【2016-贵州省安顺市安顺模拟】已知函数f(x)=ax-e^x(a∈R),g(x)=lnx/x.

已知函数f(x)=x+ax(a∈R),g(x)=lnx(1)求函数F(x)=f(x)+g(x)的单调区间;(2)若关于x的方程g(x)x=xo[f(x)-2e](e为自然对数的底数)只有一个实数根,求a的值. - 跟谁学
在线咨询下载客户端关注微信公众号
搜索你想学的科目、老师试试搜索吉安
在线咨询下载客户端关注微信公众号&&&分类:已知函数f(x)=x+ax(a∈R),g(x)=lnx(1)求函数F(x)=f(x)+g(x)的单调区间;(2)若关于x的方程g(x)x=xo[f(x)-2e](e为自然对数的底数)只有一个实数根,求a的值.已知函数R),g(x)=lnx(1)求函数F(x)=f(x)+g(x)的单调区间;(2)若关于x的方程(e为自然对数的底数)只有一个实数根,求a的值.科目:难易度:最佳答案解:函数的定义域为(0,+∞).∴′(x)=1-ax2+1x=2+x-ax2.①当△=1+4a≤0,即时,得x2+x-a≥0,则F′(x)≥0.∴函数F(x)在(0,+∞)上单调递增.(2分)②当△=1+4a>0,即时,令F′(x)=0,得x2+x-a=0,解得1=-1-1+4a2<0,x2=-1+1+4a2.(ⅰ)&若,则2=-1+1+4a2≤0.∵x∈(0,+∞),∴F′(x)>0,∴函数F(x)在(0,+∞)上单调递增.(4分)(ⅱ)若a>0,则时,F′(x)<0;时,F′(x)>0,∴函数F(x)在区间上单调递减,在区间上单调递增.综上所述,当a≤0时,函数F(x)的单调递增区间为(0,+∞);(6分)当a>0时,函数F(x)的单调递减区间为,单调递增区间为.(8分)(2)解:令,则′(x)=1-lnxx2.令h′(x)=0,得x=e.当0<x<e时,h′(x)>0;&当x>e时,h′(x)<0.∴函数h(x)在区间(0,e)上单调递增,在区间(e,+∞)上单调递减.∴当x=e时,函数h(x)取得最大值,其值为.(10分)而函数m(x)=x2-2ex+a=(x-e)2+a-e2,当x=e时,函数m(x)取得最小值,其值为m(e)=a-e2.(12分)∴当2=1e,即2+1e时,方程2=f(x)-2e只有一个根.(14分)解析(1)函数的定义域为(0,+∞),′(x)=1-ax2+1x=2+x-ax2.由此能求出函数F(x)=f(x)+g(x)的单调区间.(2)令,则′(x)=1-lnxx2.令h′(x)=0,得x=e.当0<x<e时,h′(x)>0;&当x>e时,h′(x)<0.函数h(x)在区间(0,e)上单调递增,在区间(e,+∞)上单调递减.由此能求出满足条件的实数的值.知识点:&&&&&&基础试题拔高试题热门知识点最新试题
关注我们官方微信关于跟谁学服务支持帮助中心已知f(x)=ax-lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(1)讨论a=1时,函数f(x)的单调_答案_百度高考
已知f(x)=ax-lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(1)讨论a=1时,函数f(x)的单调_答案_百度高考
数学 函数的单调性与导数...
已知f(x)=ax-lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(1)讨论a=1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+;(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
第-1小题正确答案及相关解析
解:(1)因为,所以当0<x<1时,f‘(x)<0,此时函数f(x)单调递减.
当1<x≤e时,f'(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f(1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又,所以当0<x<e时,g'(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=,所以,所以在(1)的条件下,f(x)>g(x)+.(3)假设存在实数a,使f(x)=ax-lnx,x∈(0,e],有最小值3,则,①当a≤0时,f'(x)<0,f(x)在(0,e]上单调递减,,(舍去),此时函数f(x)的最小值不是3.②当0时,f(x)在(0,]上单调递减,f(x)在(,e]上单调递增.所以f,满足条件.③当时,f(x)在(0,e]上单调递减,,(舍去),此时函数f(x)的最小值是不是3.综上可知存在实数a=e2,使f(x)的最小值是3.当前位置:
>>>已知a∈R,函数f(x)=ax+lnx-1,g(x)=(lnx-1)ex+x(其中e为自然对数..
已知a∈R,函数f(x)=ax+lnx-1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).(1)求函数f(x)在区间(0,e]上的最小值;(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
题型:解答题难度:中档来源:河南模拟
(1)∵f(x)=ax+lnx-1,∴f′(x)=-ax2+1x=x-ax2令f'(x)=0,得x=a.①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值.②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x)在区间(0,a)上单调递减,当x∈(a,e]时,f'(x)>0,函数f(x)在区间(a,e]上单调递增,所以当x=a时,函数f(x)取得最小值lna③若a≥e,则f'(x)≤0,函数f(x)在区间(0,e]上单调递减,所以当x=e时,函数f(x)取得最小值ae..综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值;当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna;当a≥e时,函数f(x)在区间(0,e]上的最小值为ae.(2)∵g(x)=(lnx-1)ex+x,x∈(0,e],∴g'(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=exx+(lnx-1)ex+1=(1x+lnx-1)ex+1.由(1)可知,当a=1时,f(x)=1x+lnx-1.此时f(x)在区间(0,e]上的最小值为ln1=0,即1x+lnx-1≥0.(10分)当x0∈(0,e],ex0>0,1x0+lnx0-1≥0,∴g′(x0)=(1x0+lnx0-1)ex0+1≥1>0.曲线y=g(x)在点x=x0处的切线与y轴垂直等价于方程g'(x0)=0有实数解.(13分)而g'(x0)>0,即方程g'(x0)=0无实数解.、故不存在x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直.
马上分享给同学
据魔方格专家权威分析,试题“已知a∈R,函数f(x)=ax+lnx-1,g(x)=(lnx-1)ex+x(其中e为自然对数..”主要考查你对&&函数的极值与导数的关系,函数的最值与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的极值与导数的关系函数的最值与导数的关系
极值的定义:
(1)极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点; (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:
(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小; (2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个; (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。 判别f(x0)是极大、极小值的方法:
若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点, 是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。
求函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
对函数极值概念的理解:
极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.&&③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,&&&函数的最大值和最小值:
在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
&利用导数求函数的最值步骤:
(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。
&用导数的方法求最值特别提醒:
①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。&生活中的优化问题:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.
用导数解决生活中的优化问题应当注意的问题:
(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.
利用导数解决生活中的优化问题:
&(1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.&(2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,&&①求函数y =f(x)在(a,b)上的极值;& ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.&&(3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.
发现相似题
与“已知a∈R,函数f(x)=ax+lnx-1,g(x)=(lnx-1)ex+x(其中e为自然对数..”考查相似的试题有:
464288402520304319555833463101817533若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知函数f(x)=ax3+3xlnx-1(a∈R).(1)当a=0时,求f(x)的极值;(2)若f(x)在区间(,e)上有且只有一个极值点,求实数a的取值范围.
考点:利用导数研究函数的极值
分析:(1)当a=0时,化简函数f(x)=3xlnx-1并求定义域,再求导数f′(x)=3lnx+3=3(lnx+1),从而由导数确定函数的极值;(2)函数f(x)=ax3+3xlnx-1的定义域为(0,+∞),再求导f′(x)=3(ax2+lnx+1),再令g(x)=ax2+lnx+1,再求导g′(x)=2ax+=2+1x,从而由导数的正负性分类讨论以确定函数是否有极值点及极值点的个数.
解:(1)当a=0时,f(x)=3xlnx-1的定义域为(0,+∞),f′(x)=3lnx+3=3(lnx+1),故f(x)=3xlnx-1在(0,)上是减函数,在(,+∞)上是增函数;故f(x)在x=时取得极小值f()=-3-1;(2)函数f(x)=ax3+3xlnx-1的定义域为(0,+∞),f′(x)=3(ax2+lnx+1),
查看完整解析,请下载菁优APP
【拍照搜题】:一秒出答案;
【名师答疑】:真人免费答疑;
【提分训练】:考高分就靠它了;
【离线题库】:不上网也能使用。
查看完整解析
点评:本题考查了导数的综合应用及分类讨论的思想应用,化简比较困难,属于难题.
江苏省南通市高考数学一模试卷
江苏省连云港市灌云一中高三(上)第二次月考数学试卷
菁优客户端
·拍照搜题
·在线提问
·专业解析
·提分训练
·千万题库资源
·速度快省流量}

我要回帖

更多关于 贵州安顺旧州2016图片 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信