在污水处理臭氧发生器中,1kg臭氧能处理多少COD

您当前的位置: &>&&>&正文
污水处理技术篇:臭氧除臭脱色降COD作用原理
&&来源:北极星节能环保网&&&& 10:36:16&&我要投稿&&
:臭氧(O3)技术于1905年应用于水处理,随着相关技术的进步,臭氧化法成本的降低,被普遍认为是很有发展前景的水处理方法。由于其技术经济的优势,已经在广泛应用了,取得了一些研究和工程的应用的成果。北极星节能环保网通过篇向大家介绍臭氧在污水处理过程中,除臭、脱色、降COD的作用原理。一、臭氧对剩余污泥的减量化活性污泥法使污水日处理能力得以提高,并作为一种常见的污水处理技术在国内外得到广泛应用,但污水处理过程中产生的剩余污泥已成为一个难题,费用占整个污水处理费用的比重很大。在剩余污泥减量化技术当中,用臭氧对污泥进行前处理的减量化技术已经比较成熟。经臭氧处理后的污泥作为污水的一部分和目标废水一起进入曝气池,被微生物利用消化,部分转化为二氧化碳,经过这样一个臭氧对污泥的预处理过程,剩余污泥得到大幅度减量。臭氧剩余污泥减量技术现场需要臭氧发生器,能量消耗较大,高效率臭氧发生器的开发和臭氧的利用率对于降低污水成本有很大的作用。日本近年来一直致力于高效率臭氧器的开发,在提高臭氧利用效率等研究上,改变连续第浓度臭氧处理污泥为间歇搞浓度臭氧处理污泥,用实际废水作对照实验,发现改进后的臭氧污泥处理,所需的臭氧量约为原料的四分之一。同时处理水质要优于连续低浓度臭氧处理的水质,为降低臭氧污泥减量的污水处理技术成本提供了一个可能的途径。二、臭氧对水体的除异臭在污水处理工艺过程中产生气味的物质主要由碳、氮和硫元素组成。只有少数产生气味的物质是无机化合物,如氨 气、磷、硫 化 氢;大多数产生气味的物质是有机化合物,如低分子脂肪酸、胺类、醛类、酮类、醚类等。就本人所在的污水处理厂进水情况来分析,80%的进水量为生活污水,即有机物质的含量是很高的,无机化合物的含量相对比较少。
投稿联系:周先生&& &&&新闻投稿咨询QQ:
邮箱:(请将#换成@)
相关站点:&>&&>&&>&
北极星节能环保网声明:此资讯系转载自北极星电力网合作媒体或互联网其它网站,北极星节能环保网登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考。
北极星节能环保网10月13日获悉,财政部网站发布了《关于联合公布第三批政府和社会资本合作示范项目加快推动示范项目建设的通知》,并公布第三批政府和社会资本合作示范项目名单,第三批PPP示范项目总共516个,11708亿投资额。
新闻排行榜 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
臭氧在污水处理中的应用
下载积分:500
内容提示:臭氧在污水处理中的应用
文档格式:PDF|
浏览次数:196|
上传日期: 16:34:08|
文档星级:
该用户还上传了这些文档
臭氧在污水处理中的应用
官方公共微信臭氧氧化水样检测COD的问题,怎么处理?
臭氧-双氧水处理后水样检测cod和放置一晚上后再测数据差距挺大,大概有30-40,请问是什么原因,放置后水样cod值低,是水体中有什么臭氧残余活着副产物影响cod检测吗?
这个问题很简单,因为双氧水是一种两性物质,在测定时会被重铬酸钾所氧化,体现出其还原性。我之前也有遇到类似问题,环.保.通上面有人跟我说在测定时COD变高,但若,放置一晚上后,由于双氧水不稳定会分解成水和氧气,所以水样中的双氧水就变少了,测出来的COD自然就降低了。
微电解法是利用金属腐蚀原理,形成原电池对废水进行处理的良好工艺,又称为内电解法、零价铁法、铁屑过滤法、铁碳法。该工艺自诞生开始就引起了许多国家的重视,如美国、苏联、日本等。2O世纪70年代,由前苏联的科学工作者首先把铁屑用于印染废水的处理。该法于20世纪80年代引入我国,是近30年来被广泛应用于印染、重金属、制药、油田废水等污水处理中的一种新兴的电化学方法,其具有使用范围广、工艺简单、处理效果好等特点,尤其对于高盐度,高COD以及色度较高的废水的处理较其他工艺具有更加明显的优势。难生物降解的废水经微电解工艺处理后B/C值(生化需氧量与化学需氧量的比值)大大提高,有利于后续生物处理效果的提高。国内一般将该工艺用于废水的预处理,或者与其他工艺结合使用以达到去除污染物的目的。铁炭原电池反应:阳极:Fe - 2e → Fe2+ E (Fe/Fe2+) = 0.44V 阴极:2H+ + 2e → H2 E (H+/H2) = 0.00V 当有氧存在时,阴极反应如下:O2 + 4H+ + 4e → 2H2O E (O2) = 1.23V O2 + 2H2O + 4e → 4OH- E (O2/OH-) = 0.41V● 一般微电解反应为:铁原子与炭原子是紧挨着或分开而形成原电池反应。这种铁炭接触不利于电子的转移,电荷效率较低,因此废水中有机物的去除效率一般也较低。同时当铁炭一旦分层将更不利于有机物的去除。● 铁炭包容式微电解反应为:铁原子与炭原子是相互包容组成架构而形成的原电池反应。这种铁炭接触不存在铁与炭的分层问题,因此更有利于电子的转移,电荷效率较高,废水中有机物的去除效率也较高。●微电解处理高浓度有机废水的作用机理工具/原料铁、碳第三代铁碳微电解填料TPFC的特点1防板结:经过高温冶炼,铁和碳融合为一体,这种铁碳一体式结构呈现出蜂窝状构架,这种构架可以有效地防止板结。高效性:铁碳一体式微电解填料内部有许多毛细管式的气孔,可以快速吸入废水,使其在内部反应,提高了反应效率。不钝化:铁炭一体的架构可以避免钝化的产生。在填料中碳不是以大颗粒形式存在,而是以非常细小的形式存在,反应中随着铁的消耗碳也在不断的脱落,脱落后的细小碳粒会吸附着污染物质进入沉淀池经絮凝沉淀。破环、断链:相互靠近的铁和碳浸泡在溶解中时,会产生微电流,这种电流的综合作用会使得难降解化合物破环、断链。耐受性:可以耐受废水水质波动的范围大,并且可以处理高浓度难降解废水。提高可生化性:可以有效提高废水的B/C值,将难生化废水转化为易生化废水。效性:微电解反应可以产生多种效应,借助铁碳之间1.2伏的电位差,可以产生微电流;微电流又会刺激废水产生新生态的氢和新生态的氧,这些新生态的氢和氧具有很强的还原性和氧化性,会使得废水发生强烈的氧化还原反应,将难降解化合物转化为易降解化合物;同时产生的铁离子体现还原性的同时还是高效的絮凝剂。免更换:第三代铁碳微电解填料TPFC的使用寿命是没有限制的,不用频繁的更换填料,省去了繁琐的更换填料的过程。铁和碳是同时消耗的,填料中铁和碳的比例永远不会改变,因此填料的消耗只是量的改变,而不是质变。所以随着填料的消耗只需要添加新填料就可以了高强度:本填料的物理强度为1100kg/cm2,可以承受水压能力强。比表面积大:比表面积为1.2m2/g,大比表面积可以使得填料充分的与废水混合,从而提高反应效率。孔隙率高,堆密度低:第三代铁碳微电解填料TPFC采用专业构架成孔技术,孔隙率高,堆密度1.2g/cm3,反应活性高,填充量减少,材料省,大幅度降低工程成本。12使用广泛:广泛使用于印染、电镀、造纸、医药、硝基苯、苯胺、有机硅、印刷线路板、焦化、畜牧、双氧水化工、石油化工、橡胶助剂化工以及含苯环化工废水的处理。
已有帐号?
无法登录?
社交帐号登录您现在的位置:&&>>&&>>&正文
臭氧氧化法深度处理造纸废水
发布时间: 10:36:09&&中国污水处理工程网
&&摘要:用臭氧氧化法处理生化后造纸废水,考察了不同温度、初始pH值、臭氧通入量、反应时间等条件下臭氧化过程对废水色度和COD去除率的影响。结果表明:臭氧化过程COD和色度的去除随着初始pH值、臭氧通入量和反应时间的增加而增强;随着温度的升高,COD和色度的去除率先增大后减小,25℃时去除效果最佳。当初始pH值为8.12,臭氧通入量514mg(400mL废水),在25℃时臭氧化反应10min,色度和COD平均去除率分别达到86.3%和38.9%,处理效果较好。
关键词:造纸废水,臭氧氧化过程,COD,色度
众所周知,造纸工业已成为中国环境污染的主要行业之一,尤其是对水环境的污染,已成为工业污染防治的焦点、重点和难点。
目前,国内大部分工厂处理造纸废水都采用一级沉淀、二级生化处理的工艺[1],尽管制浆造纸废水中大多数可生物降解的化合物在生物处理过程中可以脱除,但传统生物法如氧化塘法、活性污泥法并不能去除造纸废水中的木质素衍生物以及漂白过程中产生的氯酚类物质,中难生物降解有机物成为废水达标排放的重大障碍[2],因此,在淡水资源日益紧张的今天,对制浆造纸废水进行深度处理势在必行。臭氧具有很强的氧化性,其标准电极电位为2.07eV,它可将大多数有机物降解为小分子化合物或者完全矿化为CO2和H2O。臭氧已广泛应用于废水处理中,可用于生物处理前的预处理以提高废水的可生物降解性,改善生物处理效果;也可用于生物处理后的深度处理,去除废水中难生物降解有机物以及废水的脱色等[3,4]。臭氧氧化法作为快速、高效处理手段用于废水的深度处理,具有氧化能力强、反应快、使用方便等特点,对降低废水中的COD、色度等具有特殊的处理效果[5]。目前,臭氧以及臭氧的联合技术,被认为是处理制浆造纸废水具有前景的深度氧化技术。
本文利用臭氧氧化法对生化后造纸废水进行深度处理, 进一步降低出水COD以满足新的造纸工业污染物排放标准( GB ) , 通过实验研究了不同条件下臭氧化过程对废水COD 和色度去除效果的影响。1 实验部分1. 1 实验装置及方法臭氧氧化实验在自制反应器中进行, 实验装置如图1所示:
以氧气为气源, 经臭氧发生器产生臭氧, 通过单向阀后以聚四氟乙烯管导入, 经微孔曝气头分散气泡后进入水体与水中污染物接触后发生臭氧化反应, 反应后尾气经10% K I溶液吸收后排出。实验方法: 每次将400mL废水样注入到反应器中, 打开氧气阀, 待气流量稳定后开启臭氧发生器,分别在温度、初始pH 值、臭氧通入量和反应时间等不同条件下进行反应, 臭氧化后废水经0. 45Lm 膜过滤后测COD 及色度。1. 2 实验材料及装置( 1)水样: 造纸废水取自南方某制浆造纸厂生化后废水, 其基本水质指标如表1。
( 2)臭氧发生器: 臭氧由B1 - 5 型臭氧发生器(广州威固环保设备有限公司)产生, 进气压力为0. 05MPa, 臭氧产量为5g /h, 浓度为60~ 80mg /L。( 3)臭氧反应柱: 改进的600mL孟式洗涤烧瓶,材质为有机玻璃, 内用硅胶管连接微孔曝气头。1. 3 分析检测pH 值、温度用SARTOR IUS B asic pH Meter PB- 10(德国赛多利斯股份公司)测定; 臭氧浓度采用碘量法测定[ 8]; COD 测定采用重铬酸钾法, 经COD消解器在150e 震荡加热2h后用HACH 公司生产的便携式光度计于620nm 处测其吸收; 色度用便携式光度计测定, 经0. 5Lm 滤膜过滤后的水样pH调至7. 6于465nm 处测其吸收。2 结果与讨论2. 1 温度对臭氧化处理效果的影响水样取回后保存于冰箱4e 环境下, 为探讨温度对臭氧化处理造纸废水效果的影响, 调节氧气进气量为1L /m in, 经碘量法测得臭氧浓度为43mg /L,分别于5e 、15e 、25e 、35e 、45e 条件下考察其处理COD 和色度去除情况, 每次进水400mL, 反应10m in后经0. 45Lm膜过滤后测出水COD 及色度,结果如图2所示。
由图可知, 从5e 到25e , COD 和色度的去除率均呈现上升趋势, 继续升高温度, 去除率反而下降, 这可能是由于温度升高, 虽然加快了臭氧在水体中的传质速度, 但高温条件下, 却加快了臭氧在水中的分解, 从而在与水体中有机污染物反应过程中减小了臭氧的利用率[ 9] 。25e 时, 色度和COD去除率分别达到83. 8% 和36. 5%, 而当体系温度上升到45e 时, 色度去除率下降到70. 5%, 减少了13. 3% , 而COD 去除率减少了23% , 这说明在臭氧化过程中, 温度对COD去除效果的影响更为显著。因此在实际反应过程中, 选择15e ~ 25e 范围。2. 2 pH 值对臭氧化处理效果的影响原水pH 值为7. 8-8. 2, 在( 23 ? 2) e 环境温度下, 其它条件不变, 考察初始pH 值为4、6、8、10、12的臭氧化处理过程, 去除效果如图3所示。
由图可知, 随着初始pH 值的增大, COD 和色度的去除率均有不同程度的增加, 进水初始pH 值为4时, 色度和COD的去除率分别为61. 5%和12. 7%,而反应体系pH 值增加到8时, 色度去除率增加到84. 3% , COD 去除率增加到34. 8%, 继续增大初始pH 值到12 使反应在强碱性条件下进行, 色度和COD 去除率分别达到92. 7% 和48. 5%, 去除效果极佳。实验结果表明: 臭氧化过程在酸性条件下,COD 和色度的去除率均相对较小, 中性环境下去除效果有所改善, 而在碱性环境下, 去除率最高。这是因为碱性pH 引起臭氧分解速率的增加而产生了氧化性更强的自由基( HO# ) , HO# 的氧化还原电位高达2. 80eV, 具有极强的氧化性, 且选择性小, 它能够与大多数难降解有机物反应生成小分子化合物或者完全矿化为CO2 和H2O。而在酸性条件中, HO#的间接反应不占主导地位, 臭氧化过程主要是O3 分子直接与有机物反应, O3 分子直接反应具有很强的选择性, 主要进攻有机物中的双键部分, 使得双键断裂生成小分子羧酸或者醛类, 而难以达到将有机物彻底矿化的程度[ 4] 。原水pH 为7. 8 ~ 8. 2, 此时色度和COD 去除率分别为84. 3% 和34. 8%, 去除效果较好, 考虑到实际应用, 后续实验中选择在原水pH 条件下处理。2. 3 臭氧通入量对臭氧化处理效果的影响进水初始pH 为8. 12, 25e 环境温度, 在其它条件不变的情况下, 通过调节臭氧输出流量改变臭氧的通入量, 分别考察了臭氧通入量为85、170、257、342、428、514mg时反应10m inCOD和色度的去除情况, 结果如图4所示。
由图4可知, 色度和COD 去除率均随着臭氧通入剂量的增加而增大, 色度去除率开始迅速增加而后变化趋于平缓, COD 去除率则开始变化相对较为平缓而后大幅增加: 当臭氧通入量由85mg 增加到257mg 时, 色度去除率由55. 9% 大幅变化到79. 9%, 增加了24% , COD 去除效果变化却相对缓慢, 由11. 2% 提高到21. 2% , 去除率仅增加了10%; 而继续增加臭氧通入量到514mg 时, 色度的变化已趋于平缓, 去除率为86. 3% , 仅提高了6. 4%, 而COD 的去除率却大幅增加, 提高到38. 9%。这是由于随着臭氧通入量的增加, 溶液中溶解的O3 迅速增加, 而O3 分子的高选择性使得它迅速进攻木素以及木素衍生物中的C = C、C = O 双键, 使得双键断裂分解为小分子化合物或者矿化为CO2 和H2O, 因此在反应过程中可以看到造纸废水在反应开始阶段脱色效果明显而后变化不大的现象。由于造纸废水中的有机污染物多为木素衍生物、纤维素、半纤维素以及漂白过程中产生的氯酚类等难降解有机物, O3 分子以及在反应过程中产生的HO# 很难在短时间内迅速将这些大分子有机物降解为小分子化合物或者完全矿化, 因此色度和COD去除率变化呈现出图中所示趋势。2. 4 反应时间对臭氧化处理效果的影响每次取同体积水样( 400mL)考察不同反应时间对臭氧化处理效果的影响, 其它条件不变, 碘量法测得进气臭氧浓度为42mg /L, 臭氧化处理效果如图5所示。
由图可知, 反应2m in 后, 色度去除率已达到55. 8% , 随着反应时间的增加, COD 和色度的去除率也随之增大, 当臭氧化反应进行10m in时, 色度去除率已达到83. 4%, 而继续延长反应时间到15m in,色度的去除率变化已趋于平缓, 仅增加了5. 5%。COD 的去除率在臭氧化反应8m in后出现了大幅变化, 在2m in内增加了10% , 10m in时COD去除率已达31. 4%, 而继续增加反应时间到15m in, COD 变化已趋于平缓, 反应结束时, COD去除率为35. 9%。臭氧的强氧化性可将造纸废水中的大部分有机物氧化分解去除, 但臭氧氧化分解难降解有机物的能力是有限的, 继续增加臭氧化反应时间, 去除效果并没有明显的变化。3 结论( 1)利用自制的臭氧氧化发生装置深度处理生化后造纸废水具有较好的效果, 当初始pH 为8. 12,臭氧通入量为514mg ( 400mL废水), 在25e 条件下臭氧化反应10m in, 色度和COD 去除率分别达到86. 3%和38. 9% , 处理效果较好。( 2)色度和COD 的去除率随着温度的逐渐升高先增大后降低, 在相应条件下, 25e 时处理效果最好, COD 和色度去除率分别为83. 8% 和36. 5%。( 3)随着初始pH值的增大, 臭氧化过程对COD和色度的去除率也随之增大, 酸性条件下去除率最低, 中性环境下有所改善, 碱性条件下臭氧化过程处理效果最为显著, 当初始pH = 12使反应在强碱性条件下进行时, 色度和COD去除率分别达到92. 7%和48. 5% 。具体参见更多相关技术文档。( 4)随着臭氧通入剂量的增加, 色度和COD去除率也随之增大。臭氧通入量小于257mg (废水400mL)时, 色度去除率迅速增加, 继续增大臭氧量其去除率变化趋于平缓, COD 去除率则开始变化相对较为平缓而后大幅增加。( 5)色度和COD 的去除率随着臭氧化反应时间的增加而逐渐增大, 色度的去除时间较短, 在反应2m in内色度已去除55. 8%, 6m in后色度去除率达到79. 9% , 而COD 去除则相对缓慢, 臭氧化反应进行15m in, 去除率为35. 9%。(华南理工大学造纸与污染控制国家工程研究中心)}

我要回帖

更多关于 臭氧处理污水接触时间 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信