己知函数f(x)=x²+ax-13 (1)当x∈R时,f(x)≥a桓成立求a取值函数范围 (2)当x∈[-

当前位置:
>>>已知函数f(x)=13x3+ax2-bx+1(a、b∈R)在区间[-1,3]上是减函数,则..
已知函数f(x)=13x3+ax2-bx+1(a、b∈R)在区间[-1,3]上是减函数,则a+b的最小值是(  )A.23B.32C.2D.3
题型:单选题难度:中档来源:不详
f′(x)=x2+2ax-b,因为函数f(x)在区间[-1,3]上是减函数即在区间[-1,3]上,f′(x)≤0,得到f′(-1)≤0,且f′(3)≤0,代入得1-2a-b≤0①,且9+6a-b≤0②,由①得2a+b≥1③,由②得b-6a≥9④,设u=2a+b≥1,v=b-6a≤9,假设a+b=mu+nv=m(2a+b)+n(-6a+b)=(2m-6n)a+(m+n)b,对照系数得:2m-6n=1,m+n=1,解得:m=78,n=18,∴a+b=78u+18v≥2,则a+b的最小值是2.故选C
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=13x3+ax2-bx+1(a、b∈R)在区间[-1,3]上是减函数,则..”主要考查你对&&函数的单调性与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的单调性与导数的关系
导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&
发现相似题
与“已知函数f(x)=13x3+ax2-bx+1(a、b∈R)在区间[-1,3]上是减函数,则..”考查相似的试题有:
764791884203497485829253274761448287当前位置:
>>>已知函数f(x)=ex-ax,其中a>0。(1)若对一切x∈R,f(x)≥1恒成立,求..
已知函数f(x)=ex-ax,其中a>0。(1)若对一切x∈R,f(x) ≥1恒成立,求a的取值集合;(2)在函数f(x)的图像上去定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立。
题型:解答题难度:偏难来源:高考真题
解:令当时单调递减;当时单调递增,故当时,取最小值于是对一切恒成立,当且仅当&①令则当时,单调递增;当时,单调递减故当时,取最大值因此,当且仅当时,①式成立.综上所述,的取值集合为。(Ⅱ)由题意知,令则令,则.当时,单调递减;当时,单调递增故当,即从而,又所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使即成立。
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=ex-ax,其中a>0。(1)若对一切x∈R,f(x)≥1恒成立,求..”主要考查你对&&函数的最值与导数的关系,函数的单调性与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的最值与导数的关系函数的单调性与导数的关系
函数的最大值和最小值:
在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
&利用导数求函数的最值步骤:
(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。
&用导数的方法求最值特别提醒:
①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。&生活中的优化问题:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.
用导数解决生活中的优化问题应当注意的问题:
(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.
利用导数解决生活中的优化问题:
&(1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.&(2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,&&①求函数y =f(x)在(a,b)上的极值;& ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.&&(3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&
发现相似题
与“已知函数f(x)=ex-ax,其中a>0。(1)若对一切x∈R,f(x)≥1恒成立,求..”考查相似的试题有:
266719283047286424252724284850412831当前位置:
>>>已知函数f(x)=ln(x+1)+ax2-x,a∈R.(1)当时,求函数y=f(x)的极值;..
已知函数f(x)=ln(x+1)+ax2-x,a∈R.(1)当时,求函数y=f(x)的极值;(2)是否存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b)?若存在,求实数a的取值范围,若不存在,请说明理由.
题型:解答题难度:中档来源:不详
(1)在x=1处取到极小值为,在x=0处取到极大值为0;(2).试题分析:(1)将代入函数f(x)解析式,求出函数f(x)的导函数,令导函数等于零,求出其根;然后列出x的取值范围与的符号及f(x)的单调性情况表,从表就可得到函数f(x)的极值;(2)由题意首先求得:,故应按分类讨论:当a≤0时,易知函数f(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,从而当b∈(0,1)时f(b)&f(0),所以不存在实数b∈(0,1),符合题意;当a&0时,令有x=0或,又要按根大于零,小于零和等于零分类讨论;对各种情况求函数f(x)x∈(-1,b]的最大值,使其最大值恰为f(b),分别求得a的取值范围,然而将所得范围求并即得所求的范围;若求得的a的取值范围为空则不存在,否则存在.试题解析:(1)当时,,则,化简得(x&-1)&&&& 2分&&&列表如下:x(-1,0)0(0,1)1(1,+)+0-0+f(x)增极大值减极小值增&∴函数f(x)在(-1,0),(1,+∞)上单调递增,在(0,1)上单调递减,且f(0)=0,, 4分∴函数y=f(x)在x=1处取到极小值为,在x=0处取到极大值为0; &&&&&5分(2)由题意(1)当a≤0时,函数f(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,此时,不存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b); &&&&&7分(2)当a&0时,令有x=0或,(ⅰ)当即时,函数f(x)在和(0,+∞)上单调递增,在上单调递减,要存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b),则,代入化简得&(1)令,因恒成立,故恒有,∴时,(1)式恒成立; &&&10分(ⅱ)当即时,函数f(x)在和上单调递增,在上单调递减,此时由题,只需,解得,又,∴此时实数a的取值范围是; &&&&&12分(ⅲ)当时,函数f(x)在上单调递增,显然符合题意; &&&&&13分综上,实数a的取值范围是.&&&&&&&&&&&14分
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=ln(x+1)+ax2-x,a∈R.(1)当时,求函数y=f(x)的极值;..”主要考查你对&&函数的单调性与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的单调性与导数的关系
导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&
发现相似题
与“已知函数f(x)=ln(x+1)+ax2-x,a∈R.(1)当时,求函数y=f(x)的极值;..”考查相似的试题有:
448176818304849712815150889282782316当前位置:
>>>已知函数f(x)满足f(x)=2f(1x),当x∈[1,3]时,f(x)=lnx,若在区间..
已知函数f(x)满足f(x)=2f(1x),当x∈[1,3]时,f(x)=lnx,若在区间[13,3]内,函数g(x)=f(x)-ax,有三个不同的零点,则实数a的取值范围是(  )A.[ln33,1e)B.[ln33,2e)C.(0,12e)D.(0,1e)
题型:单选题难度:中档来源:温州一模
在区间[13,3]内,函数g(x)=f(x)-ax,有三个不同的零点,①a>0若x∈[1,3]时,f(x)=lnx,可得g(x)=lnx-ax,(x>0)g′(x)=1x-a=1-axx,若g′(x)<0,可得x>1a,g(x)为减函数,若g′(x)>0,可得x<1a,g(x)为增函数,此时f(x)必须在[1,3]上有两个交点,∴g(1a)>0g(3)≤0g(1)≤0,解得,ln33≤a<1e①设13<x<1,可得1<1x<3,∴f(x)=2f(1x)=2ln1x,此时g(x)=-2lnx-ax,g′(x)=-2+axx,若g′(x)>0,可得x<-1a<0,g(x)为增函数若g′(x)<0,可得x>-1a,g(x)为减函数,在[13,1]上有一个交点,则g(-2a)>0g(13)≥0g(1)≤0,解得0<a≤6ln3②综上①②可得ln33≤a<1e;②若a<0,对于x∈[1,3]时,g(x)=lnx-ax>0,没有零点,不满足在区间[13,3]内,函数g(x)=f(x)-ax,有三个不同的零点,综上:ln33≤a<1e;故选A;
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)满足f(x)=2f(1x),当x∈[1,3]时,f(x)=lnx,若在区间..”主要考查你对&&函数的零点与方程根的联系,函数解析式的求解及其常用方法,函数的单调性与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的零点与方程根的联系函数解析式的求解及其常用方法函数的单调性与导数的关系
函数零点的定义:
一般地,如果函数y =f(x)在实数a处的值等于零,即f(a)=o,则a叫做这个函数的零点,有时我们把一个函数的图象与x轴的交点的横坐标,也叫做这个函数的零点。&&&&&&&&&&&&&&& 函数零点具有的性质:
对于任意函数y=(x)只要它的图象是连续不间断的,则有:(1)当它通过零点时(不是二重零点),函数值变号.如函数f(x)=x2-2x -3的图象在零点-1的左边时,函数值取正号,当它通过第一个零点-1时,函数值由正变为负,在通过第二个零点3时,函数值又由负变为正.(2)在相邻两个零点之间所有的函数值保持同号,方程的根与函数的零点的联系:
方程f(x)=0有实根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点 函数解析式的常用求解方法:
(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。 (2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。 (5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。 导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&
发现相似题
与“已知函数f(x)满足f(x)=2f(1x),当x∈[1,3]时,f(x)=lnx,若在区间..”考查相似的试题有:
874030815259870498462981780520619920当前位置:
>>>已知函数f(x)=ax2+2ln(1-x)(a∈R).(Ⅰ)若f(x)在[-3,-2)上是增函数..
已知函数f(x)=ax2+2ln(1-x)(a∈R).(Ⅰ)若f(x)在[-3,-2)上是增函数,求实数a的取值范围;(Ⅱ)是否存在正实数a,使得f(x)的导函数f′(x)有最大值1-22?若存在,求出a的值;若不存在,请说明理由.
题型:解答题难度:中档来源:武昌区模拟
(Ⅰ)由已知得f(x)的定义域为(-∞,1)f′(x)=2ax-21-x.(2分)由题意得f′(x)=2ax-21-x≥0对一切x∈[-3,-2)恒成立,∴a≤1-x2+x=1-(x-12)2+14.(5分)当x∈[-3,-2)时,-(x-12)2+14<-6,∴1-(x-12)2+14>-16.故a≤-16.(7分)(Ⅱ)假设存在正实数a,使得f′(x)max=1-22成立.f′(x)=2ax-21-x=2a-[2a(1-x)+21-x]≤2a-24a.(9分)由2a(1-x)=21-x,得(1-x)2=1a,∴x=1±1a.由于x=1+1a>1,故应舍去.当x=1-1a时,f′(x)max=2a-24a.(11分)令2a-24a=1-22,解得a=12或a=92-22.(13分)另假设存在正实数a,使得f′(x)max=1-22成立.设g(x)=f′(x)=2ax-21-x,则g′(x)=2a-2(1-x)2.(9分)由g′(x)=2a-2(1-x)2>0,解得x<1-1a或x>1+1a.因为x∈(-∞,1),∴g(x)在(-∞,1-1a)上单调递增,在上单调递减.∴f′(x)max=g(1-1a)=2a-4a.(11分)令2a-4a=1-22,解得a=12或a=92-22.(14分)
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=ax2+2ln(1-x)(a∈R).(Ⅰ)若f(x)在[-3,-2)上是增函数..”主要考查你对&&函数的单调性与导数的关系,函数的最值与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的单调性与导数的关系函数的最值与导数的关系
导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&函数的最大值和最小值:
在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
&利用导数求函数的最值步骤:
(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。
&用导数的方法求最值特别提醒:
①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。&生活中的优化问题:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.
用导数解决生活中的优化问题应当注意的问题:
(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.
利用导数解决生活中的优化问题:
&(1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.&(2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,&&①求函数y =f(x)在(a,b)上的极值;& ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.&&(3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.
发现相似题
与“已知函数f(x)=ax2+2ln(1-x)(a∈R).(Ⅰ)若f(x)在[-3,-2)上是增函数..”考查相似的试题有:
258292792090556746805333787194277549}

我要回帖

更多关于 span的赋值与取值 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信