0.35t磁共振振图像m,t,e是什么意思

【图文】磁共振成像原理_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
磁共振成像原理
上传于||暂无简介
大小:7.84MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢 上传我的文档
 下载
 收藏
长期从事电力技术和管理工作,继电保护、电气试验、电气检修和电气管理等方面经验丰富。
 下载此文档
正在努力加载中...
核磁共振成像系统(MRI)技术规格及要求(西门子西门子麦迪特0.35T)
下载积分:590
内容提示:核磁共振成像系统(MRI)技术规格及要求(西门子西门子麦迪特0.35T)
文档格式:DOC|
浏览次数:35|
上传日期: 13:40:02|
文档星级:
该用户还上传了这些文档
核磁共振成像系统(MRI)技术规格及要求(西门子西门子麦
官方公共微信核磁共振是什么?_百度知道
核磁共振是什么?
核磁共振的原理是什么?它对人体有多大伤害?
核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。
核磁共振根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:
质量数和质子数均为偶数的原子核,自旋量子数为0 ,即I=0,如12C,16O,32S等,这类原子核没有自旋现象,称为非磁性核。质量数为奇数的原子核,自旋量子数为半整数 ,如1H,19F,13C等,其自旋量子数不为0,称为磁性核。质量数为偶数,质子数为奇数的原子核,自旋量子数为整数,这样的核也是磁性核。但迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P ,由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。
原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。
原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的
核磁共振氢谱能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。
为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号.编辑本段技术应用
NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核憨阀封合莩骨凤摊脯揩磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱。
对于孤立原子核而言,同一种原子核在同样强度的外磁场中,
核磁共振碳谱只对某一特定频率的射频场敏感。但是处于分子结构中的原子核,由于分子中电子云分布等因素的影响,实际感受到的外磁场强度往往会发生一定程度的变化,而且处于分子结构中不同位置的原子核,所感受到的外加磁场的强度也各不相同,这种分子中电子云对外加磁场强度的影响,会导致分子中不同位置原子核对不同频率的射频场敏感,从而导致核磁共振信号的差异,这种差异便是通过核磁共振解析分子结构的基础。原子核附近化学键和电子云的分布状况称为该原子核的化学环境,由于化学环境影响导致的核磁共振信号频率位置的变化称为该原子核的化学位移。
耦合常数是化学位移之外核磁共振谱提供的的另一个重要信息,所谓耦合指的是临近原子核自旋角动量的相互影响,这种原子核自旋角动量的相互作用会改变原子核自旋在外磁场中进动的能级分布状况,造成能级的裂分,进而造成NMR谱图中的信号峰形状发生变化,通过解析这些峰形的变化,可以推测出分子结构中各原子之间的连接关系。例如在氢谱中,d 表示二重峰 dd 表示双二重峰 t 表示三重峰 m 表示多重峰,都是由于耦合作用产生的。
最后,信号强度是核磁共振谱的第三个重要信息,处于相同化学环境的原子核在核磁共振谱中会显示为同一个信号峰,通过解析信号峰的强度可以获知这些原子核的数量,从而为分子结构的解析提供重要信息。表征信号峰强度的是信号峰的曲线下面积积分,这一信息对于1H-NMR谱尤为重要,而对于13C-NMR谱而言,由于峰强度和原子核数量的对应关系并不显著,因而峰强度并不非常重要。
早期的核磁共振谱主要集中于氢谱,这是由于能够产生核磁共振
核磁共振信号的1H原子在自然界丰度极高,由其产生的核磁共振信号很强,容易检测。随着傅立叶变换技术的发展,核磁共振仪可以在很短的时间内同时发出不同频率的射频场,这样就可以对样品重复扫描,从而将微弱的核磁共振信号从背景噪音中区分出来,这使得人们可以收集13C核磁共振信号。
近年来,人们发展了二维核磁共振谱技术,这使得人们能够获得更多关于分子结构的信息,目前二维核磁共振谱已经可以解析分子量较小的蛋白质分子的空间结构。编辑本段医学运用
核磁共振成像技术是核磁共振在医学领域的应用。人体内含有非常丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。
与用于鉴定分子结构的核磁共振谱技术不同,核磁共振成像技术改变的是外加磁场的强度,而非射频场的频率。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。
核磁共振核磁共振成像技术还可以与X射线断层成像技术(CT)结合为临床诊断和生理学、医学研究提供重要数据。
核磁共振成像技术是一种非介入探测技术,相对于X-射线透视技术和放射造影技术,MRI对人体没有辐射影响,相对于超声探测技术,核磁共振成像更加清晰,能够显示更多细节,此外相对于其他成像技术,核磁共振成像不仅仅能够显示有形的实体病变,而且还能够对脑、心、肝等功能性反应进行精确的判定。在帕金森氏症、阿尔茨海默氏症、癌症等疾病的诊断方面,MRI技术都发挥了非常重要的作用。编辑本段地质勘探
核磁共振探测是MRI技术在地质勘探领域的延伸,通过对地层中水分布信息的探测,可以确定某一地层下是否有地下水存在,地下水位的高度、含水层的含水量和孔隙率等地层结构信息。
目前核磁共振探测技术已经成为传统的钻探探测技术的补充手段,并且
核磁共振应用于滑坡等地质灾害的预防工作中,但是相对于传统的钻探探测,核磁共振探测设备购买、运行和维护费用非常高昂,这严重地限制了MRS技术在地质科学中的应用。编辑本段基本特点
①共振频率决定于核外电子结构和核近邻组态;②共振峰的强弱决定于该组态在合金中所占的比例;③谱线的分辨率极高。编辑本段临床诊断
与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerized tomography, CT)相比,磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有
核磁共振成像6000万病例利用核磁共振成像技术进行检查。具体说来有以下几点:
对人体没有游离辐射损伤;
各种参数都可以用来成像,多个成像参数能提供丰富的诊断信息,这使得医疗诊断和对人体内代谢和功能的研究方便、有效。例如肝炎和肝硬化的T1值变大,而肝癌的T1值更大,作T1加权图像,可区别肝部良性肿瘤与恶性肿瘤;
通过调节磁场可自由选择所需剖面。能得到其它成像技术所不能接近或难以接近部位的图像。对于椎间盘和脊髓,可作矢状面、冠状面、横断面成像,可以看到神经根、脊髓和神经节等。能获得脑和脊髓的立体图像,不像CT(只能获取与人体长轴垂直的剖面图)那样一层一层地扫描而有可能漏掉病变部位;
能诊断心脏病变,CT因扫描速度慢而难以胜任;
对软组织有极好的分辨力。对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;
原则上所有自旋不为零的核元素都可以用以成像,例如氢(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。编辑本段临床意义适应症
神经系统的病变包括肿瘤、梗塞、出血、变性、先天畸形、感染等几乎成为确诊的手段。特别是脊髓脊椎的病变如脊椎的肿瘤、萎缩、变性、外伤椎间盘病变,成为首选的检查方法。
心脏大血管的病变;肺内纵膈的病变。
腹部盆腔脏器的检查;胆道系统、泌尿系统等明显优于CT。
对关节软组织病变;对骨髓、骨的无菌性坏死十分敏感,病变的
核磁共振成像发现早于X线和CT。
磁共振最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血液和脑脊液的流动;(d)顺磁性物质(e)蛋白质。磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小,从白色、灰色到黑色。各种组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈黑色。
颅脑及脊柱、脊髓病变,五官科疾病,心脏疾病,纵膈肿块,骨关节和肌肉病变,子宫、卵巢、膀胱、前列腺、肝、肾、胰等部位的病变。优点
1.MRI对人体没有损伤;
2.MRI能获得脑和脊髓的立体图像,不像CT那样一层一层地扫描而有可能漏掉病变部位;
3.能诊断心脏病变,CT因扫描速度慢而难以胜任;
4.对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT。缺点
1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断;
2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多;
3.对胃肠道的病变不如内窥镜检查;
4.体内留有金属物品者不宜接受MRI。
核磁共振探测技术5. 危重病人不能做
6.妊娠3个月内的
7.带有心脏起搏器的编辑本段注意事项
由于在核磁共振机器及核磁共振检查室内存在非常强大的磁场,因此,装有心脏起搏器者,以及血管手术后留有金属夹、金属支架者,或其他的冠状动脉、食管、前列腺、胆道进行金属支架手术者,绝对严禁作核磁共振检查,否则,由于金属受强大磁场的吸引而移动,将可能产生严重后果以致生命危险。一般在医院的核磁共振检查室门外,都有红色或黄色的醒目标志注明绝对严禁进行核磁共振检查的情况。
身体内有不能除去的其他金属异物,如金属内固定物、人工关节、金属假牙、支架、银夹、弹片等金属存留者,为检查的相对禁忌,必须检查时,应严密观察,以防检查中金属在强大磁场中移动而损伤邻近大血管和重要组织,产生严重后果,如无特殊必要一般不要接受核磁共振检查。有金属避孕环及活动的金属假牙者一定要取出后再进行检查。
有时,遗留在体内的金属铁离子可能影响图像质量,甚至影响正确诊断。
在进入核磁共振检查室之前,应去除身上带的手机、呼机、磁卡、手表、硬币、钥匙、打火机、金属皮带、金属项链、金属耳环、金属纽扣及其他金属饰品或金属物品。否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示;而且由于强磁场的作用,金属物品可能被吸进核磁共振机,从而对非常昂贵的核磁共振机造成破坏;另外,手机、呼机、磁卡、手表等物品也可能会遭到强磁场的破坏,而造成个人财物不必要的损失。
近年来,随着科技的进步与发展,有许多骨科内固定物,特别是脊柱的内固定物,开始用钛合金或钛金属制成。由于钛金属不受磁场的吸引,在磁场中不会移动。因此体内有钛金属内
核磁共振固定物的病人,进行核磁共振检查时是安全的;而且钛金属也不会对核磁共振的图像产生干扰。这对于患有脊柱疾病并且需要接受脊柱内固定手术的病人是非常有价值的。但是钛合金和钛金属制成的内固定物价格昂贵,在一定程度上影响了它的推广应用。编辑本段MRI检查适应症神经系统病变
脑梗塞、脑肿瘤、炎症、变性病、先天畸形、外伤等,为应用最早的人体系统,目前积累了丰富的经验,对病变的定位、定性诊断较为准确、及时,可发现早期病变。心血管系统
可用于心脏病、心肌病、心包肿瘤、心包积液以及附壁血栓、内膜片的剥离等的诊断。胸部病变
纵隔内的肿物、淋巴结以及胸膜病变等,可以显示肺内团块与较大气管和血管的关系等。腹部器官
肝癌、肝血管瘤及肝囊肿的诊断与鉴别诊断,腹内肿块的诊断与鉴别诊断,尤其是腹膜后的病变。盆腔脏器
子宫肌瘤、子宫其它肿瘤、卵巢肿瘤,盆腔内包块的定性定位,直肠、前列腺和膀胱的肿物等。骨与关节
骨内感染、肿瘤、外伤的诊断与病变范围,尤其对一些细微的改变如骨挫伤等有较大价值,关节内软骨、韧带、半月板、滑膜、滑液囊等病变及骨髓病变有较高诊断价值。全身软组织病变
无论来源于神经、血管、淋巴管、肌肉、结缔组织的肿瘤、感染、变性病变等,皆可做出较为准确的定位、定性的诊断。编辑本段特性区别
计算机断层扫描(CT)能在一个横断解剖平面上,准确地探测各种不同组织间密度的微小差别,是观察骨关节及软组织病变的一种较理想的检查方式。在关节炎的诊断上,主要用于检查脊柱,特别是骶髂关节。CT优于传统X线检查之处在于其分辨率高,而且还能做轴位成像。由于CT的密度分辨率高,所以软组织、骨与关节都能显得很清楚。加上CT可以做轴位扫描,一些传统X线影像上分辨较困难的关节都能在叮图像上“原形毕露”。如由于骶髂关节的关节面生来就倾斜和弯曲,同时还有其他组织之重叠,尽管大多数病例的骶髂关节用x线片已可能达到要求,但有时X线检查发现骶髂关节炎比较困难,则对有问题的病人就可做CT检查。
磁共振成像(MRI)是根据在强磁场中放射波和氢核的相互作用而获得的。磁共振一问世,很快就成为在对许多疾病诊断方面有用的成像工具,包括骨骼肌肉系统。肌肉骨骼系统最适于做磁共振成像,因为它的组织密度对比范围大。在骨、关节与软组织病变的诊断方面,磁共振成像由于具有多于CT数倍的成像参数和高度的软组织分辨率,使其对软组织的对比度明显高于CT。磁共振成像通过它多向平面成像的功能,应用高分辨的毒面线圈可明显提高各关节部位的成像质量,使神经、肌腱、韧带、血管、软骨等其他影像检查所不能分辨的细微结果得以显示。磁共振成像在骨关节系统的不足之处是,对于骨与软组织病变定性诊断无特异性,成像速度慢,在检查过程中。病人自主或不自主的活动可引起运动伪影,影响诊断。
X线摄片、CT、磁共振成像可称为三驾马车,三者有机地结合,使当前影像学检查既扩大了检查范围,又提高了诊断水平。编辑本段发展研究
1991年,58岁的瑞士化学家Richard R. Ernst已是功成名就,正马不停蹄地绕着地球领奖颁奖。在从莫斯科飞往纽约的泛美航空公司的班机上,他被机长告知了得诺贝尔化学奖的消息。在大西洋上空海拔一万多米的驾驶舱中,Ernst听取了来自瑞典皇家科学院,瑞士总统和他在苏黎士理工的同仁们的祝贺。据说,Ernst在说了不胜荣幸之类的客套话后,接着就问到:“谁是另外两个获奖者?”他急于想知道谁将和他瓜分那一百万美元的奖金。那年得诺贝尔化学奖的,只有Ernst一人。
核磁共振能得到化学家的青睐,源于一种叫“化学位移”(chemical shift)的现象。产生这种现象的原因,是因为围绕原子核旋转的电子改变了原子核周围的磁场强度,因而使原子核的共振频率发生了位移。于是,通过检测原子核的共振频率,就可以推算出其所处的电子也就是化学环境,核磁共振波谱学便应运而生了。
然而Ernst以前的核磁共振实验,用来激发原子核能级跃迁的电磁波都是单一频率的。要想捕捉到不同共振频率的原子,科学家们必须不厌其烦地改变磁场的强度,以使原子核的能级和电磁波的频率吻合,这样的实验是极其繁琐和费时的。Ernst率先发明了用脉冲信号取代单一频率电磁波的方法,脉冲信号包含的丰富的频率成分能一次性的把不同共振频率的原子核激发,这样只要对采集到的信号做一个简单的傅立叶变换,就可以得到样品的完整的核磁共振谱。Ernst的工作大大地改变了核磁共振波谱学的面貌,他创立的脉冲核磁共振和傅立叶分析理论对日后的成像研究也有巨大的影响,因为现代的成像技术多是在傅立叶空间采集数据,然后通过二维傅立叶变换进行图像重建。
如今核磁共振波谱学已经被广泛地应用于分析化学与结构化学的研究中,在关于蛋白质结构的研究上,开始和传统的X光晶体衍射的方法平分秋色。虽然核磁共振的方法在分辨率上尚不及X光晶体衍射,但因为核磁共振能直接对溶液中的蛋白质进行分析而不需要生成晶体,所以它在研究蛋白质三维结构的形成以及蛋白质之间的相互作用上,有其独到之处。2002年,诺贝尔化学奖的一半颁给了另一个在用核磁共振波谱学研究生物大分子结构方面有杰出工作的瑞士化学家Kurt Wüthrich,也许是因为这次是和另外两个做质谱仪的科学家平分,或者是得奖多次产生了审美疲劳,这一次在医学界并没有掀起太大的波澜。
其他类似问题
为您推荐:
您可能关注的推广
核磁共振的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁磁共振成像
医学百科提醒您不要相信网上药品邮购信息!
目录1 拼音cí gòng zhèn chéng xiàng2 英文参考MRI3 概述磁共振成像是利用核在内共振所产生信号经成像的一种成像技术。 磁共振成像()作为一项新的,近年来发展十分迅速。MRI所提供的量不但多于其他许多成像技术,而且以它所提供的特有信息对诊断疾病具有很大的潜在优越性。
(nuclear magneticresonance,NMR)是一种核物理现象。早在1946年Block与Purcell就报道了这种现象并应用于波谱学。Lauterbur1973年发表了MR成象技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻完善。范围基本上覆盖了全身各,并在世界范围内推广应用。为了准确反映其成像基础,避免与成像混淆,现改称为磁共振成象。参与MRi 成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力
4 MRI的成像基本原理与设备4.1 磁共振现象与MRI含单数的原子核,例如内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体(图1-5-1)。小磁体自旋轴的排列无一定规律。但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列(图1-5-2)。在这种状态下,
图1-5-1 质子带正电荷,它们像一样在不停地绕轴旋转,并有自己的磁场
用特定的射频(radionfrequency,RF)进行激发,作为小磁体的氢原子核一定量的能而共振,即了磁共振现象。停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和都恢复到激发前的状态。这一恢复过程称为弛豫过程(relaxationprocess),而恢复到原来状态所需的时间则称之为弛豫时间(relaxationtime)。有两种弛豫时间,一种是自旋-弛豫时间(spin-lattice relaxationtime)又称纵向弛豫时间(longitudinal relaxation time)反映自旋核把吸收的能传给周围晶格所的时间,也是90°射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称T1。另一种是自旋-自旋弛豫时间(spin-spin relaxation time),又称横向弛豫时间(transverse relaxation time)反映横向磁化衰减、丧失的过程,也即是横向磁化所维持的时间,称T2。T2衰减是由共振质子之间相互磁化所引起,与T1不同,它引起相位的变化。
图1-5-2 正常情况下,质子处于杂乱无章的排列状态。当把它们放入一个强外磁场中,就会发生改变。它们仅在平行或反平行于外磁场两个方向上排列
人体不同的正常与病理组织的T1是相对固定的,而且它们之间有一定的差别,T2也是如此(表1-5-1a、b)。这种组织间弛豫时间上的差别,是MRI的成像基础。有如时,组织间吸收系数()差别是CT成像基础的。但MRI不像CT只有一个参数,即吸收系数,而是有T1、T2和自旋核密度(P)等几个参数,其中T1与T2尤为重要。因此,获得选定层面中各种组织的T1(或T2)值,就可获得该层面中包括各种组织影像的图像。
MRI的成像也与CT。有如把检查层面分成Nx,Ny,Nz……一定数量的小体积,即体素,用接收器收集信息,数字化后输入计算机处理,获得每个体素的T1值(或T2值),进行空间。用器将每个T值转为模拟灰度,而重建图像。
表1-5-1a 人体正常与病变组织的T1值(ms)
表1-5-1b 正常颅脑的T1与T2值(ms)
4.2 MRI设备MRI的包括MR信号产生和数据采集与处理及图像显示两部分。MR信号的产生是来自大孔径,具有三维空间编码的MR波谱仪,而数据处理及图像显示部分,则与CT扫描装置相似。
MRI设备包括磁体、梯度线圈、供电部分、射频发射器及MR信号接收器,这些部分负责MR信号产生、探测与编码;模拟转换器、计算机、磁盘与磁带机等,则负责数据处理、图像重建、显示与存储(图1-5-3)。
磁体有常导型、超导型和永磁型三种,直接关系到、均匀度和性,并影响MRI的图像质量。因此,非常重要。通常用磁体类型来说明MRI设备的类型。常导型的线圈用铜、铝线绕成,磁场强度最高可达0.15~0.3T*,超导型的线圈用铌-钛线绕成,磁场强度一般为0.35~2.0T,用液氦及液氮冷却;永磁型的磁体由用磁性物质制成的磁砖所组成,较重,磁场强度偏低,最高达0.3T。
梯度线圈,修改主磁场,产生梯度磁场。其磁场强度虽只有主磁场的几百分之一。但梯度磁场为人体MR信号提供了空间定位的三维编码的可能,梯度场由X、Y、Z三个梯度磁场线圈组成,并有驱动器以便在扫描过程中快速改变磁场的方向与强度,迅速完成三维编码。
图1-5-3 MRI设备基本示意图
射频发射器与MR信号接收器为射频系统,射频发射器是为了产生临床检查目的不同的脉冲序列,以激发人体内氢原子核产生MR信号。射频发射器及射频线圈很象一个短波发射台及发射天线,向人体发射脉冲,人体内氢原子核相当一台收音机接收脉冲。脉冲停止发射后,人体氢原子核变成一个短波发射台,而MR信号接受器则成为一台收音机接收MR信号。脉冲序列发射完全在计算机之下。
MRI设备中的数据采集、处理和图像显示,除图像重建由Fourier变换代替了反投影以外,与CT设备非常相似。5 MRI图像特点5.1 灰阶成像具有一定T1差别的各种组织,包括正常与病变组织,转为模拟灰度的黑白影,则可使器官及其病变成像。MRI所显示的结构非常逼真,在良好清晰的解剖背景上,再显出病变影像,使得病变同解剖结构的关系更明确。
值得的是,MRI的影像虽然也以不同灰度显示,但反映的是MR信号强度的不同或弛豫时间T1与T2的长短,而不象CT图象,灰度反映的是组织密度。
MRI的图像如主要反映组织间T1特征参数时,为T1加权象(T1weighted image,T1),它反映的是组织间T1的差别。如主要反映组织间T2特征参数时,则为T2加权像(T2weighted image,T2WI)。
因此,一个层面可有T1WI和T2WI两种扫描成像方法。分别获得T1WI与T2WI有助于显示正常组织与病变组织。正常组织,如各种软组织间T1差别明显,所以T1WI有利于观察解剖结构,而T2WI则对显示病变组织较好。
在T1WI上,脂肪T1短,MR信号强,影像白;脑与肌肉T1居中,影像灰;脑脊液T1长;骨与空气含氢量少,MR信号弱,影像黑。在T2WI上,则与T1WI不同,例如脑脊液T2长,MR信号强而呈白影。表1-5-2是例举几种组织在T1WI和T2WI上的灰度。
表1-5-2 人体不同组织T1WI和T2WI上的灰度
图1-5-4 不同器官结构的MRI
A.B.C.颅脑的冠状面、矢状面及横断面的MRI D.颈部的矢状面MRI
E.F.大的横断面和矢状面MRI G.躯干冠状面MRI H.足的矢状面MRI
5.2 流空效应管的血液由于流动迅速,使发射MR信号的氢原子核离开接收范围之外,所以测不到MR信号,在T1WI或T2WI中均呈黑影,这就是流空(flowing Void)。这一效应使心腔和血管显影(图1-5-4),是CT所不能比拟的。5.3 三维成像MRI可获得人体横面、冠状面、矢状面及任何方向断面的图像,有利于病变的三维定位。一般CT则难于作到直接三维显示,需采用重建的方法才能获得状面或矢状面图像以及三维重建立体像(图1-5-4)。5.4 运动器官成像采用呼吸和门控(gating)成像技术,不仅能改善心脏大血管的MR成像,还可获得其动态图象。6 MRI检查技术MRI的扫描技术有别于CT扫描。不仅要横断面图像,还常要矢状面或(和)冠状面图像,还需获得T1WI和T2WI。因此,需选择适当的脉冲序列和扫描参数。常用多层面、多回波的自旋回波(spin echo,SE)技术。扫描时间参数有回波时间(echo time,TE)和脉冲重复间隔时间(repetition time,TR)。使用短TR和短TE可得T1WI,而用长TR和长TE可得T2WI。时间以毫秒计。依TE的长短,T2WI又可分为重、中、轻三种。病变在不同T2WI中信号强度的变化,可以帮助病变的性质。例如,肝血管瘤T1WI呈低信号,在轻、中、重度T2WI上则呈高信号,且随着加重程度,信号强度有递增表现,即在重T2WI上其信号特强。肝癌则不同,T1WI呈稍低信号,在轻、中度T2WI呈稍高信号,而重度T2WI上又略低于中度T2WI的信号强度。再结合其他临床影像学表现,不难将二者区分。
MRI常用的SE脉冲序列,扫描时间和成像时间均较长,因此对的制动非常重要。采用呼控和(或)呼吸补偿、心电门控和周围门控以及预饱和技术等,可以减少由于及血液流动所导致的呼吸、血流伪影以及脑脊液波动伪影等的,可以改善MRI的图像质量。
为了克服MRI中SE脉冲序列成像速度慢、检查时间长这一主要缺点,近年来先后开发了梯度回波脉冲序列、快速自旋回波脉冲序列等成像技术,已取得重大成果并广泛应用于临床。此外,还开发了指肪和水抑制技术,进一步增加MRI信息。
MRI另一新技术是磁共振(magnetic resonance angiography,MRA)。血管中流动的血液出现流空现象。它的MR信号强度取决于流速,流动快的血液常呈低信号。因此,在流动的血液及相邻组织之间有显著的对比,从而提供了MRA的可能性。目前已应用于大、中血管病变的诊断,并在不断改善。MRA不需穿剌血管和注入,有很好的应用前景。MRA还可用于血流速度和观察其特征。
MRI也可行造影增强,即从注入能使质子弛豫时间缩短的顺磁性物质作为造影剂,以行MRI造影增强。常用的造影剂为钆——二乙三胺五(Gadolinium-DTPA,Gd-DTRA)。这种造影剂不能通过完整的,不被胃粘膜吸收,完全处于细胞外间隙内以及无特殊,有利于鉴别和非肿瘤的病变。MRI作造影增强时,症灶增强与否及增强程度与病灶血供的多少和血脑屏障破坏的程度密切,因此有利于中枢神经系统疾病的诊断。
MRI还可用于拍摄电视、电影,主要用于的动态观察和诊断。
基于MRI对血流扩散和的研究,可以早期发现脑缺血性改变。它预示着很好的应用前景。
带有的人需远离MRI设备。体内有物,如金属夹,不仅影响MRI的图像,还可对患者造成严重后果,也不能进行MRI检查,应当注意。7 MRI诊断的临床应用MRI诊断广泛应用于临床,时间虽短,但已显出它的优越性。
在应用较为成熟。三维成像和流空效应使病变定位诊断更为准确,并可观察病变与血管的关系。对、幕下区、枕大孔区、与的显示明显优于CT。对脑脱髓鞘疾病、、、脑与、、脊髓异常与的诊断有较高价值。
纵隔在MRI上,脂肪与血管形成良好对比,易于观察及其与血管间的解剖关系。对与中心型的诊断,帮助也较大。
心脏大血管在MRI上因可显示其内腔,所以,心脏大血管的与的研究可在无的检查中完成。
对腹部与盆部器官,如肝、肾、膀胱,和,颈部和乳腺,MRI检查也有相当价值。在的早期显示,对血管的侵犯以及肿瘤的分期方面优于CT。
骨髓在MRI上表现为高信号区,侵及骨髓的病变,如肿瘤、及疾病,MRI上可清楚显示。在显示内病变及软组织方面也有其优势。
MRI在显示肠方面受到限制。
MRI还有望于对、和代谢方面进行研究,对恶性肿瘤的早期诊断也带来希望。
在完成MR成像的磁场强度范围内,对人体健康不致带来不良影响,所以是一种非性检查。
但是,MRI设备昂贵,检查费用高,检查所需时间长,对某些器官和疾病的检查还有限度,因之,需要严格掌握证。
8 适应证磁共振成像适用于下述疾病:
1.颅脑疾病 MRI诊断颅脑疾病已较成熟。常用T1加权和T2加权成像。正常状况下脑灰质含水较白质多,含脂肪则较少,所以脑灰质的T1和T2弛豫时间均较白质长。T1加权像上脑灰质的信号强度较低,脑白质的信号强度则较高。在一般灰阶显示时,低信号图像稍黑,而高信号图像则较白。脑脊液的T1、T2弛豫时间均较脑组织长,故在T1、T2加权像上分别呈低信号和高信号。头皮及板障所含脂肪较多,在所有成像脉冲程序均呈高信号。颅内板、、硬脑膜、乳突气房和副腔等不含质子或所含甚少,均呈无信号或甚低9 禁忌证磁共振检查无创伤性,无放射线辐射,对患者安全面可靠。对于检查的以下几方面应予注意:
1.目前用于人体检查的磁共振设备,磙场强度在2.0T以下,对人体本身并无有害的生物效应。
2.即使是较弱的磁场也足以造成心脏起搏器及器失灵。因此,带有上述装置者禁止进入磁共振室。
3.在磁场内的射频脉冲可使受检组织和体内植入的金属物温度轻微上升。体内较大植入物如人工节、金属异物,由于是导电物体,温度可升高1~2℃。
4.夹内镍的含量较高,在强磁场中会产生较大扭矩,有导致动脉瘤破裂的危险。
5.目前尚未发现医用磁共振设备造成人体改变和障碍,但对于妇女的检查应慎重,并尽量减少射频发射时间和次数。
6.由于检查室内为强磁场,心电监护仪、呼吸仪、心脏起搏器等抢救设备不能进入。因此,对危重病人应密切监护。10 准备1.仪器准备 MRI主要包括三个系统。
(1)磁场:磁场的多为0.1~2T(Tesla,特斯拉),可由超导、常导和混合磁体产生。根据场强的不同分为:①超低场强(0.02~0.09T);②低场强(0.1~0.3T);③中场强(0.3~1.0T);④高场强(1.0~2T)。
(2)射频场:由发射及接受线圈组成,包括分体线圈和表面线圈。
(3)计算机:控制及图像处理。
2.根据检查目的和部位的不同,患者做好相应的在准备11 原理及操作方法含有单数质子、单数或两者均为单数的原子核具有自旋和磁矩的性质,并且以一种特定方式绕磁场方向旋转。这种旋转称为进动或旋进。用一个频率与进动频率相同的射频脉冲激发所检查的原子核,将引起共振,即磁共振。在射频激发停止后,有的相位和能级都恢复到激发前状态,这个过程称为弛豫。这些能级变化和相位变化所产生的信号均能为所测或人体附近的接收器所测得。临床常用的MRI为质子成像。处于不同物理、化学状态下的质子,在射频激发和停止激发后,弛豫时间的长短各不相同。弛豫时间分T1和T2两种。T1弛豫时间又称纵向弛豫时间,为物质放置于磁场中产生磁化所需的时间,也即继90度射频脉冲从纵向磁化转为横向磁化之后恢复到纵向磁化所需时间。T2弛豫时间又叫横向弛豫时间或自旋——自旋弛豫时间,为在完全均匀的外磁场中,横向磁化所维持的时间。也就是继90度射频脉冲之后,共振质子或保持在相位中旋进的时间。
MR辐射的强度很弱,为提高MR信号的信噪比,就得重复使用产生自旋回波信号的脉冲程序。重复激发的间隔时间称为重复时间,简称IR。它可任意选择。第一次90度射频脉冲和探测自旋回波信号之间的时间,即回波延迟时间,简称回波时间或TE,也与所测得MR信号的强弱有关。TE也可由操作者任意选择。
选择不同的程序指标时间,可以区别或测出物质的T1、T2和质子密度。短TE和长TR时,图像所反映的是质子密度差别,称为质子加权象;随着TR变短,则T1成像因素增加,即短TE短TR(如TE=28ms,TR=0.5s)产生T1加权像;而采用长TE、长TR时(如TE>56ms,TR=2s),产生T2加权像。
根据所设计的程序不同,可以从整个检查体积中获取信号,也可以从该体积中的某一层面获取信号,在计算机辅助下,用这些信号可以重建成像。
1.T1加权像 在自旋回波(SE)序列中,应用短TR来加强T1值对图像的影响,同时应用短TE来削弱T2值对图像的影响。即短TR短TE(TR/TE≤1000/40ms,如TR500ms/TE15ms),它偏重于表现T1差别的图像,也就是说图像中组织对比度的差异主要由于组织间T1值的不同。
长T1在磁共振图像上表现为低信号,如含水量高、骨骼、钙化等;短T1在磁共振图像上表现为高信号,如脂肪、正铁等。
2.T2加权像 在自旋回波(SE)序列中,应用长TE来加强T2值对图像的影响,而应用长TR来削弱T1值对图像的影响。即长TR长,IE(TR/TE1000/40ms,如TR2000ms/TE90ms),它偏重于表现T2差别的图像。
长T2在磁共振图像上表现为高信号,如含水量高;短T2在磁共振图像上表现为低信号,如含铁素、、钙化等。
3.质子密度像 在自旋回波(SE)序列中,应用长TR来削弱T1值对图像的影响,应用短的TE来削弱T2值的影响,即长TR短TE所获得的图像,TR2000ms/IE15ms,它偏重于表现质子密度差别的图像。
4.增强扫描 目前常使用的造影剂GD-DTPA(轧-二五胺),其具有顺磁性,分布于细胞间液中,它主要改变氢质子的磁性作用和其驰豫时间,缩短T1和T2,可使病变及血脑屏障受到破坏的部位在T1加权像上产生高信号,实现目的。增强扫描只做T1扫描,判断图像是否强化可根据鼻粘膜、、海绵窦、侧的改变。
GD-DTPA经静脉注射,使用时不需做过敏试验。增强扫描可明确病变的数目并能发现平扫不能发现的病灶,鉴别肿瘤和周围,有利于病变的诊断。
5.磁共振血管成像(magnetic resonance angiography,MRA) 是目前非介入方法显示人体血管的有效手段,目前已在临床得到广泛应用。MRA的原理是利用血管内流动血液的特性,采用不同的扫描序列,将血管内的信号提高,使其与周围组织有高度的对比,使用计算机处理,将非高信号的组织影去除,形成血管图像。其可以测量血流速度、观察血流特征、分别显示或静脉等。
最常使用的技术手段:①时间飞越法。②相位对比法。这两种方法MRA都可以用二维的叠层切面成像或三维成像。
时间飞越法利用飞越时间和流入性增强效应:相应区段被的血液,在某一时刻被标记,在成像区域的血液中流入了充分驰豫的质子,形成血管内血液的高信号,因在标记和检出之间相应血液团的位置已有改变,故称飞越时间。方法:首先在欲造影部位使用饱和脉冲,使扫描范围内所有组织处于饱和状态,即不再产生磁共振信号。因血液不断流动,饱和血液将流出,而流入未被饱和的血液,这些血液就可以产生较高的磁共振信号,而周围静止组织信号则很低,从而提高了血液的信号,抑制周围组织的信号。经计算机重建后,就可显示血管。
相位对比法:血液流动过程中,氢质子的相位可发生变化,而静止的组织中不会发生这种相位变化。因此,相位对比法血管造影技术利用血流诱发的相位改变在流动质子和静止组织间形成的对比,可区别血流和周围组织,并使周围组织的信号完全消除,此种方法可使血流慢的小血管得到增强,有利于微细血管的显示。
三维流入法:利用流动增强效应,使用三维整体,将激励整体分割成相临的薄层,使血流在待检体积中出现有别于其他组织的MR高信号,用最大强度投影演算法处理,可在扫描区体积中形成高分辨力的MRA图像。
二维流入法:扫描时利用相临的单个薄层,可获得相当强的流入增强效应,不必考虑层面选择方向上的选择,可有效覆盖大范围,叠加二维可得到三维体积同样的覆盖范围,但不如后者。
一般说来,二维用来观察大的范围,对慢速血流,仅用于评价血管狭窄程度;而三维技术则提供较精细的分辨力图像,对快速血流敏感,对、等极有诊断价值。虽然MRA对颅内血管、颈部血管及肢体血管的价值与常规血管造影相似,但对极慢血流的病变可能漏掉,空间分辨力低于DSA。随着高场磁共振技术的不断提高,MRA有逐渐代替介入DSA检查的趋势。在MRA中使用造影剂GD-DTPA可以发现更隐匿的血管病变。12 注意事项1.MRI图像的与诊断 MRI黑白图像的形成复杂,同一病变在一些MRI图像上表现为黑的,而在另一些图像上则为白的。上黑白图像不仅取决于组织的固有特性,也取决于成像技术(如所选择的脉冲序列和扫描时间参数)。另外,组织的固有特性还可随MRI扫描仪的场强大小而变化。对这些因素与图像的关系必须了解。
读片时,必须注意MR图像上的各种信息,这包括病人姓名、年龄、性别、检查日期、MR号、计算机运行号、脉冲序列、扫描参数、层厚、分辨力、矩阵等。对各层面(横断、冠状及矢状面,甚至斜位)及定位图所提供的信息,必须将其逐一仔细地加以观察和分析。注意有无解剖位置或形态异常,更要注意有无信号强弱的改变。信号的改变可分为高、等、低和混杂信号四类,信号的高或低(强或弱)是与组织特性和扫描的脉冲序列、扫描参数密切相关的。
任何检查都有其优点和不足之处,MRI的缺点是检查时间长,被检查者必须长时间保持同一,任何轻微的移动都会造成MRI图像上伪影,影响诊断。因此许多重危病人不宜检查,另外在显示急性和方面,CT优于MRI。
2.正常MRI表现 在出生后的头一年内,脑组织内水成分逐渐减少,而脂肪成分则逐渐增多,所有这些均可使T1及T2发生变化。到2岁时,脑的表现则与成人大致相同。综上所述,MR图像信号的高低与组织特性和扫描参数的多种因素有关,下面以自旋回波序列为例描述正常的MRI改变。
因组织含水量不同,灰质内含水量较多,T1加权像可清楚显示灰-白质的信号差别,灰质信号强度较白质低,在T2加权像上灰质信号则强于白质;因为脑白质和灰质的质子浓度几乎相等,造成质子像对脑灰白质的分辨效果较差。脑脊液的主要成分是水,T1和T2值均较脑实质长,T1加权像上脑室系统为低信号区,呈黑色,而在T2加权像上为高信号,即脑脊液呈白色。
头皮和浅层呈中等信号,皮下组织含有大量的脂肪,在T1和T2像上均为高信号,皮质骨因不含运动性质子,均为无信号区,皮质骨呈黑色,板障内含丰富脂肪组织,因此板障在T1和T2像上均为高信号,表现为白色,尤以T1像最为明显。镰、幕由组织构成,质子浓度低,因此在T1和T2像上表现为相应的无信号区。总之,在T1像上,信号强度由高到低排列为:脂肪>髓质骨>白质>灰质>脑膜>皮质骨。T1像信号强度由高到低排列顺序为:脑脊液>脂肪>髓质骨>灰质>白质>脑膜>皮质骨。相关文献
参与评价: ()
欢迎您对磁共振成像进行讨论。您发表的观点可以包括咨询、探讨、质疑、材料补充等学术性的内容。我们不欢迎的内容包括政治话题、广告、垃圾链接等。请您参与讨论时遵守中国相关法律法规。
昵称(必填)
电子邮箱(我们会为您保密) (必填)
特别提示:本文内容为开放式编辑模式,仅供初步参考,难免存在疏漏、错误等情况,请您核实后再引用。对于用药、诊疗等医学专业内容,建议您直接咨询医生,以免错误用药或延误病情,本站内容不构成对您的任何建议、指导。
本页最后修订于 日 星期一 15:12:37 (GMT+08:00)
关于医学百科 | 隐私政策 | 免责声明
链接及网站事务请与Email:联系
编辑QQ群:8511895 (不接受疾病咨询)}

我要回帖

更多关于 v t图像 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信