养的快要分裂的时候,把它的细胞质切去一大块,这个变形虫就不再分裂。等它长大起来又要分裂的时候又切去一块,它也不再分裂。但如果让其继续生长,体积达到一定大小时,它又会分裂起来。
(contact inhibition)
以及其它种种因素
细胞分裂细胞分裂机制的起源
在地球生命演化的早期,为何会出现出细胞分裂的特性?有学者提出了细胞分裂的光合起源假说[2]
。首先,细胞本质上必须是一个独立的半开放体系,允许物质的进出—营养物质的吸收以及的输出,这是生命个体的基础。这样,细胞膜就必须具有选择性的通透性,允许一些小分子化合物(如)的进出,但是,大的分子肯定是难以自由通行的。
脂双层膜正好具有了这样的选择通透性:水、、、一个普通的蛋白质以及钠离子在膜中的相对分别为109、106、102、1和1,这就是说,双层磷脂膜对大分子和带电离子是不通透的,而小的非带电分子有较高的通透性,因此,这样的建立了对不同类型(如、大小)分子选择性摄取或释放的体系,而生物大分子若在内形成,则能在囊泡内部很好地保存并行使生命功能。不能自由穿越这一点十分重要,因为如果没有这一特性,H+就不能形成,也就不能用于的合成,更不会有现在生命系统的存在!
接下来,如果在前细胞体中发生了有机物质的合成,就会出现新的问题。在一个有限的前细胞体中如果发生驱动的有机物合成,就必然会导致有机物质在细胞体中的不断增加,也必然会导致细胞的破裂,或许正是这种反反复复的细胞破裂过程(脂质的化学特性决定了它们在水溶液中能自发形成脂双层的球形结构,这是这种过程能不断重复的重要基础)后来演化出生命最重要的机制之一——细胞分裂。因此,能进行光合作用的原始(最初可能没有产氧能力)应该是最先出现的。
或者简单地说,为了进行有机物质的合成,必须对物质的进出有选择性,特别是它必须保证养分的进入和一部分废物的排出。但是,这也不能解决所有问题,譬如,它如何来处置光合作用生产的有机物的堆积问题呢?可以设想有三种可能的途径:1)细胞不断增大。但事实上,这是不可能的,因为对漂浮于水中的原始细胞来说,细胞的增大就会由于沉降的加速而使它们快速葬身海底的风险聚增;2)细胞将合成的有机物迅速分解,排出体外;3)随着有机物的堆积,细胞一分为二,不断重复新的合成—分裂之过程。显然,生命选择了第3种方案。
这种策略似乎与现生细胞体积的周期性变化相吻合:细胞分裂形成的新细胞,最初体积较小,只有母细胞的一半,但它们能迅速合成新,细胞随之增大,到母细胞一般大小时,便可继续分裂,如此循环往复。利用光能不断合成有机物的一个结果就是,要求细胞体积不断增大,如果偶然出现分裂的细胞,而且有一部分存活下来,而且逐渐被记忆()下来,就能形成细胞分裂。这是一个重要的事件,因为能够具有物种特性的生命在本质上必须是一个能的系统。
细胞体积随细胞分裂的变化
细胞分裂外部链接
.生物帮资讯[引用日期]
.科学网.[引用日期]
企业信用信息}

我要回帖

更多关于 细胞增殖周期 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信